

Learning	GraphQL
Declarative	Data	Fetching	for	Modern	Web	Apps

Eve	Porcello	and	Alex	Banks

Learning	GraphQL

by	Eve	Porcello	and	Alex	Banks

Copyright	©	2018	Eve	Porcello	and	Alex	Banks.	All	rights	reserved.

Printed	in	the	United	States	of	America.

Published	by	O’Reilly	Media,	Inc.,	1005	Gravenstein	Highway	North,
Sebastopol,	CA	95472.

O’Reilly	books	may	be	purchased	for	educational,	business,	or	sales	promotional
use.	Online	editions	are	also	available	for	most	titles	(http://oreilly.com/safari).
For	more	information,	contact	our	corporate/institutional	sales	department:	800-
998-9938	or	corporate@oreilly.com.

Acquisitions	Editor:	Mary	Treseler

Development	Editor:	Alicia	Young

Production	Editor:	Justin	Billing

Copyeditor:	Chris	Edwards

Proofreader:	Octal	Publishing,	Inc.

Indexer:	WordCo,	Inc.

Interior	Designer:	David	Futato

Cover	Designer:	Karen	Montgomery

Illustrator:	Melanie	Yarbrough

August	2018:	First	Edition

http://oreilly.com/safari
mailto:corporate@oreilly.com

Revision	History	for	the	First	Edition

2018-08-08:	First	Release

See	http://oreilly.com/catalog/errata.csp?isbn=9781492030713	for	release
details.

The	O’Reilly	logo	is	a	registered	trademark	of	O’Reilly	Media,	Inc.	Learning
GraphQL,	the	cover	image,	and	related	trade	dress	are	trademarks	of	O’Reilly
Media,	Inc.

The	views	expressed	in	this	work	are	those	of	the	authors,	and	do	not	represent
the	publisher’s	views.	While	the	publisher	and	the	authors	have	used	good	faith
efforts	to	ensure	that	the	information	and	instructions	contained	in	this	work	are
accurate,	the	publisher	and	the	authors	disclaim	all	responsibility	for	errors	or
omissions,	including	without	limitation	responsibility	for	damages	resulting
from	the	use	of	or	reliance	on	this	work.	Use	of	the	information	and	instructions
contained	in	this	work	is	at	your	own	risk.	If	any	code	samples	or	other
technology	this	work	contains	or	describes	is	subject	to	open	source	licenses	or
the	intellectual	property	rights	of	others,	it	is	your	responsibility	to	ensure	that
your	use	thereof	complies	with	such	licenses	and/or	rights.

978-1-492-03071-3

[LSI]

http://oreilly.com/catalog/errata.csp?isbn=9781492030713

Preface

Acknowledgments
This	book	would	not	be	a	book	without	the	help	of	many	phenomenal	people.	It
started	with	the	idea	from	Ally	MacDonald,	our	editor	for	Learning	React,	who
encouraged	us	to	write	Learning	GraphQL.	We	were	then	very	lucky	to	get	to
work	with	Alicia	Young,	who	shepherded	the	book	to	its	printing.	Thanks	to
Justin	Billing,	Melanie	Yarbrough,	and	Chris	Edwards	who	sanded	off	all	of	the
rough	edges	during	an	extremely	thorough	production	edit.

Throughout	the	process,	we	were	fortunate	to	get	feedback	from	Peggy	Rayzis
and	Sashko	Stubailo	from	the	Apollo	team	who	shared	their	insights	and	hot	tips
about	the	latest	features.	Thanks	also	to	Adam	Rackis,	Garrett	McCullough,	and
Shivi	Singh,	who	were	excellent	technical	editors.

We	wrote	this	book	about	GraphQL	because	we	love	GraphQL.	We	think	you
will	too.

https://www.safaribooksonline.com/library/view/learning-react/9781491954614

Conventions	Used	in	This	Book
The	following	typographical	conventions	are	used	in	this	book:

Italic

Indicates	new	terms,	URLs,	email	addresses,	filenames,	and	file	extensions.

Constant	width

Used	for	program	listings,	as	well	as	within	paragraphs	to	refer	to	program
elements	such	as	variable	or	function	names,	databases,	data	types,
environment	variables,	statements,	and	keywords.

Constant	width	bold

Shows	commands	or	other	text	that	should	be	typed	literally	by	the	user.

Constant	width	italic

Shows	text	that	should	be	replaced	with	user-supplied	values	or	by	values
determined	by	context.

TIP
This	element	signifies	a	tip	or	suggestion.

NOTE
This	element	signifies	a	general	note.

WARNING
This	element	indicates	a	warning	or	caution.

Using	Code	Examples
Supplemental	material	(code	examples,	exercises,	etc.)	is	available	for	download
at	https://github.com/moonhighway/learning-graphql/.

This	book	is	here	to	help	you	get	your	job	done.	In	general,	if	example	code	is
offered	with	this	book,	you	may	use	it	in	your	programs	and	documentation.	You
do	not	need	to	contact	us	for	permission	unless	you’re	reproducing	a	significant
portion	of	the	code.	For	example,	writing	a	program	that	uses	several	chunks	of
code	from	this	book	does	not	require	permission.	Selling	or	distributing	a	CD-
ROM	of	examples	from	O’Reilly	books	does	require	permission.	Answering	a
question	by	citing	this	book	and	quoting	example	code	does	not	require
permission.	Incorporating	a	significant	amount	of	example	code	from	this	book
into	your	product’s	documentation	does	require	permission.

We	appreciate,	but	do	not	require,	attribution.	An	attribution	usually	includes	the
title,	author,	publisher,	and	ISBN.	For	example:	“Learning	GraphQL	by	Eve
Porcello	and	Alex	Banks	(O’Reilly).	Copyright	2018	Eve	Porcello	and	Alex
Banks,	978-1-492-03071-3.”

If	you	feel	your	use	of	code	examples	falls	outside	fair	use	or	the	permission
given	above,	feel	free	to	contact	us	at	permissions@oreilly.com.

https://github.com/moonhighway/learning-graphql/
mailto:permissions@oreilly.com

O’Reilly	Safari
Safari	(formerly	Safari	Books	Online)	is	a	membership-based	training	and
reference	platform	for	enterprise,	government,	educators,	and	individuals.

Members	have	access	to	thousands	of	books,	training	videos,	Learning	Paths,
interactive	tutorials,	and	curated	playlists	from	over	250	publishers,	including
O’Reilly	Media,	Harvard	Business	Review,	Prentice	Hall	Professional,	Addison-
Wesley	Professional,	Microsoft	Press,	Sams,	Que,	Peachpit	Press,	Adobe,	Focal
Press,	Cisco	Press,	John	Wiley	&	Sons,	Syngress,	Morgan	Kaufmann,	IBM
Redbooks,	Packt,	Adobe	Press,	FT	Press,	Apress,	Manning,	New	Riders,
McGraw-Hill,	Jones	&	Bartlett,	and	Course	Technology,	among	others.

For	more	information,	please	visit	http://oreilly.com/safari.

http://oreilly.com/safari
http://www.oreilly.com/safari

How	to	Contact	Us
Please	address	comments	and	questions	concerning	this	book	to	the	publisher:

O’Reilly	Media,	Inc.

1005	Gravenstein	Highway	North

Sebastopol,	CA	95472

800-998-9938	(in	the	United	States	or	Canada)

707-829-0515	(international	or	local)

707-829-0104	(fax)

We	have	a	web	page	for	this	book	where	we	list	errata	and	any	additional
information.	You	can	access	this	page	at	http://bit.ly/learning-graphql-orm.

To	comment	or	ask	technical	questions	about	this	book,	send	email	to
bookquestions@oreilly.com.

For	more	information	about	our	books,	courses,	conferences,	and	news,	see	our
website	at	http://www.oreilly.com.

Find	us	on	Facebook:	http://facebook.com/oreilly

Follow	us	on	Twitter:	http://twitter.com/oreillymedia

Watch	us	on	YouTube:	http://www.youtube.com/oreillymedia

http://bit.ly/learning-graphql-orm
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

Chapter	1.	Welcome	to	GraphQL

Before	the	Queen	of	England	made	him	a	knight,	Tim	Berners-Lee	was	a
programmer.	He	worked	at	CERN,	the	European	particle	physics	laboratory	in
Switzerland,	and	was	surrounded	by	a	swath	of	talented	researchers.	Berners-Lee
wanted	to	help	his	colleagues	share	their	ideas,	so	he	decided	to	create	a	network
in	which	scientists	could	post	and	update	information.	The	project	eventually
became	the	first	web	server	and	the	first	web	client,	and	the	“WorldWideWeb”
browser	(later	renamed	“Nexus”)	was	rolled	out	at	CERN	in	December	1990.

With	his	project,	Berners-Lee	made	it	possible	for	researchers	to	view	and
update	web	content	on	their	own	computers.	“WorldWideWeb”	was	HTML,
URLs,	a	browser,	and	a	WYSIWYG	interface	in	which	to	update	content.

Today,	the	internet	isn’t	just	HTML	in	a	browser.	The	internet	is	laptops.	It’s
wrist	watches.	It’s	smartphones.	It’s	a	radio-frequency	identification	(RFID)
chip	in	your	ski	lift	ticket.	It’s	a	robot	that	feeds	your	cat	treats	while	you’re	out
of	town.

The	clients	are	more	numerous	today,	but	we’re	still	striving	to	do	the	same
thing:	load	data	somewhere	as	fast	as	possible.	We	need	our	applications	to	be
performant	because	our	users	hold	us	to	a	high	standard.	They	expect	our	apps	to
work	well	under	any	condition:	from	2G	on	feature	phones	to	blazing-fast	fiber
internet	on	big-screen	desktop	computers.	Fast	apps	make	it	easier	for	more
people	to	interact	with	our	content.	Fast	apps	make	our	users	happy.	And,	yes,
fast	apps	make	us	money.

Getting	data	from	a	server	to	the	client	quickly	and	predictably	is	the	story	of	the
web,	past,	present,	and	future.	Although	this	book	will	often	dig	in	to	the	past	for
context,	we’re	here	to	talk	about	modern	solutions.	We’re	here	to	talk	about	the
future.	We’re	here	to	talk	about	GraphQL.

https://www.w3.org/People/Berners-Lee/Longer.html

What	Is	GraphQL?
GraphQL	is	a	query	language	for	your	APIs.	It’s	also	a	runtime	for	fulfilling
queries	with	your	data.	The	GraphQL	service	is	transport	agnostic	but	is
typically	served	over	HTTP.

To	demonstrate	a	GraphQL	query	and	its	response,	let’s	take	a	look	at	SWAPI,
the	Star	Wars	API.	SWAPI	is	a	Representational	State	Transfer	(REST)	API	that
has	been	wrapped	with	GraphQL.	We	can	use	it	to	send	queries	and	receive	data.

A	GraphQL	query	asks	only	for	the	data	that	it	needs.	Figure	1-1	is	an	example
of	a	GraphQL	query.	The	query	is	on	the	left.	We	request	the	data	for	a	person,
Princess	Leia.	We	obtain	Leia	Organa’s	record	because	we	specify	that	we	want
the	fifth	person	(personID:5).	Next,	we	ask	for	three	fields	of	data:	name,
birthYear,	and	created.	On	the	right	is	our	response:	JSON	data	formatted	to
match	the	shape	of	our	query.	This	response	contains	only	the	data	that	we	need.

Figure	1-1.	Person	query	for	the	Star	Wars	API

We	can	then	adjust	the	query	because	queries	are	interactive.	We	can	change	it
and	see	a	new	result.	If	we	add	the	field	filmConnection,	we	can	request	the	title
of	each	of	Leia’s	films,	as	Figure	1-2	shows.

https://www.graphql.org/
https://graphql.org/swapi-graphql/

Figure	1-2.	Connection	query

The	query	is	nested,	and	when	it	is	executed,	can	traverse	related	objects.	This
allows	us	to	make	one	HTTP	request	for	two	types	of	data.	We	don’t	need	to
make	several	round	trips	to	drill	down	into	multiple	objects.	We	don’t	receive
additional	unwanted	data	about	those	types.	With	GraphQL,	our	clients	can
obtain	all	of	the	data	they	need	in	one	request.

Whenever	a	query	is	executed	against	a	GraphQL	server,	it	is	validated	against	a
type	system.	Every	GraphQL	service	defines	types	in	a	GraphQL	schema.	You
can	think	of	a	type	system	as	a	blueprint	for	your	API’s	data,	backed	by	a	list	of
objects	that	you	define.	For	example,	the	person	query	from	earlier	is	backed	by
a	Person	object:

type	Person	{
				id:	ID!
				name:	String
				birthYear:	String
				eyeColor:	String

				gender:	String
				hairColor:	String
				height:	Int
				mass:	Float
				skinColor:	String
				homeworld:	Planet
				species:	Species
				filmConnection:	PersonFilmsConnection
				starshipConnection:	PersonStarshipConnection
				vehicleConnection:	PersonVehiclesConnection
				created:	String
				edited:	String
}

The	Person	type	defines	all	of	the	fields,	along	with	their	types,	that	are	available
to	query	on	Princess	Leia.	In	Chapter	3,	we	dig	deeper	into	the	schema	and
GraphQL’s	type	system.

GraphQL	is	often	referred	to	as	a	declarative	data-fetching	language.	By	that,	we
mean	that	developers	will	list	their	data	requirements	as	what	data	they	need
without	focusing	on	how	they’re	going	to	get	it.	GraphQL	server	libraries	exist
in	a	variety	of	different	languages	including	C#,	Clojure,	Elixir,	Erlang,	Go,
Groovy,	Java,	JavaScript,	.NET,	PHP,	Python,	Scala,	and	Ruby.

In	this	book,	we	focus	on	how	to	build	GraphQL	services	with	JavaScript.	All	of
the	techniques	that	we	discuss	throughout	this	book	are	applicable	to	GraphQL
in	any	language.

1

The	GraphQL	Specification
GraphQL	is	a	specification	(spec)	for	client-server	communication.	What	is	a
spec?	A	spec	describes	the	capabilities	and	characteristics	of	a	language.	We
benefit	from	language	specifications	because	they	supply	a	common	vocabulary
and	best	practices	for	the	community’s	use	of	the	language.

A	fairly	notable	example	of	a	software	spec	is	the	ECMAScript	spec.	Every	once
in	a	while,	a	group	of	representatives	from	browser	companies,	tech	companies,
and	the	community	at	large	get	together	and	devise	what	should	be	included	in
(and	left	out	of)	the	ECMAScript	spec.	The	same	is	true	for	GraphQL.	A	group
of	individuals	got	together	and	wrote	what	should	be	included	in	(and	left	out	of)
the	language.	This	serves	as	a	guideline	for	all	of	the	implementations	of
GraphQL.

When	the	spec	was	released,	the	creators	of	GraphQL	also	shared	a	reference
implementation	of	a	GraphQL	server	in	JavaScript—graphql.js.	This	is	useful	as
a	blueprint,	but	the	goal	of	this	reference	implementation	is	not	to	mandate
which	language	you	use	to	implement	your	service.	It’s	merely	a	guide.	After
you	have	an	understanding	of	the	query	language	and	the	type	system,	you	can
build	your	server	in	any	language	you’d	like.

If	a	spec	and	an	implementation	are	different,	what	is	actually	in	the	spec?	The
spec	describes	the	language	and	grammar	you	should	use	when	writing	queries.
It	also	sets	up	a	type	system	plus	the	execution	and	validation	engines	of	that
type	system.	Beyond	that,	the	spec	isn’t	particularly	bossy.	GraphQL	doesn’t
dictate	which	language	to	use,	how	the	data	should	be	stored,	or	which	clients	to
support.	The	query	language	has	guidelines	but	the	actual	design	of	your	project
is	up	to	you.	(If	you’d	like	to	dig	into	the	whole	thing,	you	can	explore	the
documentation.)

https://github.com/graphql/graphql-js
http://facebook.github.io/graphql/

Design	Principles	of	GraphQL
Even	though	GraphQL	is	not	controlling	about	how	you	build	your	API,	it	does
offer	some	guidelines	for	how	to	think	about	a	service:

Hierarchical

A	GraphQL	query	is	hierarchical.	Fields	are	nested	within	other	fields	and
the	query	is	shaped	like	the	data	that	it	returns.

Product	centric

GraphQL	is	driven	by	the	data	needs	of	the	client	and	the	language	and
runtime	that	support	the	client.

Strong	typing

A	GraphQL	server	is	backed	by	the	GraphQL	type	system.	In	the	schema,
each	data	point	has	a	specific	type	against	which	it	will	be	validated.

Client-specified	queries

A	GraphQL	server	provides	the	capabilities	that	the	clients	are	allowed	to
consume.

Introspective

The	GraphQL	language	is	able	to	query	the	GraphQL	server’s	type	system.

Now	that	we	have	an	introductory	understanding	of	what	the	GraphQL	spec	is,
let’s	look	at	why	it	was	created.

2

Origins	of	GraphQL
In	2012,	Facebook	decided	that	it	needed	to	rebuild	the	application’s	native
mobile	apps.	The	company’s	iOS	and	Android	apps	were	just	thin	wrappers
around	the	views	of	the	mobile	website.	Facebook	had	a	RESTful	server	and
FQL	(Facebook’s	version	of	SQL)	data	tables.	Performance	was	struggling	and
the	apps	often	crashed.	At	that	point,	engineers	realized	they	needed	to	improve
the	way	that	data	was	being	sent	to	their	client	applications.

The	team	of	Lee	Byron,	Nick	Schrock,	and	Dan	Schafer	decided	to	rethink	their
data	from	the	client	side.	They	set	out	to	build	GraphQL,	a	query	language	that
would	describe	the	capabilities	and	requirements	of	data	models	for	the
company’s	client/server	applications.

In	July	2015,	the	team	released	its	initial	GraphQL	specification	and	a	reference
implementation	of	GraphQL	in	JavaScript	called	graphql.js.	In	September	2016,
GraphQL	left	its	“technical	preview”	stage.	This	meant	that	GraphQL	was
officially	production-ready,	even	though	it	already	had	been	used	for	years	in
production	at	Facebook.	Today,	GraphQL	now	powers	almost	all	of	Facebook’s
data	fetching	and	is	used	in	production	by	IBM,	Intuit,	Airbnb,	and	more.

3

History	of	Data	Transport
GraphQL	presents	some	very	new	ideas	but	all	should	be	understood	in	a
historical	context	of	data	transport.	When	we	think	about	data	transport,	we’re
trying	to	make	sense	of	how	to	pass	data	back	and	forth	between	computers.	We
request	some	data	from	a	remote	system	and	expect	a	response.

Remote	Procedure	Call
In	the	1960s,	remote	procedure	call	(RPC)	was	invented.	An	RPC	was	initiated
by	the	client,	which	sent	a	request	message	to	a	remote	computer	to	do
something.	The	remote	computer	sent	a	response	to	the	client.	These	computers
were	different	from	clients	and	servers	that	we	use	today,	but	the	flow	of
information	was	basically	the	same:	request	some	data	from	the	client,	get	a
response	from	the	server.

Simple	Object	Access	Protocol
In	the	late	1990s,	Simple	Object	Access	Protocol	(SOAP)	emerged	at	Microsoft.
SOAP	used	XML	to	encode	a	message	and	HTTP	as	a	transport.	SOAP	also
used	a	type	system	and	introduced	the	concept	of	resource-oriented	calls	for
data.	SOAP	offered	fairly	predictable	results	but	caused	frustration	because
SOAP	implementations	were	fairly	complicated.

REST
The	API	paradigm	that	you’re	probably	most	familiar	with	today	is	REST.
REST	was	defined	in	2000	in	Roy	Fielding’s	doctoral	dissertation	at	University
of	California–Irvine.	He	described	a	resource-oriented	architecture	in	which
users	would	progress	through	web	resources	by	performing	operations	such	as
GET,	PUT,	POST,	and	DELETE.	The	network	of	resources	can	be	thought	of	as
a	virtual	state	machine,	and	the	actions	(GET,	PUT,	POST,	DELETE)	are	state
changes	within	the	machine.	We	might	take	it	for	granted	today,	but	this	was
pretty	huge.	(Oh,	and	Fielding	did	get	his	Ph.D.)

In	a	RESTful	architecture,	routes	represent	information.	For	example,	requesting
information	from	each	of	these	routes	will	yield	a	specific	response:

/api/food/hot-dog
/api/sport/skiing
/api/city/Lisbon

REST	allows	us	to	create	a	data	model	with	a	variety	of	endpoints,	a	far	simpler
approach	than	previous	architectures.	It	provided	a	new	way	to	handle	data	on
the	increasingly	complex	web	but	didn’t	enforce	a	specific	data	response	format.
Initially,	REST	was	used	with	XML.	AJAX	was	originally	an	acronym	that
stood	for	Asynchronous	JavaScript	And	XML,	because	the	response	data	from
an	Ajax	request	was	formatted	as	XML	(it	is	now	a	freestanding	word,	spelled
“Ajax”).	This	created	a	painful	step	for	web	developers:	the	need	to	parse	XML
responses	before	the	data	could	be	used	in	JavaScript.

Soon	after,	JavaScript	Object	Notation	(JSON)	was	developed	and	standardized
by	Douglas	Crockford.	JSON	is	language	agnostic	and	provides	an	elegant	data
format	that	many	different	languages	can	parse	and	consume.	Crockford	went	on
to	write	the	seminal	JavaScript:	The	Good	Parts	(O’Reilly,	2008)	in	which	he	let
us	know	that	JSON	was	one	of	the	good	parts.

The	influence	of	REST	is	undeniable.	It’s	used	to	build	countless	APIs.
Developers	up	and	down	the	stack	have	benefitted	from	it.	There	are	even
devotees	so	interested	in	arguing	about	what	is	and	is	not	RESTful	that	they’ve
been	dubbed	RESTafarians.	So,	if	that’s	the	case,	why	did	Byron,	Schrock,	and
Schafer	embark	on	their	journey	to	create	something	new?	We	can	find	the

http://bit.ly/2j4SIKI
http://http://bit.ly/js-good-parts

answer	in	some	of	REST’s	shortcomings.

REST	Drawbacks
When	GraphQL	was	first	released,	some	touted	it	as	a	replacement	to	REST.
“REST	is	dead!”	early	adopters	cried,	and	then	encouraged	us	all	to	throw	a
shovel	in	the	trunk	and	drive	our	unsuspecting	REST	APIs	out	to	the	woods.
This	was	great	for	getting	clicks	on	blogs	and	starting	conversations	at
conferences,	but	painting	GraphQL	as	a	REST	killer	is	an	oversimplification.	A
more	nuanced	take	is	that	as	the	web	has	evolved,	REST	has	shown	signs	of
strain	under	certain	conditions.	GraphQL	was	built	to	ease	the	strain.

Overfetching
Suppose	that	we’re	building	an	app	that	uses	data	from	the	REST	version	of
SWAPI.	First,	we	need	to	load	some	data	about	character	number	1,	Luke
Skywalker. 	We	can	make	a	GET	request	for	this	information	by	visiting
https://swapi.co/api/people/1/.	The	response	is	this	JSON	data:

{
		"name":	"Luke	Skywalker",
		"height":	"172",
		"mass":	"77",
		"hair_color":	"blond",
		"skin_color":	"fair",
		"eye_color":	"blue",
		"birth_year":	"19BBY",
		"gender":	"male",
		"homeworld":	"https://swapi.co/api/planets/1/",
		"films":	[
				"https://swapi.co/api/films/2/",
				"https://swapi.co/api/films/6/",
				"https://swapi.co/api/films/3/",
				"https://swapi.co/api/films/1/",
				"https://swapi.co/api/films/7/"
],
		"species":	[
				"https://swapi.co/api/species/1/"
],
		"vehicles":	[
				"https://swapi.co/api/vehicles/14/",
				"https://swapi.co/api/vehicles/30/"
],
		"starships":	[
				"https://swapi.co/api/starships/12/",
				"https://swapi.co/api/starships/22/"
],
		"created":	"2014-12-09T13:50:51.644000Z",
		"edited":	"2014-12-20T21:17:56.891000Z",
		"url":	"https://swapi.co/api/people/1/"
}

4

https://swapi.co/api/people/1/

This	is	a	huge	response.	The	response	exceeds	our	app’s	data	needs.	We	just
need	the	information	for	name,	mass,	and	height:

		{
				"name":	"Luke	Skywalker",
				"height":	"172",
				"mass":	"77"
		}

This	is	a	clear	case	of	overfetching—we’re	getting	a	lot	of	data	back	that	we
don’t	need.	The	client	requires	three	data	points,	but	we’re	getting	back	an	object
with	16	keys	and	sending	information	over	the	network	that	is	useless.

In	a	GraphQL	application,	how	would	this	request	look?	We	still	want	Luke
Skywalker’s	name,	height,	and	mass	here	in	Figure	1-3.

Figure	1-3.	Luke	Skywalker	query

On	the	left,	we	issue	our	GraphQL	query.	We	ask	for	only	the	fields	that	we
want.	On	the	right,	we	receive	a	JSON	response,	this	time	containing	only	the
data	that	we	requested,	not	13	extra	fields	that	are	required	to	travel	from	a	cell
tower	to	a	phone	for	no	reason	at	all.	We	ask	for	data	in	a	certain	shape,	we
receive	the	data	back	in	that	shape.	Nothing	more,	nothing	less.	This	is	more
declarative	and	will	likely	yield	a	faster	response	given	that	extraneous	data	is
not	being	fetched.

Underfetching
Our	project	manager	just	showed	up	at	our	desk	and	wants	to	add	another	feature
to	the	Star	Wars	app.	In	addition	to	name,	height,	and	mass,	we	now	need	to
display	a	list	of	movie	titles	for	all	films	that	Luke	Skywalker	is	in.	After	we
request	the	data	from	https://swapi.co/api/people/1/,	we	still	need	to	make
additional	requests	for	more	data.	This	means	we	underfetched.

To	get	the	title	of	each	film,	we	need	to	fetch	data	from	each	of	the	routes	in	the
films	array:

		"films":	[
				"https://swapi.co/api/films/2/",
				"https://swapi.co/api/films/6/",
				"https://swapi.co/api/films/3/",
				"https://swapi.co/api/films/1/",
				"https://swapi.co/api/films/7/"
]

Getting	this	data	requires	one	request	for	Luke	Skywalker
(https://swapi.co/api/people/1/)	and	then	five	more	for	each	of	the	films.	For
each	film,	we	get	another	large	object.	This	time,	we	use	only	one	value.

		{
		"title":	"The	Empire	Strikes	Back",
		"episode_id":	5,
		"opening_crawl":	"...",
		"director":	"Irvin	Kershner",
		"producer":	"Gary	Kurtz,	Rick	McCallum",
		"release_date":	"1980-05-17",
		"characters":	[
				"https://swapi.co/api/people/1/",
				"https://swapi.co/api/people/2/",
				"https://swapi.co/api/people/3/",
				"https://swapi.co/api/people/4/",
				"https://swapi.co/api/people/5/",
				"https://swapi.co/api/people/10/",
				"https://swapi.co/api/people/13/",
				"https://swapi.co/api/people/14/",
				"https://swapi.co/api/people/18/",

https://swapi.co/api/people/1/

				"https://swapi.co/api/people/20/",
				"https://swapi.co/api/people/21/",
				"https://swapi.co/api/people/22/",
				"https://swapi.co/api/people/23/",
				"https://swapi.co/api/people/24/",
				"https://swapi.co/api/people/25/",
				"https://swapi.co/api/people/26/"
],
		"planets":	[
								//...	Long	list	of	routes
],
		"starships":	[
								//...	Long	list	of	routes
],
		"vehicles":	[
								//...	Long	list	of	routes
],
		"species":	[
								//...	Long	list	of	routes
],
		"created":	"2014-12-12T11:26:24.656000Z",
		"edited":	"2017-04-19T10:57:29.544256Z",
		"url":	"https://swapi.co/api/films/2/"
		}

If	we	wanted	to	list	the	characters	that	are	part	of	this	movie,	we’d	need	to	make
a	lot	more	requests.	In	this	case,	we’d	need	to	hit	16	more	routes	and	make	16
more	roundtrips	to	the	client.	Each	HTTP	request	uses	client	resources	and
overfetches	data.	The	result	is	a	slower	user	experience,	and	users	with	slower
network	speeds	or	slower	devices	might	not	be	able	to	view	the	content	at	all.

The	GraphQL	solution	to	underfetching	is	to	define	a	nested	query	and	then
request	the	data	all	in	one	fetch,	as	Figure	1-4	shows.

Figure	1-4.	Films	connection

Here,	we	receive	only	the	data	that	we	need	in	one	request.	And,	as	always,	the
shape	of	the	query	matches	the	shape	of	the	returned	data.

Managing	REST	Endpoints
Another	common	complaint	about	REST	APIs	is	the	lack	of	flexibility.	As	the
needs	on	the	client	change,	you	usually	have	to	create	new	endpoints,	and	those
endpoints	can	begin	to	multiply	quickly.	To	paraphrase	Oprah,	“You	get	a	route!
You	get	a	route!	Every!	Body!	Gets!	A!	Route!”

With	the	SWAPI	REST	API,	we	had	to	make	requests	to	numerous	routes.
Larger	apps	typically	utilize	custom	endpoints	to	minimize	HTTP	requests.	You
might	see	endpoints	like	/api/character-with-movie-title	begin	popping	up.
Development	speed	can	be	slow	because	setting	up	new	endpoints	often	means
that	frontend	and	backend	teams	have	more	planning	and	communication	to	do
with	each	other.

With	GraphQL,	the	typical	architecture	involves	a	single	endpoint.	The	single
endpoint	can	act	as	a	gateway	and	orchestrate	several	data	sources,	but	the	one
endpoint	still	makes	organization	of	data	easier.

In	this	discussion	of	REST	drawbacks,	it’s	important	to	note	that	many
organizations	use	GraphQL	and	REST	together.	Setting	up	a	GraphQL	endpoint
that	fetches	data	from	REST	endpoints	is	a	perfectly	valid	way	to	use	GraphQL.
It	can	be	a	great	way	to	incrementally	adopt	GraphQL	at	your	organization.

GraphQL	in	the	Real	World
GraphQL	is	used	by	a	variety	of	companies	to	power	their	apps,	websites,	and
APIs.	One	of	the	most	visible	early	adopters	of	GraphQL	was	GitHub.	Its	REST
API	went	through	three	iterations,	and	version	4	of	its	public	API	uses	GraphQL.
As	it	mentions	on	the	website,	GitHub	found	that	“the	ability	to	define	precisely
the	data	you	want-and	only	the	data	you	want-is	a	powerful	advantage	over	the
REST	API	v3	endpoints.”

Other	companies,	like	The	New	York	Times,	IBM,	Twitter,	and	Yelp,	have	put
their	faith	in	GraphQL,	as	well,	and	developers	from	those	teams	are	often	found
evangelizing	the	benefits	of	GraphQL	at	conferences.

There	are	at	least	three	conferences	devoted	to	GraphQL	specifically:	GraphQL
Summit	in	San	Francisco,	GraphQL	Finland	in	Helsinki,	and	GraphQL	Europe
in	Berlin.	The	community	continues	to	grow	via	local	meetups	and	a	variety	of
software	conferences.

https://developer.github.com/v4/

GraphQL	Clients
As	we’ve	said	numerous	times,	GraphQL	is	just	a	spec.	It	doesn’t	care	whether
you’re	using	it	with	React	or	Vue	or	JavaScript	or	even	a	browser.	GraphQL	has
opinions	about	a	few	specific	topics,	but	beyond	that,	your	architectural
decisions	are	up	to	you.	This	has	led	to	the	emergence	of	tools	to	enforce	some
choices	beyond	the	spec.	Enter	GraphQL	clients.

GraphQL	clients	have	emerged	to	speed	the	workflow	for	developer	teams	and
improve	the	efficiency	and	performance	of	applications.	They	handle	tasks	like
network	requests,	data	caching,	and	injecting	data	into	the	user	interface.	There
are	many	GraphQL	clients,	but	the	leaders	in	the	space	are	Relay	and	Apollo.

Relay	is	Facebook’s	client	that	works	with	React	and	React	Native.	Relay	aims
to	be	the	connective	tissue	between	React	components	and	the	data	that	is
fetched	from	the	GraphQL	server.	Relay	is	used	by	Facebook,	GitHub,	Twitch,
and	more.

Apollo	Client	was	developed	at	Meteor	Development	Group	and	is	a
community-driven	effort	to	build	more	comprehensive	tooling	around	GraphQL.
Apollo	Client	supports	all	major	frontend	development	platforms	and	is
framework	agnostic.	Apollo	also	develops	tools	that	assist	with	the	creation	of
GraphQL	services,	the	performance	enhancement	of	backend	services,	and	tools
to	monitor	the	performance	of	GraphQL	APIs.	Companies,	including	Airbnb,
CNBC,	The	New	York	Times,	and	Ticketmaster	use	Apollo	Client	in	production.

The	ecosystem	is	large	and	continues	to	change,	but	the	good	news	is	that	the
GraphQL	spec	is	a	pretty	stable	standard.	In	upcoming	chapters,	we	discuss	how
to	write	a	schema	and	create	a	GraphQL	server.	Along	the	way,	there	are
learning	resources	to	support	your	journey	in	this	book’s	GitHub	repository:
https://github.com/moonhighway/learning-graphql/.	There	you’ll	find	helpful
links,	samples,	and	all	of	the	project	files	by	chapter.

Before	we	dig	in	to	the	tactics	of	working	with	GraphQL,	let’s	talk	a	bit	about
graph	theory	and	the	rich	history	of	the	ideas	found	in	GraphQL.

See	the	GraphQL	Server	Libraries	at	https://graphql.org/code/.

See	the	GraphQL	Spec,	June	2018.
1

2

https://facebook.github.io/relay/
https://www.apollographql.com/
https://github.com/moonhighway/learning-graphql/
https://graphql.org/code/
http://facebook.github.io/graphql/June2018/#sec-Overview

See	“Data	Fetching	for	React	Applications”	by	Dan	Schafer	and	Jing	Chen,
https://www.youtube.com/watch?v=9sc8Pyc51uU.

Note	that	the	SWAPI	data	doesn’t	include	the	most	recent	Star	Wars	films.

2
3

4

https://www.youtube.com/watch?v=9sc8Pyc51uU

Chapter	2.	Graph	Theory

The	alarm	sounds.	You	reach	for	your	phone.	When	you	turn	off	the	beeping,
you	see	two	notifications.	Fifteen	people	liked	a	tweet	that	you	wrote	last	night.
Nice.	Three	people	retweeted	it.	Double	nice.	Your	momentary	Twitter	notoriety
was	brought	to	you	by	a	graph	(as	seen	in	Figure	2-1).

Figure	2-1.	Twitter	likes	and	retweets	diagram

You’re	running	up	the	stairs	to	catch	the	“L”	at	Irving	Park.	You	jump	in	right
before	the	doors	close.	Perfect.	The	train	shakes	side	to	side	as	you	move
forward,	connecting	every	stop.

The	doors	open	and	close	at	each	station.	First,	Addison.	Then,	Paulina,
Southport,	and	Belmont.	At	Belmont,	you	cross	the	platform	to	transfer	to	the
Red	Line.	On	the	Red	Line,	you	make	two	more	stops:	Fullerton	and
North/Clybourn.	This	graph	brought	you	to	work,	as	shown	in	Figure	2-2.

Figure	2-2.	Chicago	“L”	map

You’re	riding	the	escalator	up	to	street	level	when	your	phone	rings.	It’s	your
sister.	She	says	that	she	wants	to	buy	train	tickets	to	go	to	your	Grandpa’s	80th
birthday	party	in	July.	“Mom’s	dad	or	Dad’s	dad?”	you	ask.	“Dad’s,	but	I	think
Mom’s	parents	will	be	there,	too.	And	Aunt	Linda	and	Uncle	Steve.”	You	begin
to	picture	who	will	be	there.	Another	party	planned	by	another	graph:	a	family
tree.	Figure	2-3	shows	this	graph.

Figure	2-3.	Family	tree

Before	long,	you	begin	noticing	graphs	everywhere.	You	see	them	in	social
media	apps,	route	maps,	and	snow	day	phone	trees.	And,	from	spectacular
celestial	constellations	as	seen	in	Figure	2-4.

Figure	2-4.	Big	dipper

To	nature’s	smallest	building	blocks,	seen	in	Figure	2-5.

Figure	2-5.	H O	diagram2

Graphs	are	all	around	us	because	they	are	a	great	way	to	diagram	interconnected
items,	people,	ideas,	or	pieces	of	data.	But	where	did	the	concept	of	a	graph
come	from?	To	understand	this,	we	can	take	a	closer	look	at	graph	theory	and	its
origin	in	mathematics.

NOTE
You	don’t	need	to	know	anything	about	graph	theory	to	work	successfully	with
GraphQL.	There	won’t	be	a	quiz.	We	do,	however,	think	it’s	interesting	to
explore	the	history	behind	these	concepts	to	add	some	additional	context.

2

Graph	Theory	Vocabulary
Graph	theory	is	the	study	of	graphs.	Graphs	are	used	formally	to	represent	a
collection	of	interconnected	objects.	You	can	think	of	a	graph	as	an	object
containing	data	points	and	their	connections.	In	computer	science,	graphs
typically	describe	networks	of	data.	A	graph	might	look	something	like	that
shown	in	Figure	2-6.

Figure	2-6.	Graph	diagram

This	graph	diagram	is	made	up	of	four	circles	that	represent	data	points.	In	graph
terminology,	these	are	called	nodes	or	vertices.	The	lines	or	connections	between
these	nodes	are	called	edges,	of	which	there	are	five.

As	an	equation,	a	graph	is	G	=	(V,	E).

Starting	from	the	easiest	abbreviation,	G	stands	for	graph,	and	V	describes	a	set
of	vertices	or	nodes.	For	this	graph,	V	would	equal	the	following:

				vertices	=	{	1,	2,	3,	4}

E	stands	for	a	set	of	edges.	Edges	are	represented	by	pairs	of	nodes.

1

				edges	=	{	{1,	2},
														{1,	3},
														{1,	4},
														{2,	4},
														{3,	4}	}

In	the	list	of	edge	pairs,	what	would	happen	if	we	rearranged	their	order?	For
example:

				edges	=	{	{4,	3},
														{4,	2},
														{4,	1},
														{3,	1},
														{2,	1}	}

In	this	case,	the	graph	remains	the	same,	as	Figure	2-7	shows.

Figure	2-7.	Graph	diagram

The	equation	still	represents	the	graph	because	there	is	no	direction	or	hierarchy
between	the	nodes.	In	graph	theory,	we	call	this	an	undirected	graph.	The	edge
definitions,	or	connections	between	data	points,	are	unordered	pairs.

When	traversing,	or	visiting,	different	nodes	of	this	graph,	you	could	start
anywhere	and	end	anywhere,	moving	in	any	direction.	Data	doesn’t	follow	in	an

https://algs4.cs.princeton.edu/41graph/

obvious	numerical	order,	and	an	undirected	graph	is,	therefore,	a	nonlinear	data
structure.	Let’s	consider	another	type	of	graph,	the	directed	graph,	which	you
can	see	in	Figure	2-8.

Figure	2-8.	Directed	graph	diagram

The	number	of	nodes	is	the	same,	but	the	edges	look	different.	Instead	of	lines,
they	are	arrows.	There	is	a	direction	or	flow	between	nodes	in	this	graph.	To
represent	it,	we’d	use	the	following:

				vertices	=	{1,	2,	3,	4}
				edges	=	({1,	2},
														{1,	3}
														{3,	4})

All	together,	our	graph	equation	would	be	as	follows:

				graph	=	({1,	2,	3,	4},
														({1,	2},	{1,	3},	{3,	4}))

Notice	that	the	pairs	are	wrapped	in	parentheses	rather	than	curly	braces.	The

parentheses	mean	that	these	edge	definitions	are	ordered	pairs.	Whenever	the
edges	are	ordered	pairs,	we	have	a	directed	graph	or	digraph.	What	would
happen	if	we	rearranged	these	ordered	pairs?	Would	our	diagram	look	the	same,
as	was	the	case	with	the	undirected	graph?

				graph	=	({1,	2,	3,	4},
														({4,	3},	{3,	1},	{1,	2}))

The	resulting	diagram	would	look	quite	different	with	node	4	now	at	the	root,	as
illustrated	in	Figure	2-9.

Figure	2-9.	Directed	graph	diagram

To	traverse	the	graph,	you’d	need	to	start	travel	at	node	4	and	visit	each	node	of

the	graph	by	following	the	arrows.	To	help	visualize	traversal,	it	can	be	useful	to
picture	physically	traveling	from	one	node	to	another.	In	fact,	physical	travel	is
how	these	graph	theory	concepts	emerged.

History	of	Graph	Theory
We	can	trace	the	study	of	graph	theory	back	to	the	town	of	Königsberg,	Prussia
in	1735.	Situated	on	the	Pregel	River,	the	town	was	a	shipping	hub	that	had	two
large	islands	connected	by	seven	bridges	to	the	four	main	landmasses,	as
Figure	2-10	shows.

Figure	2-10.	The	Königsberg	bridges

Königsberg	was	a	gorgeous	town,	and	the	people	of	the	town	loved	to	spend
their	Sundays	getting	fresh	air	and	walking	the	bridges.	Over	time,	the
townspeople	became	obsessed	with	trying	to	solve	a	puzzle:	how	could	they
cross	over	each	of	the	seven	bridges	once	without	ever	crossing	back	across	the
same	bridge?	They	walked	the	town	trying	to	visit	each	island	and	cross	every
bridge	without	repeating	bridges	but	found	themselves	stuck.	Hoping	to	get
some	help	with	the	problem,	they	called	upon	Leonhard	Euler.	Euler	was	a
prolific	Swiss	mathematician	who	published	more	than	500	books	and	papers
during	his	lifetime.

http://bit.ly/2AQhU47

Busy	being	a	genius,	Euler	didn’t	care	about	what	seemed	like	a	trivial	problem.
But	after	giving	it	a	bit	more	thought,	Euler	grew	as	interested	as	the	residents	of
the	town	and	tried	feverishly	to	figure	it	out.	Instead	of	writing	down	every
possible	path,	Euler	decided	it	would	be	simpler	to	look	at	the	links	(bridges)
between	the	landmasses,	as	Figure	2-11	shows.

Figure	2-11.	The	Königsberg	bridges	numbered

He	then	simplified	this,	drawing	the	bridges	and	landmasses	as	what	came	to	be
known	as	a	graph	diagram.	It	looked	like	Figure	2-12:

Figure	2-12.	The	Königsberg	bridges	as	a	diagram

In	Figure	2-12,	A	and	B	are	adjacent	because	they	are	connected	by	an	edge.
Using	these	edge	connections,	we	can	calculate	the	degree	for	each	node.	The
degree	of	a	node	is	equal	to	the	number	of	edges	that	are	attached	to	that	node.	If
we	look	at	the	nodes	in	the	Bridge	Problem,	we’ll	find	that	each	of	the	degrees
are	odd.

A:	five	edges	to	adjacent	nodes	(odd)

B:	three	edges	to	adjacent	nodes	(odd)

C:	three	edges	to	adjacent	nodes	(odd)

D:	three	edges	to	adjacent	nodes	(odd)

Because	each	of	the	nodes	had	odd	degrees,	Euler	found	that	crossing	each
bridge	without	recrossing	was	impossible.	Long	story	short:	if	you	take	a	bridge
to	get	to	an	island,	you	must	leave	via	a	different	bridge.	The	number	of	edges	or
bridges	must	be	even	if	you	don’t	want	to	recross	a	bridge.

Today,	we	call	a	graph	in	which	each	edge	is	visited	once	a	Eulerian	path.	To
qualify,	the	undirected	graph	will	have	two	vertices	with	an	odd	degree	or	all
vertices	will	have	an	even	degree.	Here,	we	have	two	vertices	with	an	odd
degree	(1,	4),	as	seen	in	Figure	2-13.

Figure	2-13.	A	Eulerian	path

Another	idea	associated	with	Euler	is	a	circuit	or	Eulerian	cycle.	In	this	case,	the
starting	node	is	the	same	as	the	ending	node.	Each	edge	is	visited	only	once,	but
the	start	and	end	node	is	repeated	(Figure	2-14).

Figure	2-14.	A	Eulerian	cycle

The	Königsberg	Bridge	Problem	became	the	first	theorem	of	graph	theory.	In
addition	to	being	considered	the	originator	of	graph	theory,	Euler	is	known	for
creating	the	constant	e	and	the	imaginary	unit	i.	Even	the	mathematical	function
syntax	f(x),	a	function	f	applied	to	the	variable	x,	can	be	traced	back	to	Leonhard
Euler.

The	Königsberg	Bridge	Problem	stated	that	a	bridge	could	not	be	crossed	more
than	once.	There	was	never	a	rule	that	the	journey	must	start	or	end	at	a	specific
node.	This	means	that	trying	to	solve	the	problem	was	an	exercise	in	undirected
graph	traversal.	What	if	you	wanted	to	try	to	solve	the	bridge	problem,	but	you
had	to	start	at	a	particular	node?

If	you	live	on	island	B,	that’s	where	you’d	always	have	to	start	your	traversal
journey.	In	that	case,	you’d	be	dealing	with	a	directed	graph,	more	commonly
called	a	tree.

2

Trees	are	Graphs
Let’s	consider	another	type	of	graph:	a	tree.	A	tree	is	a	graph	in	which	nodes	are
arranged	hierarchically.	You	know	you’re	looking	at	a	tree	if	there	is	a	root
node.	In	other	words,	the	root	is	where	the	tree	starts,	and	then	all	of	the	other
nodes	are	linked	to	the	root	as	children.

Consider	an	organizational	chart.	This	is	a	textbook	tree.	The	CEO	is	at	the	top
and	all	of	the	other	employees	are	underneath	the	CEO.	The	CEO	is	the	root	of
the	tree	and	all	of	the	other	nodes	are	the	root	node’s	children,	as	Figure	2-15
shows.

Figure	2-15.	An	organizational	chart

Trees	have	many	uses.	You	might	use	one	to	represent	a	family’s	genealogy.
Trees	can	map	decision-making	algorithms.	They	help	access	information	in
databases	quickly	and	efficiently.	One	day,	you	might	even	have	to	reverse	a
binary	tree	on	a	whiteboard	for	the	five	people	standing	between	you	and	your
new	job	where	you’ll	never	have	to	do	that	again.

We	can	determine	whether	a	graph	is	a	tree	based	on	whether	it	has	a	root	node
or	a	starting	node.	From	the	root	node,	a	tree	is	connected	to	child	nodes	by

edges.	When	a	node	is	connected	to	a	child	node,	that	node	is	called	a	parent.
When	a	child	has	children,	that	node	is	referred	to	as	a	branch.	When	a	node	has
no	children,	it	is	called	a	leaf.

Nodes	contain	data	points.	For	that	reason,	it’s	important	to	understand	where
data	is	in	the	tree	so	that	it	can	be	quickly	accessed.	To	find	data	quickly,	we
want	to	calculate	the	depth	of	individual	nodes.	The	depth	of	a	node	simply
refers	to	how	far	away	the	node	is	from	the	root	of	a	tree.	Let’s	consider	the	tree
A	->	B	->	C	->	D.	To	find	the	depth	of	node	C,	count	the	links	between	C	and
the	root.	There	are	exactly	two	links	between	C	and	the	root	(A),	so	the	depth	of
node	C	is	2,	and	the	depth	of	node	D	is	3.

The	hierarchical	structure	of	a	tree	means	that	trees	often	include	other	trees.	A
tree	nested	inside	of	a	tree	is	called	a	subtree.	An	HTML	page	typically	has
several	subtrees.	The	root	of	the	tree	is	the	<html>	tag.	Then,	there	are	two
subtrees	with	<head>	at	the	root	of	the	left	subtree	and	<body>	at	the	root	of	the
right	subtree.	From	there,	<header>,	<footer>,	and	<div>	are	all	roots	of
different	subtrees.	With	lots	of	nesting,	there	are	a	lot	of	subtrees,	as	Figure	2-16
depicts.

Figure	2-16.	An	HTML	tree

Just	as	a	tree	is	a	specific	type	of	graph,	a	binary	tree	is	a	specific	type	of	tree.	A
binary	tree	means	that	each	node	has	no	more	than	two	child	nodes.	When
talking	about	binary	trees,	we’re	often	referring	to	binary	search	trees. 	A	binary
search	tree	is	a	binary	tree	that	follows	specific	ordering	rules.	The	ordering
rules	and	tree	structure	help	us	to	find	the	data	that	we	need	quickly.	Figure	2-17
shows	an	example	of	a	binary	search	tree.

Figure	2-17.	Binary	search	tree

It	has	a	root	node	and	follows	the	rule	that	each	node	should	have	no	more	than
two	child	nodes.	Suppose	that	we	wanted	to	find	node	15.	Without	a	binary
search	tree,	we’d	need	to	visit	every	single	node	until	we	found	node	15.	Maybe
we’d	get	lucky	and	go	down	the	correct	branch.	Maybe	we	wouldn’t	be	so	lucky
and	would	need	to	backtrack	inefficiently	around	the	tree.

With	the	binary	search	tree,	we	can	locate	node	15	skillfully	by	understanding
the	rules	of	left	and	right.	If	we	begin	traversal	at	the	root	(9),	we’ll	say,	“Is	15
greater	than	or	less	than	9?”	If	it’s	less	than,	we’ll	move	to	the	left.	If	it’s	greater
than,	we’ll	move	to	the	right.	Fifteen	is	greater	than	9,	so	we’ll	move	right,	and
in	doing	so,	we	have	excluded	half	of	the	nodes	in	the	tree	from	our	search.
From	here,	we	have	node	20.	Is	15	greater	than	or	less	than	20?	It’s	less	than,	so
we’ll	move	to	the	left,	eliminating	half	of	the	remaining	nodes.	Now	at	node	13,
is	15	greater	than	or	less	than	13?	It’s	greater	than,	so	we’ll	head	right.	We’ve
found	it!	By	using	left	and	right	to	eliminate	options,	we	can	find	the	data	that

3

we’re	interested	in	much	more	quickly.

Graphs	in	the	Real	World
You	might	encounter	these	graph	theory	concepts	every	day,	depending	on	the
work	you	do	with	GraphQL.	Or,	you	might	just	be	using	GraphQL	as	an
efficient	way	to	load	data	into	user	interfaces.	Regardless,	all	of	these	ideas	are
going	on	behind	the	scenes	in	GraphQL	projects.	As	we’ve	seen,	graphs	are
particularly	well	suited	to	handle	the	needs	of	applications	with	a	lot	of	data
points.

Think	of	Facebook.	With	our	graph	theory	vocabulary	in	place,	we	know	that
each	person	on	Facebook	is	a	node.	When	a	person	is	connected	with	another
person,	there	is	a	two-way	connection	via	an	edge.	Facebook	is	an	undirected
graph.	Whenever	I	connect	to	someone	on	Facebook,	they	are	connected	to	me.
My	connection	to	my	best	friend,	Sarah,	is	a	two-way	connection.	We	are	friends
with	each	other	(as	Figure	2-18	shows).

Figure	2-18.	Facebook	undirected	graph

As	an	undirected	graph,	each	node	in	the	Facebook	graph	is	part	of	a	web	of
many	interconnected	relationships—a	social	network.	You	are	connected	to	all
of	your	friends.	In	the	same	graph,	those	friends	are	connected	to	all	of	their
friends.	Traversal	can	start	and	end	at	any	node	(Figure	2-19).

Figure	2-19.	Facebook	undirected	web

Alternatively,	there’s	Twitter.	Unlike	Facebook	where	everyone	is	paired	in	a
two-way	connection,	Twitter	is	a	directed	graph	because	each	connection	is	one
way,	as	shown	in	Figure	2-20.	If	you	follow	Michelle	Obama,	she	might	not
follow	you	back,	even	though	she	is	always	most	welcome	to	do	so
(@eveporcello,	@moontahoe).

Figure	2-20.	Twitter	graph

If	a	person	looks	at	all	of	her	friendships,	she	becomes	the	root	of	a	tree.	She	is
connected	to	her	friends.	Then,	her	friends	are	connected	to	their	friends	in
subtrees	(Figure	2-21).

https://twitter.com/eveporcello
https://twitter.com/moontahoe

Figure	2-21.	Friend	tree

The	same	would	be	true	for	anyone	else	in	the	Facebook	graph.	As	soon	as	you
isolate	a	person	and	ask	for	their	data,	the	request	looks	like	a	tree.	The	person	is
at	the	root,	and	all	of	the	data	that	you	want	from	that	person	is	a	child	node.	In
this	request,	a	person	is	connected	to	all	of	their	friends	by	an	edge:

person

name

location

birthday

friends

friend	name

friend	location

friend	birthday

This	structure	looks	a	lot	like	a	GraphQL	query:

				{
								me	{
												name
												location
												birthday
												friends	{
																name
																location
																birthday
												}
								}
				}

With	GraphQL,	we	aim	to	simplify	complex	graphs	of	data	by	issuing	queries
for	the	data	that	we	need.	In	the	next	chapter,	we	dig	deeper	into	the	mechanics
of	how	a	GraphQL	query	works	and	how	a	query	is	validated	against	a	type
system.

For	additional	reading	on	nodes	and	edges,	check	out	Vaidehi	Joshi’s	blog	post,	“A
Gentle	Introduction	to	Graph	Theory.”

More	information	about	Euler	and	his	work	can	be	found	at
http://www.storyofmathematics.com/18th_euler.html.

See	Vaidehi	Joshi’s	blog	post,	“Leaf	It	Up	to	Binary	Trees.”

1

2

3

https://dev.to/vaidehijoshi/a-gentle-introduction-to-graph-theory
http://www.storyofmathematics.com/18th_euler.html
http://bit.ly/2vQyKd5

Chapter	3.	The	GraphQL	Query	Language

Forty-five	years	before	GraphQL	was	open	sourced,	an	IBM	employee,	Edgar
M.	Codd,	released	a	fairly	brief	paper	with	a	very	long	name.	“A	Relational
Model	of	Data	for	Large	Shared	Databanks”	didn’t	have	a	snappy	title,	but	it
contained	some	powerful	ideas.	It	outlined	a	model	for	storing	and	manipulating
data	using	tables.	Soon	after	that,	IBM	began	working	on	a	relational	database
that	could	be	queried	using	Structured	English	Query	Language,	or	SEQUEL,
which	later	became	known	only	as	SQL.

SQL,	or	Structured	Query	Language,	is	a	domain-specific	language	used	to
access,	manage,	and	manipulate	data	in	a	database.	SQL	introduced	the	idea	of
accessing	multiple	records	with	a	single	command.	It	also	made	it	possible	to
access	any	record	with	any	key,	not	just	with	an	ID.

The	commands	that	could	be	run	with	SQL	were	very	streamlined:	SELECT,
INSERT,	UPDATE,	and	DELETE.	That’s	all	you	can	do	to	data.	With	SQL,	we
can	write	a	single	query	that	can	return	connected	data	across	multiple	data
tables	in	a	database.

This	idea—that	data	can	only	be	read,	created,	updated,	or	deleted—did	make	its
way	to	Representational	State	Transfer	(REST),	which	requires	us	to	use
different	HTTP	methods	depending	upon	these	four	basic	data	operations:	GET,
POST,	PUT,	and	DELETE.	However,	the	only	way	to	specify	what	type	of	data
you	want	to	read	or	change	with	REST	is	via	endpoint	URLs,	not	an	actual	query
language.

GraphQL	takes	the	ideas	that	were	originally	developed	to	query	databases	and
applies	them	to	the	internet.	A	single	GraphQL	query	can	return	connected	data.
Like	SQL,	you	can	use	GraphQL	queries	to	change	or	remove	data.	After	all,	the
QL	in	SQL	and	in	GraphQL	stand	for	the	same	thing:	Query	Language.

Even	though	they	are	both	query	languages,	GraphQL	and	SQL	are	completely
different.	They	are	intended	for	completely	different	environments.	You	send
SQL	queries	to	a	database.	You	send	GraphQL	queries	to	an	API.	SQL	data	is
stored	in	data	tables.	GraphQL	data	can	be	stored	anywhere:	a	database,	multiple
databases,	file	systems,	REST	APIs,	WebSockets,	even	other	GraphQL	APIs.
SQL	is	a	query	language	for	databases.	GraphQL	is	a	query	language	for	the

http://bit.ly/2Ms7jxn

internet.

GraphQL	and	SQL	also	have	entirely	different	syntax.	Instead	of	SELECT,
GraphQL	uses	Query	to	request	data.	This	operation	is	at	the	heart	of	everything
we	do	with	GraphQL.	Instead	of	INSERT,	UPDATE,	or	DELETE,	GraphQL
wraps	all	of	these	data	changes	into	one	data	type:	the	Mutation.	Because
GraphQL	is	built	for	the	internet,	it	includes	a	Subscription	type	that	can	be	used
to	listen	for	data	changes	over	socket	connections.	SQL	doesn’t	have	anything
like	a	subscription.	SQL	is	like	a	grandparent	that	looks	nothing	like	their
grandchild,	but	we	know	they	are	related	because	they	have	the	same	last	name.

GraphQL	is	standardized	according	to	its	spec.	It	doesn’t	matter	what	language
you	are	using:	a	GraphQL	query	is	a	GraphQL	query.	The	query	syntax	is	a
string	that	looks	the	same	regardless	of	whether	the	project	uses	JavaScript,	Java,
Haskell,	or	anything	else.

Queries	are	simply	strings	that	are	sent	in	the	body	of	POST	requests	to	a
GraphQL	endpoint.	The	following	is	a	GraphQL	query,	a	string	written	in	the
GraphQL	query	language:

{
		allLifts	{
				name
		}
}

You	would	send	this	query	to	a	GraphQL	endpoint	with	curl:

curl		'http://snowtooth.herokuapp.com/'
		-H	'Content-Type:	application/json'
		--data	'{"query":"{	allLifts	{name	}}"}'

Assuming	that	the	GraphQL	schema	supports	a	query	of	this	shape,	you	will
receive	a	JSON	response	directly	in	the	terminal.	That	JSON	response	will
contain	either	the	data	that	you	requested	in	a	field	named	data,	or	the	errors
field	if	something	went	wrong.	We	make	one	request.	We	receive	one	response.

To	modify	data,	we	can	send	mutations.	Mutations	look	a	lot	like	queries,	but
their	intention	is	to	change	something	about	the	overall	state	of	an	application.
The	data	required	to	perform	a	change	can	be	sent	directly	with	the	mutation,	as

demonstrated	here:

mutation	{
		setLiftStatus(id:	"panorama"	status:	OPEN)	{
				name
				status
		}
}

The	preceding	mutation	is	written	in	the	GraphQL	query	language	and	we	can
assume	that	it	will	change	the	status	of	a	lift	with	an	id	of	panorama	to	OPEN.
Again,	we	can	send	this	operation	to	a	GraphQL	server	by	using	cURL:

curl	'http://snowtooth.herokuapp.com/'
		-H	'Content-Type:	application/json'
		--data	'{"query":"mutation	{setLiftStatus(id:	\"panorama\"	status:	OPEN)	{name	
status}}"}'

There	are	fancier	ways	to	map	variables	to	a	query	or	a	mutation,	but	we	cover
those	details	later	in	the	book.	In	this	chapter,	we	focus	on	how	to	construct
queries,	mutations,	and	subscriptions	using	GraphQL.

GraphQL	API	Tools
The	GraphQL	community	has	produced	several	open	source	tools	that	you	can
use	to	interact	with	GraphQL	APIs.	These	tools	allow	you	to	write	queries	in	the
GraphQL	query	language,	send	those	queries	to	GraphQL	endpoints,	and	inspect
the	JSON	response.	In	this	next	section,	we	look	at	the	two	most	popular	tools
for	testing	GraphQL	queries	against	a	GraphQL	API:	GraphiQL	and	GraphQL
Playground.

GraphiQL
GraphiQL	is	the	in-browser	integrated	development	environment	(IDE)	that	was
created	at	Facebook	to	allow	you	to	query	and	explore	a	GraphQL	API.
GraphiQL	offers	syntax	highlighting,	code	completion,	and	error	warnings,	and
it	lets	you	run	and	view	query	results	directly	in	the	browser.	Many	public	APIs
provide	a	GraphiQL	interface	with	which	you	can	query	live	data.

The	interface	is	fairly	straightforward.	There	is	a	panel	in	which	you	write	your
query,	a	play	button	to	run	it,	and	a	panel	to	display	the	response,	as	shown	in
Figure	3-1.

Figure	3-1.	The	GraphiQL	interface

Our	queries	start	off	as	text	written	in	the	GraphQL	Query	Language.	We	refer
to	this	text	as	the	query	document.	You	place	query	text	in	the	left	panel.	A
GraphQL	document	can	contain	the	definitions	of	one	or	more	operations.	An
operation	is	a	Query,	Mutation,	or	Subscription.	Figure	3-2	shows	how	you
would	add	a	Query	operation	to	your	document.

Figure	3-2.	A	GraphiQL	query

Clicking	the	Play	button	runs	the	query.	Then,	in	the	right	panel,	you	receive	a

response	formatted	as	JSON	(Figure	3-3).

Figure	3-3.	GraphiQL

In	the	upper-right	corner,	you	can	click	to	open	the	Docs	window,	which	defines
everything	you	need	to	know	to	interact	with	the	current	service.	This
documentation	is	automatically	added	to	GraphiQL	because	it	is	read	from	the
service’s	schema.	The	schema	defines	the	data	that	is	available	on	the	service,
and	GraphiQL	automatically	builds	documentation	by	running	an	introspection
query	against	the	schema.	You	can	always	view	this	documentation	in	the
Documentation	Explorer,	as	seen	in	Figure	3-4.

Figure	3-4.	GraphiQL	Documentation	Explorer	panel

More	often	than	not,	you	will	access	GraphiQL	via	a	URL	that	is	hosted
alongside	the	GraphQL	service	itself.	If	you	build	your	own	GraphQL	service,
you	can	add	a	route	that	renders	the	GraphQL	interface	so	that	your	users	can
explore	the	data	that	you	make	public	to	users.	You	also	can	download	a
standalone	version	of	GraphiQL.

GraphQL	Playground
Another	tool	for	exploring	GraphQL	APIs	is	GraphQL	Playground.	Created	by
the	team	at	Prisma,	GraphQL	Playground	mirrors	the	functionality	of	GraphiQL
and	adds	on	a	few	interesting	options.	The	easiest	way	to	interact	with	a
GraphQL	Playground	is	to	check	it	out	in	the	browser	at
https://www.graphqlbin.com.	After	you	supply	an	endpoint,	you	can	interact
with	the	data	using	the	Playground.

The	GraphQL	Playground	is	very	similar	to	GraphiQL,	but	it	does	come	with
several	extra	features	that	you	might	find	convenient.	The	most	important	feature
is	the	ability	to	send	custom	HTTP	headers	along	with	your	GraphQL	request,	as
seen	in	Figure	3-5	(We	discuss	this	feature	in	greater	detail	when	we	cover
authorization	in	Chapter	5.)

https://www.graphqlbin.com

Figure	3-5.	GraphQL	Playground

GraphQL	Bin	is	also	a	fantastic	collaboration	tool	because	you	can	share	links	to
your	bins	with	others,	as	seen	in	Figure	3-6.

Figure	3-6.	Sharing	bins

GraphQL	Playground	has	a	desktop	version	that	you	can	install	locally	using
Homebrew:

brew	cask	install	graphql-playground

Or,	you	can	just	download	it	from	the	website.

After	you	have	this	installed	or	have	navigated	to	GraphQL	Bin,	you	can	begin
sending	queries.	To	get	started	quickly,	you	can	paste	an	API	endpoint	in	the
playground.	This	could	be	a	public	API	or	your	project	running	on	a	localhost
port.

http://bit.ly/graphql-pg-releases

Public	GraphQL	APIs
One	of	the	best	ways	to	get	started	with	GraphQL	is	to	practice	sending	queries
using	a	public	API.	Several	companies	and	organizations	provide	a	GraphiQL
interface	that	you	can	use	to	query	public	data:

SWAPI	(the	Star	Wars	API)

This	is	a	Facebook	project	that	is	a	wrapper	around	the	SWAPI	REST	API.

GitHub	API

One	of	the	largest	public	GraphQL	APIs,	the	GitHub	GraphQL	API	allows
you	to	send	queries	and	mutations	to	view	and	change	your	live	data	on
GitHub.	You’ll	need	to	sign	in	with	your	GitHub	account	to	interact	with	the
data.

Yelp

Yelp	maintains	a	GraphQL	API	that	you	can	query	using	GraphiQL.	You	do
need	to	create	a	Yelp	developer	account	to	interact	with	the	data	in	the	Yelp
API.

Many	additional	examples	of	public	GraphQL	APIs	are	available.

http://graphql.org/swapi-graphql
https://developer.github.com/v4/explorer/
https://www.yelp.com/developers/graphiql
https://github.com/APIs-guru/graphql-apis

The	GraphQL	Query
Snowtooth	Mountain	is	a	fake	ski	resort.	For	the	sake	of	the	examples	in	this
chapter,	we	will	pretend	it	is	a	real	mountain	and	that	we	work	there.	We	are
going	to	look	at	how	the	Snowtooth	Mountain	web	team	uses	GraphQL	to
provide	real-time,	up-to-date	information	on	chairlift	status	and	trail	status.	The
Snowtooth	Ski	Patrol	can	open	and	close	chairlifts	and	trails	directly	from	their
phones.	To	follow	along	with	the	examples	in	this	chapter,	refer	to	Snowtooth’s
GraphQL	Playground	interface.

You	can	use	the	query	operation	to	request	data	from	an	API.	A	query	describes
the	data	that	you	want	to	fetch	from	a	GraphQL	server.	When	you	send	a	query,
you	ask	for	units	of	data	by	field.	These	fields	map	to	the	same	field	in	the	JSON
data	response	you	receive	from	your	server.	For	example,	if	you	send	a	query	for
allLifts	and	request	the	name	and	status	fields,	you	should	receive	a	JSON
response	that	contains	an	array	for	allLifts	and	a	string	for	each	lift’s	name	and
each	lift’s	status,	as	demonstrated	here:

query	{
		allLifts	{
				name
				status
		}
}

http://snowtooth.moonhighway.com

HANDLING	ERRORS
Successful	queries	return	a	JSON	document	that	contains	a	“data”	key.
Unsuccessful	queries	return	a	JSON	document	that	contains	an	“errors”	key.
The	details	of	what	went	wrong	is	passed	as	JSON	data	under	this	key.	A
JSON	response	can	contain	both	“data”	and	“errors.”

You	can	add	multiple	queries	to	a	query	document,	but	you	can	run	only	one
operation	at	a	time.	For	example,	you	could	place	two	query	operations	in	a
query	document:

query	lifts	{
		allLifts	{
				name
				status
		}
}

query	trails	{
		allTrails	{
				name
				difficulty
		}
}

When	you	press	the	play	button,	the	GraphQL	Playground	asks	you	to	select	one
of	these	two	operations.	If	you	want	to	send	one	request	for	all	of	this	data,
you’ll	need	to	place	it	all	within	the	same	query:

query	liftsAndTrails	{
		liftCount(status:	OPEN)
		allLifts	{
				name
				status
		}
		allTrails	{
				name
				difficulty

		}
}

Here	is	where	the	benefits	of	GraphQL	begin	to	crystallize.	We	are	able	to
receive	all	kinds	of	different	datapoints	in	a	single	query.	We	are	asking	for	the
liftCount	by	status,	which	gives	us	the	number	of	lifts	that	currently	have	that
status.	We	are	also	asking	for	the	name	and	status	of	every	lift.	Finally,	we	ask
for	the	name	and	status	of	every	trail	in	the	same	query.

A	Query	is	a	GraphQL	type.	We	call	it	a	root	type	because	it’s	a	type	that	maps
to	an	operation,	and	operations	represent	the	roots	of	our	query	document.	The
fields	that	are	available	to	query	in	a	GraphQL	API	have	been	defined	in	that
API’s	schema.	The	documentation	will	tell	us	what	fields	are	available	to	select
on	the	Query	type.

This	documentation	tells	us	that	we	are	able	to	select	the	fields	liftCount,
allLifts,	and	allTrails	when	we	query	this	API.	It	also	defines	more	fields	that	are
available	to	select,	but	the	whole	point	of	a	query	is	that	we	get	to	choose	which
fields	we	need	and	which	fields	to	omit.

When	we	write	queries,	we	are	selecting	the	fields	that	we	need	by	encapsulating
them	in	curly	brackets.	These	blocks	are	referred	to	as	selection	sets.	The	fields
that	we	define	in	a	selection	set	are	directly	related	to	GraphQL	types.	The
liftCount,	allLifts,	and	allTrails	fields	are	defined	in	the	Query	type.

You	can	nest	selection	sets	within	one	another.	Because	the	allLifts	field	returns
a	list	of	Lift	types,	we	need	to	use	the	curly	brackets	to	create	a	new	selection	set
on	this	type.	There	is	all	sorts	of	data	that	we	can	request	about	a	lift,	but	in	this
example	we	want	to	select	only	the	lift’s	name	and	status.	Similarly,	the	allTrails
query	will	return	Trail	types.

The	JSON	response	contains	all	of	the	data	that	we	requested	in	the	query.	This
data	is	formatted	as	JSON	and	is	delivered	in	the	same	shape	as	our	query.	Each
JSON	field	is	issued	the	same	name	as	the	field	in	our	selection	set.	We	can
change	the	field	names	in	the	response	object	within	the	query	by	specifying	an
alias,	as	shown	here:

query	liftsAndTrails	{
		open:	liftCount(status:	OPEN)
		chairlifts:	allLifts	{
				liftName:	name

				status
		}
		skiSlopes:	allTrails	{
				name
				difficulty
		}
}

Following	is	the	response:

{
		"data":	{
				"open":	5,
				"chairlifts":	[
						{
								"liftName":	"Astra	Express",
								"status":	"open"
						}
],
				"skiSlopes":	[
						{
								"name":	"Ditch	of	Doom",
								"difficulty":	"intermediate"
						}
]
		}
}

Now	we	get	the	data	back	in	the	same	shape,	but	we	have	renamed	several	fields
in	our	response.	A	way	to	filter	the	results	of	a	GraphQL	query	is	to	pass	in
query	arguments.	Arguments	are	a	key–value	pair	(or	pairs)	associated	with	a
query	field.	If	we	want	only	the	names	of	the	closed	chairlifts,	we	can	send	an
argument	that	will	filter	our	response:

query	closedLifts	{
				allLifts(status:	"CLOSED"	sortBy:	"name")	{
						name
						status
				}
}

You	also	can	use	arguments	to	select	data.	For	instance,	suppose	that	we	want	to
query	the	status	of	an	individual	chairlift.	We	can	select	that	chairlift	by	its
unique	identifier:

query	jazzCatStatus	{
				Lift(id:	"jazz-cat")	{
						name
						status
						night
						elevationGain
				}
}

Here	we	see	the	response	contains	the	name,	status,	night,	and	elevationGain	for
the	“Jazz	Cat”	chairlift.

Edges	and	Connections
In	the	GraphQL	query	language,	fields	can	be	either	scalar	types	or	object	types.
Scalar	types	are	similar	to	primitives	in	other	languages.	They	are	the	leaves	of
our	selection	sets.	Out	of	the	box,	GraphQL	comes	with	five	built-in	scalar
types:	integers	(Int),	floats	(Float),	strings	(String),	Booleans	(Boolean),	and
unique	identifiers	(ID).	Both	integers	and	floats	return	JSON	numbers,	and
String	and	ID	return	JSON	strings.	Booleans	just	return	Booleans.	Even	though
ID	and	String	will	return	the	same	type	of	JSON	data,	GraphQL	still	makes	sure
that	IDs	return	unique	strings.

GraphQL	object	types	are	groups	of	one	or	more	fields	that	you	define	in	your
schema.	They	define	the	shape	of	the	JSON	object	that	should	be	returned.
JSON	can	endlessly	nest	objects	under	fields,	and	so	can	GraphQL.	We	can
connect	objects	together	by	querying	one	object	for	details	about	related	objects.

For	example,	suppose	that	we	want	to	receive	a	list	of	trails	that	we	can	access
from	a	particular	lift:

query	trailsAccessedByJazzCat	{
				Lift(id:"jazz-cat")	{
								capacity
								trailAccess	{
												name
												difficulty
								}
				}
}

In	the	preceding	query,	we	are	asking	for	some	data	about	the	“Jazz	Cat”
chairlift.	Our	selection	set	includes	a	request	for	the	capacity	field.	Capacity	is	a
scalar	type;	it	returns	an	integer	that	represents	the	number	of	people	that	can
ride	on	one	chair.	The	trailAccess	field	is	of	type	Trail	(an	object	type).	In	this
example,	trailAccess	returns	a	filtered	list	of	trails	that	are	accessible	from	Jazz
Cat.	Because	trailAccess	is	a	field	within	the	Lift	type,	the	API	can	use	details
about	the	parent	object,	the	Jazz	Cat	Lift,	to	filter	the	list	of	returned	trails.

This	example	operation	queries	a	one-to-many	connection	between	two	types	of
data,	lifts	and	trails.	One	lift	is	connected	to	many	related	trials.	If	we	start	our

graph	traversal	from	the	Lift	node,	we	can	get	to	one	or	more	Trail	nodes	that	are
connected	to	that	lift	via	an	edge	that	we	have	named	trailAccess.	For	our	graph
to	be	considered	undirected,	we	would	need	to	traverse	back	to	the	Lift	node
from	the	Trail	node,	and	we	can:

query	liftToAccessTrail	{
				Trail(id:"dance-fight")	{
								groomed
								accessedByLifts	{
												name
												capacity
								}
				}
}

In	the	liftToAccessTrail	query,	we	are	selecting	a	Trail	called	“Dance	Fight.”
The	groomed	field	returns	a	Boolean	scalar	type	that	lets	us	know	whether
Dance	Fight	is	groomed.	The	accessedByLifts	field	returns	lifts	that	deliver
skiers	to	the	Dance	Fight	trail.

Fragments
A	GraphQL	query	document	can	contain	definitions	for	operations	and
fragments.	Fragments	are	selection	sets	that	can	be	reused	in	multiple	operations.
Take	a	look	at	the	following	query:

query	{
				Lift(id:	"jazz-cat")	{
						name
						status
						capacity
						night
						elevationGain
						trailAccess	{
								name
								difficulty
						}
				}
				Trail(id:	"river-run")	{
						name
						difficulty
						accessedByLifts	{
								name
								status
								capacity
								night
								elevationGain
						}
				}
}

This	query	requests	information	about	the	Jazz	Cat	lift	and	the	“River	Run”	trail.
The	Lift	includes	name,	status,	capacity,	night,	and	elevationGain	in	its	selection
set.	The	information	that	we	want	to	obtain	about	the	River	Run	trail	includes	a
subselection	on	the	Lift	type	for	the	same	fields.	We	could	create	a	fragment	that
can	help	us	reduce	redundancy	in	our	query:

fragment	liftInfo	on	Lift	{
		name

		status
		capacity
		night
		elevationGain
}

You	create	fragments	by	using	the	fragment	identifier.	Fragments	are	selection
sets	on	specific	types,	so	you	must	include	the	type	that	is	associated	with	each
fragment	in	its	definition.	The	fragment	in	this	example	is	named	liftInfo,	and	it
is	a	selection	set	on	the	Lift	type.

When	we	want	to	add	the	liftInfo	fragment	fields	to	another	selection	set,	we	can
do	so	by	using	three	dots	with	the	fragment	name:

query	{
				Lift(id:	"jazz-cat")	{
						...liftInfo
						trailAccess	{
								name
								difficulty
						}
				}
				Trail(id:	"river-run")	{
						name
						difficulty
						accessedByLifts	{
								...liftInfo
						}
				}
}

The	syntax	is	similar	to	the	JavaScript	spread	operator,	which	is	used	for	a
similar	purpose—to	assign	the	keys	and	values	of	one	object	to	another.	These
three	dots	instruct	GraphQL	to	assign	the	fields	from	the	fragment	to	the	current
selection	set.	In	this	example,	we	are	able	to	select	the	name,	status,	capacity,
night,	and	elevationGain	in	two	different	places	within	our	query	using	one
fragment.

We	would	not	be	able	to	add	the	liftInfo	fragment	to	the	Trail	selection	set
because	it	defines	only	fields	on	the	Lift	type.	We	can	add	another	fragment	for
trails:

query	{
				Lift(id:	"jazz-cat")	{
						...liftInfo
						trailAccess	{
								...trailInfo
						}
				}
				Trail(id:	"river-run")	{
						...trailInfo
						groomed
						trees
						night
				}
}

fragment	trailInfo	on	Trail	{
		name
		difficulty
		accessedByLifts	{
				...liftInfo
		}
}

fragment	liftInfo	on	Lift	{
		name
		status
		capacity
		night
		elevationGain
}

In	this	example,	we	have	created	a	fragment	called	trailInfo	and	used	it	in	two
places	within	our	query.	We’re	also	using	the	liftInfo	fragment	in	the	trailInfo
fragment	to	select	details	about	the	connected	lifts.	You	can	create	as	many
fragments	as	you	want	and	use	them	interchangeably.	In	the	selection	set	used	by
the	River	Run	Trail	query,	we	are	combining	our	fragment	with	additional
details	that	we	want	to	select	about	the	River	Run	trail.	You	can	use	fragments	in
combination	with	other	fields	in	a	selection	set.	You	also	can	combine	multiple
fragments	on	the	same	type	in	a	single	selection	set:

query	{

		allTrails	{
				...trailStatus
				...trailDetails
		}
}

fragment	trailStatus	on	Trail	{
		name
		status
}

fragment	trailDetails	on	Trail	{
		groomed
		trees
		night
}

One	nice	thing	about	fragments	is	that	you	can	modify	the	selection	sets	used	in
many	different	queries	simply	by	modifying	one	fragment:

fragment	liftInfo	on	Lift	{
		name
		status
}

This	change	to	the	selection	set	in	the	liftInfo	fragment	causes	every	query	that	is
using	this	fragment	to	select	less	data.

Union	types

We’ve	already	looked	at	how	to	return	lists	of	objects,	but	in	each	case	so	far,
we’ve	returned	lists	of	a	single	type.	If	you	wanted	a	list	to	return	more	than	one
type,	you	could	create	a	union	type,	which	creates	an	association	between	two
different	object	types.

Suppose	that	we’re	building	a	scheduling	app	for	college	students	with	which
they	can	add	Workout	and	Study	Group	events	to	an	agenda.	You	can	check	out
this	running	sample	at	https://graphqlbin.com/v2/ANgjtr.

If	you	look	at	the	documentation	in	GraphQL	Playground,	you	will	see	that	an
AgendaItem	is	a	union	type,	which	means	that	it	can	return	multiple	types.

https://graphqlbin.com/v2/ANgjtr

Specifically,	the	AgendaItem	can	return	a	Workout	or	StudyGroup,	which	are
things	that	might	be	part	of	a	college	student’s	schedule.

When	writing	a	query	for	a	student’s	agenda,	you	can	use	fragments	to	define
which	fields	to	select	when	the	AgendaItem	is	a	Workout,	and	which	fields	to
select	when	the	AgendaItem	is	a	StudyGroup:

query	schedule	{
				agenda	{
				...on	Workout	{
						name
						reps
				}
				...on	StudyGroup	{
						name
						subject
						students
				}
		}
}

Here’s	the	response:

{
		"data":	{
				"agenda":	[
						{
								"name":	"Comp	Sci",
								"subject":	"Computer	Science",
								"students":	12
						},
						{
								"name":	"Cardio",
								"reps":	100
						},
						{
								"name":	"Poets",
								"subject":	"English	101",
								"students":	3
						},
						{

								"name":	"Math	Whiz",
								"subject":	"Mathematics",
								"students":	12
						},
						{
								"name":	"Upper	Body",
								"reps":	10
						},
						{
								"name":	"Lower	Body",
								"reps":	20
						}
]
		}
}

Here,	we	are	using	inline	fragments.	Inline	fragments	do	not	have	names.	They
assign	selection	sets	to	specific	types	directly	within	the	query.	We	use	them	to
define	which	fields	to	select	when	a	union	returns	different	types	of	objects.	For
each	Workout,	this	query	asks	for	the	names	and	the	reps	in	the	returned
Workout	object.	For	each	study	group,	we	ask	for	the	name,	subject,	and
students	in	the	returned	StudyGroup	object.	The	returned	agenda	will	consist	of
a	single	array	that	contains	different	types	of	objects.

You	can	also	use	named	fragments	to	query	a	union	type:

query	today	{
				agenda	{
				...workout
				...study
		}
}

fragment	workout	on	Workout	{
		name
		reps
}

fragment	study	on	StudyGroup	{
		name
		subject

		students
}

Interfaces

Interfaces	are	another	option	when	dealing	with	multiple	object	types	that	could
be	returned	by	a	single	field.	An	interface	is	an	abstract	type	that	establishes	a
list	of	fields	that	should	be	implemented	in	similar	object	types.	When	another
type	implements	the	interface,	it	includes	all	of	the	fields	from	the	interface	and
usually	some	of	its	own	fields.	If	you’d	like	to	follow	along	with	this	sample,
you	can	find	it	on	GraphQL	Bin.

When	you	look	at	the	agenda	field	in	the	documentation,	you	can	see	that	it
returns	the	ScheduleItem	interface.	This	interface	defines	the	fields:	name,	start
time,	and	end	time.	Any	object	type	that	implements	the	ScheduleItem	interface
needs	to	implement	these	fields.

The	documentation	also	informs	us	that	the	StudyGroup	and	Workout	types
implement	this	interface.	This	means	that	we	can	safely	assume	that	both	of
these	types	have	fields	for	name,	start,	and	end:

query	schedule	{
		agenda	{
				name
				start
				end
		}
}

The	schedule	query	doesn’t	seem	to	care	that	the	agenda	field	returns	multiple
types.	It	needs	only	the	name,	start,	and	end	times	for	the	item	in	order	to	create
the	schedule	of	when	and	where	this	student	should	be.

When	querying	an	interface,	we	can	also	use	fragments	to	select	additional	fields
when	a	specific	object	type	is	returned:

query	schedule	{
		agenda	{
				name
				start
				end

https://graphqlbin.com/v2/yoyPfz

				...on	Workout	{
						reps
				}
		}
}

The	schedule	query	has	been	modified	to	additionally	request	the	reps	when	the
ScheduleItem	is	a	Workout.

Mutations
So	far,	we’ve	talked	a	lot	about	reading	data.	Queries	describe	all	of	the	reads
that	happen	in	GraphQL.	To	write	new	data,	we	use	mutations.	Mutations	are
defined	like	queries.	They	have	names.	They	can	have	selection	sets	that	return
object	types	or	scalars.	The	difference	is	that	mutations	perform	some	sort	of	a
data	change	that	affects	the	state	of	your	backend	data.

For	example,	a	dangerous	mutation	to	implement	would	look	like	this:

mutation	burnItDown	{
		deleteAllData
}

The	Mutation	is	a	root	object	type.	The	API’s	schema	defines	the	fields	that	are
available	on	this	type.	The	API	in	the	preceding	example	has	the	power	to	wipe
out	all	data	to	the	client	by	implementing	a	field	called	deleteAllData	that	returns
a	scalar	type:	true	if	all	of	the	data	was	successfully	deleted	and	it’s	time	to	start
looking	for	a	new	job,	or	false	if	something	went	wrong	and	it’s	time	to	start
looking	for	a	new	job.	Whether	the	data	is	actually	deleted	is	handled	by	the
implementation	of	the	API,	which	we	discuss	further	in	Chapter	5.

Let’s	consider	another	mutation.	But	instead	of	destroying	something,	let’s
create	something:

mutation	createSong	{
		addSong(title:"No	Scrubs",	numberOne:	true,	performerName:"TLC")	{
				id
				title
				numberOne
		}
}

We	can	use	this	example	to	create	new	songs.	The	title,	numberOne	status,	and
performerName	are	sent	to	this	mutation	as	arguments,	and	we	can	assume	that
the	mutation	adds	this	new	song	to	a	database.	If	the	mutation	field	returns	an
object,	you	will	need	to	add	a	selection	set	after	the	mutation.	In	this	case,	after
it’s	completed,	the	mutation	will	return	the	Song	type	that	contains	details	about

the	song	that	was	just	created.	We	can	select	the	id,	title,	and	numberOne	status
of	the	new	song	after	the	mutation:

{
		"data":	{
				"addSong":	{
						"id":	"5aca534f4bb1de07cb6d73ae",
						"title":	"No	Scrubs",
						"numberOne":	true
				}
		}
}

The	preceding	is	an	example	of	what	the	response	to	this	mutation	might	look
like.	If	something	went	wrong,	the	mutation	would	return	the	error	in	the	JSON
response	instead	of	our	newly	created	Song	object.

We	also	can	use	mutations	to	change	existing	data.	Suppose	that	we	want	to
change	the	status	of	a	Snowtooth	chairlift.	We	could	use	a	mutation	to	do	that:

mutation	closeLift	{
				setLiftStatus(id:	"jazz-cat"	status:	CLOSED)	{
					name
					status
		}
}

We	can	use	this	mutation	to	change	the	status	of	the	Jazz	Cat	lift	from	open	to
closed.	After	the	mutation,	we	can	then	select	fields	on	the	Lift	that	was	recently
changed	in	our	selection	set.	In	this	case,	we	get	the	name	of	the	lift	that	was
changed	and	the	new	status.

Using	Query	Variables
So	far,	we	have	changed	data	by	sending	new	string	values	as	mutation
arguments.	As	an	alternative,	you	could	use	input	variables.	Variables	replace
the	static	value	in	the	query	so	that	we	can	pass	dynamic	values,	instead.	Let’s
consider	our	addSong	mutation.	Instead	of	dealing	with	strings,	let’s	use	variable
names,	which	in	GraphQL	are	always	preceded	by	a	$	character:

mutation	createSong($title:String!	$numberOne:Int	$by:String!)	{
		addSong(title:$title,	numberOne:$numberOne,	performerName:$by)	{
				id
				title
				numberOne
		}
}

The	static	value	is	replaced	by	a	$variable.	Then,	we	state	that	the	$variable	can
be	accepted	by	the	mutation.	From	there,	we	map	each	of	the	$variable	names
with	the	argument	name.	In	GraphiQL	or	the	Playground,	there	is	a	window	for
Query	Variables.	This	is	where	we	send	the	input	data	as	a	JSON	object.	Be	sure
to	use	the	correct	variable	name	as	the	JSON	key:

{
		"title":	"No	Scrubs",
		"numberOne":	true,
		"by":	"TLC"
}

Variables	are	very	useful	when	sending	argument	data.	Not	only	will	this	keep
our	mutations	more	organized	in	a	test,	but	allowing	dynamic	inputs	will	be
hugely	helpful	later	when	connecting	a	client	interface.

Subscriptions
The	third	type	of	operation	available	with	GraphQL	is	the	subscription.	There
are	times	when	a	client	might	want	to	have	real-time	updates	pushed	from	the
server.	A	subscription	allows	us	to	listen	to	the	GraphQL	API	for	real-time	data
changes.

Subscriptions	in	GraphQL	came	from	a	real-life	use	case	at	Facebook.	The	team
wanted	a	way	to	show	real-time	information	about	the	number	of	likes	(Live
Likes)	that	a	post	was	getting	without	refreshing	the	page.	Live	Likes	are	a	real-
time	use	case	that	is	powered	by	subscriptions.	Every	client	is	subscribed	to	the
like	event	and	sees	likes	being	updated	in	real	time.

Just	like	the	mutation	and	the	query,	a	subscription	is	a	root	type.	Data	changes
clients	can	listen	to	are	defined	in	an	API	schema	as	fields	under	the	subscription
type.	Writing	the	GraphQL	query	to	listen	for	a	subscription	is	also	similar	to
how	we	would	define	other	operations.

For	example,	with	Snowtooth,	we	can	listen	for	the	status	change	of	any	lift	with
a	subscription:

subscription	{
		liftStatusChange	{
				name
				capacity
				status
		}
}

When	we	run	this	subscription,	we	listen	for	lift	status	changes	over	a
WebSocket.	Notice	that	clicking	the	play	button	in	the	GraphQL	Playground
doesn’t	immediately	return	data.	When	the	subscription	is	sent	to	the	server,	the
subscription	is	listening	for	any	changes	to	the	data.

To	see	data	pushed	to	the	subscription,	we	need	to	make	a	change.	We	need	to
open	a	new	window	or	tab	to	send	that	change	via	a	mutation.	After	a
subscription	operation	is	running	in	a	GraphQL	Playground	tab,	we	cannot	run
anymore	operations	using	the	same	window	or	tab.	If	you	are	using	GraphiQL	to
write	subscriptions,	simply	open	a	second	browser	window	to	the	GraphiQL

http://snowtooth.moonhighway.com

interface.	If	you	are	using	the	GraphQL	Playground,	you	can	open	a	new	tab	to
add	the	mutation.

From	the	new	window	or	tab,	let’s	send	a	lift	status	change	mutation:

mutation	closeLift	{
				setLiftStatus(id:	"astra-express"	status:	HOLD)	{
						name
						status
		}
}

When	we	run	this	mutation,	the	status	of	“Astra	Express”	will	change	and	the
name,	capacity,	and	status	of	the	Astra	Express	lift	are	pushed	to	our
subscription.	Astra	Express	is	the	last	lift	that	has	changed	and	the	new	status	is
pushed	to	the	subscription.

Let’s	change	the	status	of	a	second	lift.	Try	to	set	the	status	of	the	“Whirlybird”
lift	to	closed.	Notice	that	this	new	information	has	been	passed	to	our
subscription.	The	GraphQL	Playground	allows	you	to	see	both	sets	of	response
data	along	with	the	time	that	the	data	was	pushed	to	the	subscription.

Unlike	queries	and	mutations,	subscriptions	remain	open.	New	data	will	be
pushed	to	this	subscription	every	time	there	is	a	status	change	on	a	chairlift.	To
stop	listening	for	status	changes,	you	need	to	unsubscribe	from	your
subscription.	To	do	this	with	the	GraphQL	Playground,	simply	press	the	stop
button.	Unfortunately,	the	only	way	to	unsubscribe	from	a	subscription	with
GraphiQL	is	to	close	the	browser	tab	on	which	the	subscription	is	running.

Introspection
One	of	the	most	powerful	features	of	GraphQL	is	introspection.	Introspection	is
the	ability	to	query	details	about	the	current	API’s	schema.	Introspection	is	how
those	nifty	GraphQL	documents	are	added	to	the	GraphiQL	Playground
interface.

You	can	send	queries	to	every	GraphQL	API	that	return	data	about	a	given
API’s	schema.	For	example,	if	we	want	to	know	what	GraphQL	types	are
available	to	us	in	Snowtooth,	we	can	view	that	information	by	running	a
__schema	query,	as	demonstrated	here:

query	{
		__schema	{
				types	{
						name
						description
				}
		}
}

When	we	run	this	query,	we	see	every	type	available	on	the	API,	including	root
types,	custom	types,	and	even	scalar	types.	If	we	want	to	see	the	details	of	a
particular	type,	we	can	run	the	__type	query	and	send	the	name	of	the	type	that
we	want	to	query	as	an	argument:

query	liftDetails	{
		__type(name:"Lift")	{
				name
				fields	{
						name
						description
						type	{
								name
						}
				}
		}
}

This	introspection	query	shows	us	all	of	the	fields	that	are	available	to	query	on
the	Lift	type.	When	getting	to	know	a	new	GraphQL	API,	it	is	a	good	idea	to
find	out	what	fields	are	available	on	the	root	types:

query	roots	{
		__schema	{
				queryType	{
						...typeFields
				}
				mutationType	{
						...typeFields
				}
				subscriptionType	{
						...typeFields
				}
		}
}

fragment	typeFields	on	__Type	{
		name
		fields	{
				name
		}
}

An	introspection	query	follows	the	rules	of	the	GraphQL	query	language.	The
redundancy	of	the	preceding	query	has	been	reduced	by	using	a	fragment.	We
are	querying	the	name	of	the	type	and	the	available	fields	of	each	root	type.
Introspection	gives	the	client	the	ability	to	find	out	how	the	current	API	schema
works.

Abstract	Syntax	Trees
The	query	document	is	a	string.	When	we	send	a	query	to	a	GraphQL	API,	that
string	is	parsed	into	an	abstract	syntax	tree	and	validated	before	the	operation	is
run.	An	abstract	syntax	tree,	or	AST,	is	a	hierarchical	object	that	represents	our
query.	The	AST	is	an	object	that	contains	nested	fields	that	represent	the	details
of	a	GraphQL	query.

The	first	step	in	this	process	is	to	parse	the	string	into	a	bunch	of	smaller	pieces.
This	includes	parsing	the	keywords,	arguments,	and	even	brackets	and	colons
into	a	set	of	individual	tokens.	This	process	is	called	lexing,	or	lexical	analysis.
Next,	the	lexed	query	is	parsed	into	an	AST.	A	query	is	much	easier	to
dynamically	modify	and	validate	as	an	AST.

For	example,	your	queries	start	off	as	a	GraphQL	document.	A	document
contains	at	least	one	definition,	but	it	can	also	contain	a	list	of	definitions.
Definitions	are	only	one	of	two	types:	OperationDefinition	or
FragmentDefinition.	The	following	is	an	example	of	a	document	that	contains
three	definitions:	two	operations,	and	one	fragment:

query	jazzCatStatus	{
				Lift(id:	"jazz-cat")	{
						name
						night
						elevationGain
						trailAccess	{
								name
								difficulty
						}
				}
}

mutation	closeLift($lift:	ID!)	{
		setLiftStatus(id:	$lift,	status:	CLOSED)	{
				...liftStatus
		}
}

fragment	liftStatus	on	Lift	{

		name
		status
}

An	OperationDefinition	can	contain	only	one	of	three	operation	types:	mutation,
query,	or	subscription.	Each	operation	definition	contains	the	OperationType	and
the	SelectionSet.

The	curly	brackets	that	come	after	each	operation	contain	the	operation’s
SelectionSet.	These	are	the	actual	fields	that	we	are	querying	along	with	their
arguments.	For	example,	the	Lift	field	is	the	SelectionSet	for	the	jazzCatStatus
query	and	the	setLiftStatus	field	represents	the	selection	set	for	the	closeLift
mutation.

Selection	sets	are	nested	within	one	another.	The	jazzCatStatus	query	has	three
nested	selection	sets.	The	first	SelectionSet	contains	the	Lift	field.	Nested	within
is	a	SelectionSet	that	contains	the	field:	name,	night,	elevationGain,	and
trailAccess.	Nested	under	the	trailAccess	field	is	another	SelectionSet	that
contains	the	name	and	difficulty	fields	for	each	trail.

GraphQL	can	traverse	this	AST	and	validate	its	details	against	the	GraphQL
language	and	the	current	schema.	If	the	query	language	syntax	is	correct	and	the
schema	contains	the	fields	and	types	that	we	are	requesting,	the	operation	is
executed.	If	not,	a	specific	error	is	returned,	instead.

Additionally,	this	AST	object	is	easier	to	modify	than	a	string.	If	we	wanted	to
append	the	number	of	open	lifts	to	the	jazzCatStatus	query,	we	could	do	so	by
directly	modifying	the	AST.	All	we	need	to	do	is	add	an	additional	SelectionSet
to	the	operation.	ASTs	are	an	essential	part	of	GraphQL.	Every	operation	is
parsed	into	an	AST	so	that	it	can	be	validated	and	eventually	executed.

In	this	chapter,	you	learned	about	the	GraphQL	query	language.	We	can	now	use
this	language	to	interact	with	a	GraphQL	service.	But,	none	of	this	would	be
possible	without	a	specific	definition	of	what	operations	and	fields	are	available
on	a	particular	GraphQL	service.	This	specific	definition	is	called	the	GraphQL
schema,	and	we	take	a	closer	look	at	how	to	create	schemas	in	the	next	chapter.

Chapter	4.	Designing	a	Schema

GraphQL	is	going	to	change	your	design	process.	Instead	of	looking	at	your
APIs	as	a	collection	of	REST	endpoints,	you	are	going	to	begin	looking	at	your
APIs	as	collections	of	types.	Before	breaking	ground	on	your	new	API,	you	need
to	think	about,	talk	about,	and	formally	define	the	data	types	that	your	API	will
expose.	This	collection	of	types	is	called	a	schema.

Schema	First	is	a	design	methodology	that	will	get	all	of	your	teams	on	the	same
page	about	the	data	types	that	make	up	your	application.	The	backend	team	will
have	a	clear	understanding	about	the	data	that	it	needs	to	store	and	deliver.	The
frontend	team	will	have	the	definitions	that	it	needs	to	begin	building	user
interfaces.	Everyone	will	have	a	clear	vocabulary	that	they	can	use	to
communicate	about	the	system	they	are	building.	In	short,	everyone	can	get	to
work.

To	facilitate	defining	types,	GraphQL	comes	with	a	language	that	we	can	use	to
define	our	schemas,	called	the	Schema	Definition	Language,	or	SDL.	Just	like
the	GraphQL	Query	Language,	the	GraphQL	SDL	is	the	same	no	matter	what
language	or	framework	you	use	to	construct	your	applications.	GraphQL	schema
documents	are	text	documents	that	define	the	types	available	in	an	application,
and	they	are	later	used	by	both	clients	and	servers	to	validate	GraphQL	requests.

In	this	chapter,	we	take	a	look	at	the	GraphQL	SDL	and	build	a	schema	for	a
photo	sharing	application.

Defining	Types
The	best	way	to	learn	about	GraphQL	types	and	schemas	is	to	build	one.	The
photo	sharing	application	will	let	users	log	in	with	their	GitHub	accounts	to	post
photos	and	tag	users	in	those	photos.	Managing	users	and	posts	represents
functionality	that	is	core	to	just	about	every	type	of	internet	application.

The	PhotoShare	application	will	have	two	main	types:	User	and	Photo.	Let’s	get
started	designing	the	schema	for	the	entire	application.

Types
The	core	unit	of	any	GraphQL	Schema	is	the	type.	In	GraphQL,	a	type
represents	a	custom	object	and	these	objects	describe	your	application’s	core
features.	For	example,	a	social	media	application	consists	of	Users	and	Posts.	A
blog	would	consist	of	Categories	and	Articles.	The	types	represent	your
application’s	data.

If	you	were	to	build	Twitter	from	scratch,	a	Post	would	contain	the	text	that	the
user	wishes	to	broadcast.	(In	this	case,	a	Tweet	might	be	a	better	name	for	that
type.)	If	you	were	building	Snapchat,	a	Post	would	contain	an	image	and	would
more	appropriately	be	named	a	Snap.	When	defining	a	schema,	you	will	define	a
common	language	that	your	team	will	use	when	talking	about	your	domain
objects.

A	type	has	fields	that	represent	the	data	associated	with	each	object.	Each	field
returns	a	specific	type	of	data.	This	could	mean	an	integer	or	a	string,	but	it	also
could	mean	a	custom	object	type	or	list	of	types.

A	schema	is	a	collection	of	type	definitions.	You	can	write	your	schemas	in	a
JavaScript	file	as	a	string	or	in	any	text	file.	These	files	usually	carry	the
.graphql	extension.

Let’s	define	the	first	GraphQL	object	type	in	our	schema	file—the	Photo:

type	Photo	{
				id:	ID!
				name:	String!
				url:	String!
				description:	String
}

Between	the	curly	brackets,	we’ve	defined	the	Photo’s	fields.	The	Photo’s	url	is
a	reference	to	the	location	of	the	image	file.	This	description	also	contains	some
metadata	about	the	Photo:	a	name	and	a	description.	Finally,	each	Photo	will
have	an	ID,	a	unique	identifier	that	can	be	used	as	a	key	to	access	the	photo.

Each	field	contains	data	of	a	specific	type.	We	have	defined	only	one	custom
type	in	our	schema,	the	Photo,	but	GraphQL	comes	with	some	built-in	types	that
we	can	use	for	our	fields.	These	built-in	types	are	called	scalar	types.	The

description,	name,	and	url	fields	use	the	String	scalar	type.	The	data	that	is
returned	when	we	query	these	fields	will	be	JSON	strings.	The	exclamation
point	specifies	that	the	field	is	non-nullable,	which	means	that	the	name	and	url
fields	must	return	some	data	in	each	query.	The	description	is	nullable,	which
means	that	photo	descriptions	are	optional.	When	queried,	this	field	could	return
null.

The	Photo’s	ID	field	specifies	a	unique	identifier	for	each	photo.	In	GraphQL,
the	ID	scalar	type	is	used	when	a	unique	identifier	should	be	returned.	The	JSON
value	for	this	identifier	will	be	a	string,	but	this	string	will	be	validated	as	a
unique	value.

Scalar	Types
GraphQL’s	built	in	scalar	types	(Int,	Float,	String,	Boolean,	ID)	are	very	useful,
but	there	might	be	times	when	you	want	to	define	your	own	custom	scalar	types.
A	scalar	type	is	not	an	object	type.	It	does	not	have	fields.	However,	when
implementing	a	GraphQL	service,	you	can	specify	how	custom	scalar	types
should	be	validated;	for	example:

scalar	DateTime

type	Photo	{
				id:	ID!
				name:	String!
				url:	String!
				description:	String
				created:	DateTime!
}

Here,	we	have	created	a	custom	scalar	type:	DateTime.	Now	we	can	find	out
when	each	photo	was	created.	Any	field	marked	DateTime	will	return	a	JSON
string,	but	we	can	use	the	custom	scalar	to	make	sure	that	string	can	be
serialized,	validated,	and	formatted	as	an	official	date	and	time.

You	can	declare	custom	scalars	for	any	type	that	you	need	to	validate.

NOTE
The	graphql-custom-types	npm	package	contains	some	commonly	used	custom
scalar	types	that	you	can	quickly	add	to	your	Node.js	GraphQL	service.

Enums
Enumeration	types,	or	enums,	are	scalar	types	that	allow	a	field	to	return	a
restrictive	set	of	string	values.	When	you	want	to	make	sure	that	a	field	returns
one	value	from	a	limited	set	of	values,	you	can	use	an	enum	type.

For	example,	let’s	create	an	enum	type	called	PhotoCategory	that	defines	the
type	of	photo	that	is	being	posted	from	a	set	of	five	possible	choices:	SELFIE,
PORTRAIT,	ACTION,	LANDSCAPE,	or	GRAPHIC:

enum	PhotoCategory	{
				SELFIE
				PORTRAIT
				ACTION
				LANDSCAPE
				GRAPHIC
}

You	can	use	enumeration	types	when	defining	fields.	Let’s	add	a	category	field
to	our	Photo	object	type:

type	Photo	{
				id:	ID!
				name:	String!
				url:	String!
				description:	String
				created:	DateTime!
				category:	PhotoCategory!
}

Now	that	we	have	added	category,	we	will	make	sure	that	it	returns	one	of	the
five	valid	values	when	we	implement	the	service.

NOTE
It	does	not	matter	whether	your	implementation	has	full	support	for
enumeration	types.	You	can	implement	GraphQL	enumeration	fields	in	any
language.

Connections	and	Lists
When	you	create	GraphQL	schemas,	you	can	define	fields	that	return	lists	of	any
GraphQL	type.	Lists	are	created	by	surrounding	a	GraphQL	type	with	square
brackets.	[String]	defines	a	list	of	strings	and	[PhotoCategory]	defines	a	list	of
photo	categories.	As	Chapter	3	discusses,	lists	can	also	consist	of	multiple	types
if	we	incorporate	union	or	interface	types.	We	discuss	these	types	of	lists	in
greater	detail	toward	the	end	of	this	chapter.

Sometimes,	the	exclamation	point	can	be	a	little	tricky	when	defining	lists.
When	the	exclamation	point	comes	after	the	closing	square	bracket,	it	means	that
the	field	itself	is	non-nullable.	When	the	exclamation	point	comes	before	the
closing	square	bracket,	it	means	that	the	values	contained	in	the	list	are	non-
nullable.	Wherever	you	see	an	exclamation	point,	the	value	is	required	and
cannot	return	null.	Table	4-1	defines	these	various	situations.

Table	4-1.	Nullability	rules	with	lists

list	declaration definition

[Int] A	list	of	nullable	integer	values

[Int!] A	list	of	non-nullable	integer	values

[Int]! A	non-nullable	list	of	nullable	integer	values

[Int!]! A	non-nullable	list	of	non-nullable	integer	values

Most	list	definitions	are	non-nullable	lists	of	non-nullable	values.	This	is	because
we	typically	do	not	want	values	within	our	list	to	be	null.	We	should	filter	out
any	null	values	ahead	of	time.	If	our	list	doesn’t	contain	any	values,	we	can
simply	return	an	empty	JSON	array;	for	example,	[].	An	empty	array	is
technically	not	null:	it	is	just	an	array	that	doesn’t	contain	any	values.

The	ability	to	connect	data	and	query	multiple	types	of	related	data	is	a	very
important	feature.	When	we	create	lists	of	our	custom	object	types,	we	are	using
this	powerful	feature	and	connecting	objects	to	one	another.

In	this	section,	we	cover	how	you	to	use	a	list	to	connect	object	types.

One-to-One	Connections
When	we	create	fields	based	on	custom	object	types,	we	are	connecting	two
objects.	In	graph	theory,	a	connection	or	link	between	two	objects	is	called	an
edge.	The	first	type	of	connection	is	a	one-to-one	connection	in	which	we
connect	a	single	object	type	to	another	single	object	type.

Photos	are	posted	by	users,	so	every	photo	in	our	system	should	contain	an	edge
connecting	the	photo	to	the	user	who	posted	it.	Figure	4-1	shows	a	one-way
connection	between	two	types:	Photo	and	User.	The	edge	that	connects	the	two
nodes	is	called	postedBy.

Figure	4-1.	One-to-one	connection

Let’s	see	how	we	would	define	this	in	the	schema:

type	User	{
				githubLogin:	ID!
				name:	String
				avatar:	String
}

type	Photo	{
				id:	ID!
				name:	String!
				url:	String!
				description:	String
				created:	DateTime!
				category:	PhotoCategory!
				postedBy:	User!
}

First,	we’ve	added	a	new	type	to	our	schema,	the	User.	The	users	of	the
PhotoShare	application	are	going	to	sign	in	via	GitHub.	When	the	user	signs	in,
we	obtain	their	githubLogin	and	use	it	as	the	unique	identifier	for	their	user
record.	Optionally,	if	they	added	their	name	or	photo	to	GitHub,	we	will	save
that	information	under	the	fields	name	and	avatar.

Next,	we	added	the	connection	by	adding	a	postedBy	field	to	the	photo	object.
Each	photo	must	be	posted	by	a	user,	so	this	field	is	set	to	the	User!	type;	the
exclamation	point	is	added	to	make	this	field	non-nullable.

One-to-Many	Connections
It	is	a	good	idea	to	keep	GraphQL	services	undirected	when	possible.	This
provides	our	clients	with	the	ultimate	flexibility	to	create	queries	because	they
can	start	traversing	the	graph	from	any	node.	All	we	need	to	do	to	follow	this
practice	is	provide	a	path	back	from	User	types	to	Photo	types.	This	means	that
when	we	query	a	User,	we	should	get	to	see	all	of	the	photos	that	particular	user
posted:

type	User	{
				githubLogin:	ID!
				name:	String
				avatar:	String
				postedPhotos:	[Photo!]!
}

By	adding	the	postedPhotos	field	to	the	User	type,	we	have	provided	a	path	back
to	the	Photo	from	the	user.	The	postedPhotos	field	will	return	a	list	of	Photo
types,	those	photos	posted	by	the	parent	user.	Because	one	user	can	post	many
photos,	we’ve	created	a	one-to-many	connection.	One-to-many	connections,	as
shown	in	Figure	4-2,	are	common	connections	that	are	created	when	a	parent
object	contains	a	field	that	lists	other	objects.

Figure	4-2.	One-to-many	connection

A	common	place	to	add	one-to-many	connections	is	in	our	root	types.	To	make
our	photos	or	users	available	in	a	query,	we	need	to	define	the	fields	of	our
Query	root	type.	Let’s	take	a	look	at	how	we	can	add	our	new	custom	types	to
the	Query	root	type:

type	Query	{
				totalPhotos:	Int!
				allPhotos:	[Photo!]!
				totalUsers:	Int!
				allUsers:	[User!]!
}

schema	{
				query:	Query
}

Adding	the	Query	type	defines	the	queries	that	are	available	in	our	API.	In	this
example,	we’ve	added	two	queries	for	each	type:	one	to	deliver	the	total	number
of	records	available	on	each	type,	and	another	to	deliver	the	full	list	of	those
records.	Additionally,	we’ve	added	the	Query	type	to	the	schema	as	a	file.	This
makes	our	queries	available	in	our	GraphQL	API.

Now	our	photos	and	users	can	be	queried	with	the	following	query	string:

query	{
				totalPhotos
				allPhotos	{
								name
								url
				}
}

Many-to-Many	Connections
Sometimes	we	want	to	connect	lists	of	nodes	to	other	lists	of	nodes.	Our
PhotoShare	application	will	allow	users	to	identify	other	users	in	each	photo	that
they	post.	This	process	is	called	tagging.	A	photo	can	consist	of	many	users,	and
a	user	can	be	tagged	in	many	photos,	as	Figure	4-3	shows.

Figure	4-3.	Many-to-many	connection

To	create	this	type	of	connection,	we	need	to	add	list	fields	to	both	the	User	and
the	Photo	types.

type	User	{
				...
				inPhotos:	[Photo!]!
}

type	Photo	{
				...
				taggedUsers:	[User!]!
}

As	you	can	see,	a	many-to-many	connection	consists	of	two	one-to-many
connections.	In	this	case,	a	Photo	can	have	many	tagged	users,	and	a	User	can	be
tagged	in	many	photos.

Through	types

Sometimes,	when	creating	many-to-many	relationships,	you	might	want	to	store
some	information	about	the	relationship	itself.	Because	there	is	no	real	need	for	a
through	type	in	our	photo	sharing	app,	we	are	going	to	use	a	different	example	to
define	a	through	type,	a	friendship	between	users.

We	can	connect	many	users	to	many	users	by	defining	a	field	under	a	User	that
contains	a	list	of	other	users:

type	User	{
				friends:	[User!]!
}

Here,	we’ve	defined	a	list	of	friends	for	each	user.	Consider	a	case	in	which	we
wanted	to	save	some	information	about	the	friendship	itself,	like	how	long	users
have	known	one	another	or	where	they	met.

In	this	situation,	we	need	to	define	the	edge	as	a	custom	object	type.	We	call	this
object	a	through	type	because	it	is	a	node	that	is	designed	to	connect	two	nodes.
Let’s	define	a	through	type	called	Friendship	that	we	can	use	to	connect	two
friends	but	also	deliver	data	on	how	the	friends	are	connected:

type	User	{
				friends:	[Friendship!]!
}
type	Friendship	{

				friend_a:	User!
				friend_b:	User!
				howLong:	Int!
				whereWeMet:	Location
}

Instead	of	defining	the	friends	field	directly	on	a	list	of	other	User	types,	we’ve
created	a	Friendship	to	connect	the	friends.	The	Friendship	type	defines	the	two
connected	friends:	friend_a	and	friend_b.	It	also	defines	some	detail	fields	about
how	the	friends	are	connected:	howLong	and	whereWeMet.	The	howLong	field
is	an	Int	that	will	define	the	length	of	the	friendship,	and	the	whereWeMet	field
links	to	a	custom	type	called	Location.

We	can	improve	upon	the	design	of	the	Friendship	type	by	allowing	for	a	group
of	friends	to	be	a	part	of	the	friendship.	For	example,	maybe	you	met	your	best
friends	at	the	same	time	in	first	grade.	We	can	allow	for	two	or	more	friends	to
be	a	part	of	the	friendship	by	adding	a	single	field	called	friends:

				type	Friendship	{
								friends:	[User!]!
								how_long:	Int!
								where_we_met:	Location
				}

We’ve	only	included	one	field	for	all	of	the	friends	in	a	Friendship.	Now	this
type	can	reflect	two	or	more	friends.

Lists	of	Different	Types
In	GraphQL,	our	lists	do	not	always	need	to	return	the	same	type.	In	Chapter	3,
we	introduced	union	types	and	interfaces,	and	we	learned	how	to	write	queries
for	these	types	using	fragments.	Let’s	take	a	look	at	how	we	can	add	these	types
to	our	schema.

Here,	we	will	use	a	schedule	as	an	example.	You	might	have	a	schedule	made	up
of	different	events,	each	requiring	different	data	fields.	For	instance,	the	details
about	a	study	group	meeting	or	a	workout	might	be	completely	different,	but	you
should	be	able	to	add	both	to	a	schedule.	You	can	think	of	a	daily	schedule	as	a
list	of	different	types	of	activities.

There	are	two	ways	in	which	we	can	handle	defining	a	schema	for	a	schedule	in
GraphQL:	unions	and	interfaces.

Union	types

In	GraphQL,	a	union	type	is	a	type	that	we	can	use	to	return	one	of	several
different	types.	Recall	from	Chapter	3	how	we	wrote	a	query	called	schedule	that
queried	an	agenda	and	returned	different	data	when	the	agenda	item	was	a
workout	than	when	it	was	a	study	group.	Let’s	take	a	look	at	it	again	here:

query	schedule	{
				agenda	{
								...on	Workout	{
												name
												reps
								}
								...on	StudyGroup	{
												name
												subject
												students
								}
				}
}

In	the	student’s	daily	agenda,	we	could	handle	this	by	creating	a	union	type
called	AgendaItem:

union	AgendaItem	=	StudyGroup	|	Workout

type	StudyGroup	{
				name:	String!
				subject:	String
				students:	[User!]!
}

type	Workout	{
				name:	String!
				reps:	Int!
}

type	Query	{
				agenda:	[AgendaItem!]!
}

AgendaItem	combines	study	groups	and	workouts	under	a	single	type.	When	we
add	the	agenda	field	to	our	Query,	we	are	defining	it	as	a	list	of	either	workouts
or	study	groups.

It	is	possible	to	join	as	many	types	as	we	want	under	a	single	union.	Simply
separate	each	type	with	a	pipe:

union	=	StudyGroup	|	Workout	|	Class	|	Meal	|	Meeting	|	FreeTime

Interfaces

Another	way	of	handling	fields	that	could	contain	multiple	types	is	to	use	an
interface.	Interfaces	are	abstract	types	that	can	be	implemented	by	object	types.
An	interface	defines	all	of	the	fields	that	must	be	included	in	any	object	that
implements	it.	Interfaces	are	a	great	way	to	organize	code	within	your	schema.
This	ensures	that	certain	types	always	include	specific	fields	that	are	queryable
no	matter	what	type	is	returned.

In	Chapter	3,	we	wrote	a	query	for	an	agenda	that	used	an	interface	to	return
fields	on	different	items	in	a	schedule.	Let’s	review	that	here:

query	schedule	{
		agenda	{
				name

				start
				end
				...on	Workout	{
						reps
				}
		}
}

Here	is	what	it	might	look	like	to	query	an	agenda	that	implemented	interfaces.
For	a	type	to	interface	with	our	schedule,	it	must	contain	specific	fields	that	all
agenda	items	will	implement.	These	fields	include	name,	start,	and	end	times.	It
doesn’t	matter	what	type	of	schedule	item	you	have,	they	all	need	these	details	in
order	to	be	listed	on	a	schedule.

Here	is	how	we	would	implement	this	solution	in	our	GraphQL	schema:

scalar	DataTime

interface	AgendaItem	{
				name:	String!
				start:	DateTime!
				end:	DateTime!
}

type	StudyGroup	implements	AgendaItem	{
				name:	String!
				start:	DateTime!
				end:	DateTime!
				participants:	[User!]!
				topic:	String!
}

type	Workout	implements	AgendaItem	{
				name:	String!
				start:	DateTime!
				end:	DateTime!
				reps:	Int!
}

type	Query	{
				agenda:	[AgendaItem!]!
}

In	this	example,	we	create	an	interface	called	AgendaItem.	This	interface	is	an
abstract	type	that	other	types	can	implement.	When	another	type	implements	an
interface,	it	must	contain	the	fields	defined	by	the	interface.	Both	StudyGroup
and	Workout	implement	the	AgendaItem	interface,	so	they	both	need	to	use	the
name,	start,	and	end	fields.	The	query	agenda	returns	a	list	of	AgendaItem	types.
Any	type	that	implements	the	AgendaItem	interface	can	be	returned	in	the
agenda	list.

Also	notice	that	these	types	can	implement	other	fields,	as	well.	A	StudyGroup
has	a	topic	and	a	list	of	participants,	and	a	Workout	still	has	reps.	You	can	select
these	additional	fields	in	a	query	by	using	fragments.

Both	union	types	and	interfaces	are	tools	that	you	can	use	to	create	fields	that
contain	different	object	types.	It’s	up	to	you	to	decide	when	to	use	one	or	the
other.	In	general,	if	the	objects	contain	completely	different	fields,	it	is	a	good
idea	to	use	union	types.	They	are	very	effective.	If	an	object	type	must	contain
specific	fields	in	order	to	interface	with	another	type	of	object,	you	will	need	to
user	an	interface	rather	than	a	union	type.

Arguments
Arguments	can	be	added	to	any	field	in	GraphQL.	They	allow	us	to	send	data
that	can	affect	outcome	of	our	GraphQL	operations.	In	Chapter	3,	we	looked	at
user	arguments	within	our	queries	and	mutations.	Now,	let’s	take	a	look	at	how
we	would	define	arguments	in	our	schema.

The	Query	type	contains	fields	that	will	list	allUsers	or	allPhotos,	but	what
happens	when	you	want	to	select	only	one	User	or	one	Photo?	You	would	need
to	supply	some	information	on	the	one	user	or	photo	that	you	would	like	to
select.	You	can	send	that	information	along	with	my	query	as	an	argument:

type	Query	{
				...
				User(githubLogin:	ID!):	User!
				Photo(id:	ID!):	Photo!
}

Just	like	a	field,	an	argument	must	have	a	type.	That	type	can	be	defined	using
any	of	the	scalar	types	or	object	types	that	are	available	in	our	schema.	To	select
a	specific	user,	we	need	to	send	that	user’s	unique	githubLogin	as	an	argument.
The	following	query	selects	only	MoonTahoe’s	name	and	avatar:

query	{
				User(githubLogin:	"MoonTahoe")	{
								name
								avatar
				}
}

To	select	details	about	an	individual	photo,	we	need	to	supply	that	photo’s	ID:

query	{
				Photo(id:	"14TH5B6NS4KIG3H4S")	{
								name
								description
								url
				}

}

In	both	cases,	arguments	were	required	to	query	details	about	one	specific
record.	Because	these	arguments	are	required,	they	are	defined	as	non-nullable
fields.	If	we	do	not	supply	the	id	or	githubLogin	with	these	queries,	the
GraphQL	parser	will	return	an	error.

Filtering	Data
Arguments	do	not	need	to	be	non-nullable.	We	can	add	optional	arguments	using
nullable	fields.	This	means	that	we	can	supply	arguments	as	optional	parameters
when	we	execute	query	operations.	For	example,	we	could	filter	the	photo	list
that	is	returned	by	the	allPhotos	query	by	photo	category:

type	Query	{
				...
				allPhotos(category:	PhotoCategory):	[Photo!]!
}

We	have	added	an	optional	category	field	to	the	allPhotos	query.	The	category
must	match	the	values	of	the	enumeration	type	PhotoCategory.	If	a	value	is	not
sent	with	the	query,	we	can	assume	that	this	field	will	return	every	photo.
However,	if	a	category	is	supplied,	we	should	get	a	filtered	list	of	photos	in	the
same	category:

query	{
				allPhotos(category:	"SELFIE")	{
								name
								description
								url
				}
}

This	query	would	return	the	name,	description,	and	url	of	every	photo
categorized	as	a	SELFIE.

Data	paging

If	our	PhotoShare	application	is	successful,	which	it	will	be,	it	will	have	a	lot	of
Users	and	Photos.	Returning	every	User	or	every	Photo	in	our	application	might
not	be	possible.	We	can	use	GraphQL	arguments	to	control	the	amount	of	data
that	is	returned	from	our	queries.	This	process	is	called	data	paging	because	a
specific	number	of	records	are	returned	to	represent	one	page	of	data.

To	implement	data	paging,	we	are	going	to	add	two	optional	arguments:	first	to
collect	the	number	of	records	that	should	be	returned	at	once	in	a	single	data

page,	and	start	to	define	the	starting	position	or	index	of	the	first	record	to	return.
We	can	add	these	arguments	to	both	of	our	list	queries:

type	Query	{
				...
				allUsers(first:	Int=50	start:	Int=0):	[User!]!
				allPhotos(first:	Int=25	start:	Int=0):	[Photo!]!
}

In	the	preceding	example,	we	have	added	optional	arguments	for	first	and	start.
If	the	client	does	not	supply	these	arguments	with	the	query,	we	will	use	the
default	values	provided.	By	default,	the	allUsers	query	returns	only	the	first	50
users,	and	the	allPhotos	query	returns	only	the	first	25	photos.

The	client	can	query	a	different	range	of	either	user	or	photos	by	supplying
values	for	these	arguments.	For	example,	if	we	want	to	select	users	90	through
100,	we	could	do	so	by	using	the	following	query:

query	{
				allUsers(first:	10	start:	90)	{
								name
								avatar
				}
}

This	query	selects	only	10	years	starting	at	the	90th	user.	It	should	return	the
name	and	avatar	for	that	specific	range	of	users.	We	can	calculate	the	total
number	of	pages	that	are	available	on	the	client	by	dividing	the	total	number	of
items	by	the	size	of	one	page	of	data:

pages	=	pageSize/total

Sorting

When	querying	a	list	of	data,	we	might	also	want	to	define	how	the	returned	list
of	data	should	be	sorted.	We	can	use	arguments	for	this,	as	well.

Consider	a	scenario	in	which	we	wanted	to	incorporate	the	ability	to	sort	any
lists	of	Photo	records.	One	way	to	tackle	this	challenge	is	to	create	enums	that
specify	which	fields	can	be	used	to	sort	Photo	objects	and	instructions	for	how	to

sort	those	fields:

enum	SortDirection	{
				ASCENDING
				DESCENDING
}

enum	SortablePhotoField	{
				name
				description
				category
				created
}

Query	{
				allPhotos(
								sort:	SortDirection	=	DESCENDING
								sortBy:	SortablePhotoField	=	created
):	[Photo!]!
}

Here,	we’ve	added	the	arguments	sort	and	sortBy	to	the	allPhotos	query.	We
created	an	enumeration	type	called	SortDirection	that	we	can	use	to	limit	the
values	of	the	sort	argument	to	ASCENDING	or	DESCENDING.	We’ve	also
created	another	enumeration	type	for	SortablePhotoField.	We	don’t	want	to	sort
photos	on	just	any	field,	so	we’ve	restricted	sortBy	values	to	include	only	four	of
the	photo	fields:	name,	description,	category,	or	created	(the	date	and	time	that
the	photo	was	added).	Both	sort	and	sortBy	are	optional	arguments,	so	they
default	to	DESCENDING	and	created	if	either	of	the	arguments	are	not
supplied.

Clients	can	now	control	how	their	photos	are	sorted	when	they	issue	an	allPhotos
query:

query	{
				allPhotos(sortBy:	name)
}

This	query	will	return	all	of	the	photos	sorted	by	descending	name.

So	far,	we’ve	added	arguments	only	to	fields	of	the	Query	type,	but	it	is
important	to	note	that	you	can	add	arguments	to	any	field.	We	could	add	the
filtering,	sorting,	and	paging	arguments	to	the	photos	that	have	been	posted	by	a
single	user:

type	User	{
				postedPhotos(
								first:	Int	=	25
								start:	Int	=	0
								sort:	SortDirection	=	DESCENDING
								sortBy:	SortablePhotoField	=	created
								category:	PhotoCategory
):	[Photo!]

Adding	pagination	filters	can	help	reduce	the	amount	of	data	a	query	can	return.
We	discuss	the	idea	of	limiting	data	at	greater	length	in	Chapter	7.

Mutations
Mutations	must	be	defined	in	the	schema.	Just	like	queries,	mutations	also	are
defined	in	their	own	custom	object	type	and	added	to	the	schema.	Technically,
there	is	no	difference	between	how	a	mutation	or	query	is	defined	in	your
schema.	The	difference	is	in	intent.	We	should	create	mutations	only	when	an
action	or	event	will	change	something	about	the	state	of	our	application.

Mutations	should	represent	the	verbs	in	your	application.	They	should	consist	of
the	things	that	users	should	be	able	to	do	with	your	service.	When	designing
your	GraphQL	service,	make	a	list	of	all	of	the	actions	that	a	user	can	take	with
your	application.	Those	are	most	likely	your	mutations.

In	the	PhotoShare	app,	users	can	sign	in	with	GitHub,	post	photos,	and	tag
photos.	All	of	these	actions	change	something	about	the	state	of	the	application.
After	they	are	signed	in	with	GitHub,	the	current	users	accessing	the	client	will
change.	When	a	user	posts	a	photo,	there	will	be	an	additional	photo	in	the
system.	The	same	is	true	for	tagging	photos.	New	photo-tag	data	records	are
generated	each	time	a	photo	is	tagged.

We	can	add	these	mutations	to	our	root	mutation	type	in	our	schema	and	make
them	available	to	the	client.	Let’s	begin	with	our	first	mutation,	postPhoto:

type	Mutation	{
				postPhoto(
								name:	String!
								description:	String
								category:	PhotoCategory=PORTRAIT
):	Photo!
}

schema	{
				query:	Query
				mutation:	Mutation
}

Adding	a	field	under	the	Mutation	type	called	postPhoto	makes	it	possible	for
users	to	post	photos.	Well,	at	least	it	makes	it	possible	for	users	to	post	metadata
about	photos.	We	handle	uploading	the	actual	photos	in	Chapter	7.

When	a	user	posts	a	photo,	at	a	bare	minimum	the	photo’s	name	is	required.	The
description	and	category	are	optional.	If	a	category	argument	is	not	supplied,	the
posted	photo	will	be	defaulted	to	PORTRAIT.	For	example,	a	user	can	post	a
photo	by	sending	the	following	mutation:

mutation	{
				postPhoto(name:	"Sending	the	Palisades")	{
								id
								url
								created
								postedBy	{
												name
								}
				}
}

After	the	user	posts	a	photo,	they	can	select	information	about	the	photo	that
they	just	posted.	This	is	good	because	some	of	the	record	details	about	the	new
photo	will	be	generated	on	the	server.	The	ID	for	our	new	photo	will	be	created
by	the	database.	The	photo’s	url	will	automatically	be	generated.	The	photo	will
also	be	timestamped	with	the	date	and	time	that	the	photo	was	created.	This
query	selects	all	of	these	new	fields	after	a	photo	has	been	posted.

Additionally,	the	selection	set	includes	information	about	the	user	who	posted
the	photo.	A	user	must	be	signed	in	to	post	a	photo.	If	no	user	is	presently	signed
in,	this	mutation	should	return	an	error.	Assuming	that	a	user	is	signed	in,	we	can
obtain	details	about	who	posted	the	photo	via	the	postedBy	field.	In	Chapter	5,
we	cover	how	to	authenticate	an	authorized	user	by	using	an	access	token.

MUTATION	VARIABLES

When	you	use	mutations,	it	is	often	a	good	idea	to	declare	mutation	variables
like	you	did	back	in	Chapter	3.	This	makes	your	mutation	reusable	when
creating	many	users.	It	also	prepares	you	to	use	that	mutation	on	an	actual
client.	For	brevity,	we’ve	omitted	this	step	for	the	remainder	of	the	chapter,
but	here’s	what	it	looks	like:

				mutation	postPhoto(
								$name:	String!

								$description:	String
								$category:	PhotoCategory
)	{
								postPhoto(
												name:	$name
												description:	$description
												category:	$category
)	{
												id
												name
												email
								}
				}

Input	Types
As	you	might	have	noticed,	the	arguments	for	a	couple	of	our	queries	and
mutations	are	getting	quite	lengthy.	There	is	a	better	way	to	organize	these
arguments	using	input	types.	An	input	type	is	similar	to	the	GraphQL	object	type
except	it	is	used	only	for	input	arguments.

Let’s	improve	the	postPhoto	mutation	using	an	input	type	for	our	arguments:

input	PostPhotoInput	{
		name:	String!
		description:	String
		category:	PhotoCategory=PORTRAIT
}

type	Mutation	{
				postPhoto(input:	PostPhotoInput!):	Photo!
}

The	PostPhotoInput	type	is	like	an	object	type,	but	it	was	created	only	for	input
arguments.	It	requires	a	name	and	the	description,	but	category	fields	are	still
optional.	Now	when	sending	the	postPhoto	mutation,	the	details	about	the	new
photo	need	to	be	included	in	one	object:

mutation	newPhoto($input:	PostPhotoInput!)	{
				postPhoto(input:	$input)	{
								id
								url
								created
				}
}

When	we	create	this	mutation,	we	set	the	$input	query	variable’s	type	to	match
our	PostPhotoInput!	input	type.	It	is	non-nullable	because	at	minimum	we	need
to	access	the	input.name	field	to	add	a	new	photo.	When	we	send	the	mutation,
we	need	to	supply	the	new	photo	data	in	our	query	variables	nested	under	the
input	field:

{
				"input":	{
								"name":	"Hanging	at	the	Arc",
								"description":	"Sunny	on	the	deck	of	the	Arc",
								"category":	"LANDSCAPE"
				}
}

Our	input	is	grouped	together	in	a	JSON	object	and	sent	along	with	the	mutation
in	the	query	variables	under	the	“input”	key.	Because	the	query	variables	are
formatted	as	JSON,	the	category	needs	to	be	a	string	that	matches	one	of	the
categories	from	the	PhotoCategory	type.

Input	types	are	key	to	organizing	and	writing	a	clear	GraphQL	schema.	You	can
use	input	types	as	arguments	on	any	field.	You	can	use	them	to	improve	both
data	paging	and	data	filtering	in	applications.

Let’s	take	a	look	at	how	we	can	organize	and	reuse	all	of	our	sorting	and
filtering	fields	by	using	input	types:

input	PhotoFilter	{
				category:	PhotoCategory
				createdBetween:	DateRange
				taggedUsers:	[ID!]
				searchText:	String
}

input	DateRange	{
				start:	DateTime!
				end:	DateTime!
}

input	DataPage	{
				first:	Int	=	25
				start:	Int	=	0
}

input	DataSort	{
				sort:	SortDirection	=	DESCENDING
				sortBy:	SortablePhotoField	=	created
}

type	User	{
				...
				postedPhotos(filter:PhotoFilter	paging:DataPage	sorting:DataSort):	[Photo!]!
				inPhotos(filter:PhotoFilter	paging:DataPage	sorting:DataSort):	[Photo!]!
}

type	Photo	{
				...
				taggedUsers(sorting:DataSort):	[User!]!
}

type	Query	{
				...
				allUsers(paging:DataPage	sorting:DataSort):	[User!]!
				allPhotos(filter:PhotoFilter	paging:DataPage	sorting:DataSort):	[Photo!]!
}

We’ve	organized	numerous	fields	under	input	types	and	have	reused	those	fields
as	arguments	across	our	schema.

The	PhotoFilter	input	types	contain	optional	input	fields	that	allow	the	client	to
filter	a	list	of	photos.	The	PhotoFilter	type	includes	a	nested	input	type,
DateRange,	under	the	field	createdBetween.	DateRange	must	include	start	and
end	dates.	Using	the	PhotoFilter,	we	also	can	filter	photos	by	category,	search
string,	or	taggedUsers.	We	add	all	of	these	filter	options	to	every	field	that
returns	a	list	of	photos.	This	gives	the	client	a	lot	of	control	over	which	photos
are	returned	from	every	list.

Input	types	have	also	been	created	for	paging	and	sorting.	The	DataPage	input
type	contains	the	fields	needed	to	request	a	page	of	data	and	the	DataSort	input
type	contains	our	sorting	fields.	These	input	types	have	been	added	to	every	field
in	our	schema	that	returns	a	list	of	data.

We	could	write	a	query	that	accepts	some	pretty	complex	input	data	using	the
available	input	types:

query	getPhotos($filter:PhotoFilter	$page:DataPage	$sort:DataSort)	{
				allPhotos(filter:$filter	paging:$page	sorting:$sort)	{
								id
								name
								url

				}
}

This	query	optionally	accepts	arguments	for	three	input	types:	$filter,	$page,	and
$sort.	Using	query	variables,	we	can	send	some	specific	details	about	what
photos	we	would	like	to	return:

{
				"filter":	{
								"category":	"ACTION",
								"taggedUsers":	["MoonTahoe",	"EvePorcello"],
								"createdBetween":	{
												"start":	"2018-11-6",
												"end":	"2018-5-31"
								}
				},
				"page":	{
								"first":	100
				}
}

This	query	will	find	all	of	the	ACTION	photos	for	which	GitHub	users
MoonTahoe	and	EvePorcello	are	tagged	between	November	6th	and	May	31st,
which	happens	to	be	ski	season.	We	also	ask	for	the	first	100	photos	with	this
query.

Input	types	help	us	organize	our	schema	and	reuse	arguments.	They	also
improve	the	schema	documentation	that	GraphiQL	or	GraphQL	Playground
automatically	generates.	This	will	make	your	API	more	approachable	and	easier
to	learn	and	digest.	Finally,	you	can	use	input	types	to	give	the	client	a	lot	of
power	to	execute	organized	queries.

Return	Types
All	of	the	fields	in	our	schema	have	been	returning	our	main	types,	User	and
Photo.	But	sometimes	we	need	to	return	meta	information	about	queries	and
mutations	in	addition	to	the	actual	payload	data.	For	example,	when	a	user	has
signed	in	and	been	authenticated,	we	need	to	return	a	token	in	addition	to	the
User	payload.

To	sign	in	with	GitHub	OAuth,	we	must	obtain	an	OAuth	code	from	GitHub.
We	discuss	setting	up	your	own	GitHub	OAuth	account	and	obtaining	the
GitHub	code	in	“GitHub	Authorization”.	For	now,	let’s	assume	that	you	have	a
valid	GitHub	code	that	you	can	send	to	the	githubAuth	mutation	to	sign	in	a
user:

type	AuthPayload	{
				user:	User!
				token:	String!
}

type	Mutation	{
				...
				githubAuth(code:	String!):	AuthPayload!
}

Users	are	authenticated	by	sending	a	valid	GitHub	code	to	the	githubAuth
mutation.	If	successful,	we	will	return	a	custom	object	type	that	contains	both
information	about	the	user	that	was	successfully	signed	in	as	well	as	a	token	that
can	be	used	to	authorize	further	queries	and	mutations	including	the	postPhoto
mutation.

You	can	use	custom	return	types	on	any	field	for	which	we	need	more	than
simple	payload	data.	Maybe	we	want	to	know	how	long	it	takes	for	a	query	to
deliver	a	response,	or	how	many	results	were	found	in	a	particular	response	in
addition	to	the	query	payload	data.	You	can	handle	all	of	this	by	using	a	custom
return	type.

At	this	point,	we	have	introduced	all	of	the	types	that	are	available	to	you	when
creating	GraphQL	schemas.	We’ve	even	taken	a	bit	of	time	to	discuss	techniques

that	can	help	you	improve	your	schema	design.	But	there	is	one	last	root	object
type	that	we	need	to	introduce—the	Subscription	type.

Subscriptions
Subscription	types	are	no	different	than	any	other	object	type	in	the	GraphQL
schema	definition	language.	Here,	we	define	the	available	subscriptions	as	fields
on	a	custom	object	type.	It	will	be	up	to	us	to	make	sure	the	subscriptions
implement	the	PubSub	design	pattern	along	with	some	sort	of	real-time	transport
when	we	build	the	GraphQL	service	later	in	Chapter	7.

For	example,	we	can	add	subscriptions	that	allow	our	clients	to	listen	for	the
creation	of	new	Photo	or	User	types:

type	Subscription	{
				newPhoto:	Photo!
				newUser:	User!
}

schema	{
				query:	Query
				mutation:	Mutation
				subscription:	Subscription
}

Here,	we	create	a	custom	Subscription	object	that	contains	two	fields:	newPhoto
and	newUser.	When	a	new	photo	is	posted,	that	new	photo	will	be	pushed	to	all
of	the	clients	who	have	subscribed	to	the	newPhoto	subscription.	When	a	new
user	has	been	created,	their	details	are	pushed	to	every	client	who	is	listening	for
new	users.

Just	like	queries	or	mutations,	subscriptions	can	take	advantage	of	arguments.
Suppose	that	we	want	to	add	filters	to	the	newPhoto	subscription	that	would
cause	it	to	listen	only	for	new	ACTION	photos:

type	Subscription	{
				newPhoto(category:	PhotoCategory):	Photo!
				newUser:	User!
}

When	users	subscribe	to	the	newPhoto	subscription,	they	now	have	the	option	to

filter	the	photos	that	are	pushed	to	this	subscription.	For	example,	to	filter	for
only	new	ACTION	photos,	clients	could	send	the	following	operation	to	our
GraphQL	API:

subscription	{
				newPhoto(category:	"ACTION")	{
								id
								name
								url
								postedBy	{
												name
								}
				}
}

This	subscription	should	return	details	for	only	ACTION	photos.

A	subscription	is	a	great	solution	when	it’s	important	to	handle	data	in	real	time.
In	Chapter	7,	we	talk	more	about	subscription	implementation	for	all	of	your
real-time	data	handling	needs.

Schema	Documentation
Chapter	3	explains	how	GraphQL	has	an	introspection	system	that	can	inform
you	as	to	what	queries	the	server	supports.	When	writing	a	GraphQL	schema,
you	can	add	optional	descriptions	for	each	field	that	will	provide	additional
information	about	the	schema’s	types	and	fields.	Providing	descriptions	can
make	it	easier	for	your	team,	yourself,	and	other	users	of	the	API	to	understand
your	type	system.

For	example,	let’s	add	comments	to	the	User	type	in	our	schema:

"""
A	user	who	has	been	authorized	by	GitHub	at	least	once
"""
type	User	{

				"""
				The	user's	unique	GitHub	login
				"""
				githubLogin:	ID!

				"""
				The	user's	first	and	last	name
				"""
				name:	String

				"""
				A	url	for	the	user's	GitHub	profile	photo
				"""
				avatar:	String

				"""
				All	of	the	photos	posted	by	this	user
				"""
				postedPhotos:	[Photo!]!

				"""
				All	of	the	photos	in	which	this	user	appears
				"""
				inPhotos:	[Photo!]!

}

By	adding	three	quotation	marks	above	and	below	your	comment	on	each	type
or	field,	you	provide	users	with	a	dictionary	for	your	API.	In	addition	to	types
and	fields,	you	can	also	document	arguments.	Let’s	look	at	the	postPhoto
mutation:

Replace	with:

		type	Mutation	{
				"""
				Authorizes	a	GitHub	User
				"""
				githubAuth(
						"The	unique	code	from	GitHub	that	is	sent	to	authorize	the	user"
						code:	String!
):	AuthPayload!
		}

The	argument	comments	share	the	name	of	the	argument	and	whether	the	field	is
optional.	If	you’re	using	input	types,	you	can	document	these	like	any	other
type:

"""
The	inputs	sent	with	the	postPhoto	Mutation
"""
input	PostPhotoInput	{
		"The	name	of	the	new	photo"
		name:	String!
		"(optional)	A	brief	description	of	the	photo"
		description:	String
		"(optional)	The	category	that	defines	the	photo"
		category:	PhotoCategory=PORTRAIT
}

postPhoto(
						"input:	The	name,	description,	and	category	for	a	new	photo"
						input:	PostPhotoInput!
):	Photo!

All	of	these	documentation	notes	are	then	listed	in	the	schema	documentation	in
the	GraphQL	Playground	or	GraphiQL	as	shown	in	Figure	4-4.	Of	course,	you
can	also	issue	introspection	queries	to	find	the	descriptions	of	these	types.

Figure	4-4.	postPhoto	Documentation

At	the	heart	of	all	GraphQL	projects	is	a	solid,	well-defined	schema.	This	serves
as	a	roadmap	and	a	contract	between	the	frontend	and	backend	teams	to	ensure
that	the	product	built	always	serves	the	schema.

In	this	chapter,	we	created	a	schema	for	our	photo-sharing	application.	In	the
next	three	chapters,	we	show	you	how	to	build	a	full-stack	GraphQL	application
that	fulfills	the	contract	of	the	schema	we	just	created.

Chapter	5.	Creating	a	GraphQL	API

You	explored	the	history.	You	wrote	some	queries.	You	created	a	schema.	Now
you’re	ready	to	create	a	fully	functioning	GraphQL	service.	This	can	be	done
with	a	range	of	different	technologies,	but	we’re	going	to	use	JavaScript.	The
techniques	that	are	shared	here	are	fairly	universal,	so	even	if	the
implementation	details	differ,	the	overall	architecture	will	be	similar	no	matter
which	language	or	framework	you	choose.

If	you	are	interested	in	server	libraries	for	other	languages,	you	can	check	out	the
many	that	exist	at	GraphQL.org.

When	the	GraphQL	spec	was	released	in	2015,	it	focused	on	a	clear	explanation
of	the	query	language	and	type	system.	It	intentionally	left	details	about	server
implementation	more	vague	to	allow	developers	from	a	variety	of	language
backgrounds	to	use	what	was	comfortable	for	them.	The	team	at	Facebook	did
provide	a	reference	implementation	that	they	built	in	JavaScript	called
GraphQL.js.	Along	with	this,	they	released	express-graphql,	a	simple	way	to
create	a	GraphQL	server	with	Express,	and	notably,	the	first	library	to	help
developers	accomplish	this	task.

After	our	exploration	of	JavaScript	implementations	of	GraphQL	servers,	we’ve
chosen	to	use	Apollo	Server,	an	open-source	solution	from	the	Apollo	team.
Apollo	Server	is	fairly	simple	to	set	up	and	offers	an	array	of	production-ready
features	including	subscription	support,	file	uploads,	a	data	source	API	for
quickly	hooking	up	existing	services,	and	Apollo	Engine	integration	out	of	the
box.	It	also	includes	GraphQL	Playground	for	writing	queries	directly	in	the
browser.

http://graphql.org/code/
https://www.apollographql.com/docs/apollo-server/v2/

Project	Setup
Let’s	begin	by	creating	the	photo-share-api	project	as	an	empty	folder	on	your
computer.	Remember:	you	can	always	visit	the	Learning	GraphQL	repo	to	see
the	completed	project	or	to	see	the	project	running	on	Glitch.	From	within	that
folder,	we’ll	generate	a	new	npm	project	using	the	npm	init	-y	command	in	your
Terminal	or	Command	Prompt.	This	utility	will	generate	a	package.json	file	and
set	all	of	the	options	as	the	default,	since	we	used	the	-y	flag.

Next,	we’ll	install	the	project	dependencies:	apollo-server	and	graphql.	We’ll
also	install	nodemon:

npm	install	apollo-server	graphql	nodemon

apollo-server	and	graphql	are	required	to	set	up	an	instance	of	Apollo	Server.
nodemon	will	watch	files	for	changes	and	restart	the	server	when	we	make
changes.	This	way,	we	won’t	have	to	stop	and	restart	the	server	every	time	we
make	a	change.	Let’s	add	the	command	for	nodemon	to	the	package.json	on	the
scripts	key:

		"scripts":	{
				"start":	"nodemon	-e	js,json,graphql"
		}

Now	every	time	we	run	npm	start,	our	index.js	file	will	run	and	nodemon	will
watch	for	changes	in	any	files	with	a	js,	json,	or	graphql	extension.	Also,	we
want	to	create	an	index.js	file	at	the	root	of	the	project.	Be	sure	that	the	main	file
in	the	package.json	is	pointing	to	index.js:

		"main":	"index.js"

https://github.com/MoonHighway/learning-graphql/tree/master/chapter-05/photo-share-api/

Resolvers
In	our	discussion	of	GraphQL	so	far,	we’ve	focused	a	lot	on	queries.	A	schema
defines	the	query	operations	that	clients	are	allowed	to	make	and	also	how
different	types	are	related.	A	schema	describes	the	data	requirements	but	doesn’t
perform	the	work	of	getting	that	data.	That	work	is	handled	by	resolvers.

A	resolver	is	a	function	that	returns	data	for	a	particular	field.	Resolver	functions
return	data	in	the	type	and	shape	specified	by	the	schema.	Resolvers	can	be
asynchronous	and	can	fetch	or	update	data	from	a	REST	API,	database,	or	any
other	service.

Let’s	take	a	look	at	what	a	resolver	might	look	like	for	our	root	query.	In	our
index.js	file	at	the	root	of	the	project,	let’s	add	the	totalPhotos	field	to	the	Query:

const	typeDefs	=	`
				type	Query	{
								totalPhotos:	Int!
				}
`

const	resolvers	=	{
		Query:	{
				totalPhotos:	()	=>	42
		}
}

The	typeDefs	variable	is	where	we	define	our	schema.	It’s	just	a	string.
Whenever	we	create	a	query	like	totalPhotos,	it	should	be	backed	by	a	resolver
function	of	the	same	name.	The	type	definition	describes	which	type	the	field
should	return.	The	resolver	function	returns	the	data	of	that	type	from
somewhere—in	this	case,	just	a	static	value	of	42.

It	is	also	important	to	note	that	the	resolver	must	be	defined	under	an	object	with
the	same	typename	as	the	object	in	the	schema.	The	totalPhotos	field	is	a	part	of
the	query	object.	The	resolver	for	this	field	must	also	be	a	part	of	the	Query
object.

We	have	created	initial	type	definitions	for	our	root	query.	We’ve	also	created

our	first	resolver	that	backs	the	totalPhotos	query	field.	To	create	the	schema	and
enable	the	execution	of	queries	against	the	schema,	we	will	use	Apollo	Server:

//	1.	Require	'apollo-server'
const	{	ApolloServer	}	=	require('apollo-server')

const	typeDefs	=	`
	 type	Query	{
	 	 totalPhotos:	Int!
	 }
`

const	resolvers	=	{
		Query:	{
				totalPhotos:	()	=>	42
		}
}

//	2.	Create	a	new	instance	of	the	server.
//	3.	Send	it	an	object	with	typeDefs	(the	schema)	and	resolvers
const	server	=	new	ApolloServer({
		typeDefs,
		resolvers
})

//	4.	Call	listen	on	the	server	to	launch	the	web	server
server
		.listen()
		.then(({url})	=>	console.log(`GraphQL	Service	running	on	${url}`))

After	requiring	ApolloServer,	we’ll	create	a	new	instance	of	the	server,	sending
it	an	object	with	two	values:	typeDefs	and	resolvers.	This	is	a	quick	and	minimal
server	setup	that	still	allows	us	to	stand	up	a	powerful	GraphQL	API.	Later	in
the	chapter,	we	will	talk	about	how	to	extend	the	functionality	of	the	server
using	Express.

At	this	point,	we	are	ready	to	execute	a	query	for	totalPhotos.	Once	we	run	npm
start,	we	should	see	the	GraphQL	Playground	running	on	http://localhost:4000.
Let’s	try	the	following	query:

{
				totalPhotos
}

The	returned	data	for	totalPhotos	is	42	as	expected:

{
		"data":	{
				"totalPhotos":	42
		}
}

Resolvers	are	key	to	the	implementation	of	GraphQL.	Every	field	must	have	a
corresponding	resolver	function.	The	resolver	must	follow	the	rules	of	the
schema.	It	must	have	the	same	name	as	the	field	that	was	defined	in	the	schema,
and	it	must	return	the	datatype	defined	by	the	schema.

Root	Resolvers
As	discussed	in	Chapter	4,	GraphQL	APIs	have	root	types	for	Query,	Mutation,
and	Subscription.	These	types	are	found	at	the	top	level	and	represent	all	of	the
possible	entry	points	into	the	API.	So	far,	we’ve	added	the	totalPhotos	field	to
the	Query	type,	meaning	that	our	API	can	query	this	field.

Let’s	add	to	this	by	creating	a	root	type	for	Mutation.	The	mutation	field	is
called	postPhoto	and	will	take	in	a	name	and	description	as	arguments	of	the
type	String.	When	the	mutation	is	sent,	it	must	return	a	Boolean:

const	typeDefs	=	`
				type	Query	{
								totalPhotos:	Int!
				}

				type	Mutation	{
				postPhoto(name:	String!	description:	String):	Boolean!
		}
`

After	we	create	the	postPhoto	mutation,	we	need	to	add	a	corresponding	resolver
in	the	resolvers	object:

//	1.	A	data	type	to	store	our	photos	in	memory
var	photos	=	[]

const	resolvers	=	{
		Query:	{

				//	2.	Return	the	length	of	the	photos	array
				totalPhotos:	()	=>	photos.length

		},

		//	3.	Mutation	and	postPhoto	resolver
		Mutation:	{
				postPhoto(parent,	args)	{
								photos.push(args)
								return	true

				}
		}

}

First,	we	need	to	create	a	variable	called	photos	to	store	the	photo	details	in	an
array.	Later	on	in	this	chapter,	we	will	store	photos	in	a	database.

Next,	we	enhance	the	totalPhotos	resolver	to	return	the	length	of	the	photos
array.	Whenever	this	field	is	queried,	it	will	return	the	number	of	photos	that	are
presently	stored	in	the	array.

From	here,	we	add	the	postPhoto	resolver.	This	time,	we	are	using	function
arguments	with	our	postPhoto	function.	The	first	argument	is	a	reference	to	the
parent	object.	Sometimes	you’ll	see	this	represented	as	_,	root,	or	obj	in
documentation.	In	this	case,	the	parent	of	the	postPhoto	resolver	is	a	Mutation.
The	parent	does	not	currently	contain	any	data	that	we	need	to	use,	but	it	is
always	the	first	argument	sent	to	a	resolver.	Therefore,	we	need	to	add	a
placeholder	parent	argument	so	that	we	can	access	the	second	argument	sent	to
the	resolver:	the	mutation	arguments.

The	second	argument	sent	to	the	postPhoto	resolver	is	the	GraphQL	arguments
that	were	sent	to	this	operation:	the	name	and,	optionally,	the	description.	The
args	variable	is	an	object	that	contains	these	two	fields:	{name,description}.
Right	now,	the	arguments	represent	one	photo	object,	so	we	push	them	directly
into	the	photos	array.

It’s	now	time	to	test	the	postPhoto	mutation	in	GraphQL	Playground,	sending	a
string	for	the	name	argument:

mutation	newPhoto	{
				postPhoto(name:	"sample	photo")
}

This	mutation	adds	the	photo	details	to	the	array	and	returns	true.	Let’s	modify
this	mutation	to	use	query	variables:

mutation	newPhoto($name:	String!,	$description:	String)	{
				postPhoto(name:	$name,	description:	$description)
}

After	variables	are	added	to	the	mutation,	data	must	be	passed	to	provide	the
string	variables.	In	the	lower-left	corner	of	the	Playground,	let’s	add	values	for
name	and	description	to	the	Query	Variables	window:

{
				"name":	"sample	photo	A",
				"description":	"A	sample	photo	for	our	dataset"
}

Type	Resolvers
When	a	GraphQL	query,	mutation,	or	subscription	is	executed,	it	returns	a	result
that	is	the	same	shape	of	the	query.	We’ve	seen	how	resolvers	can	return	scalar
type	values	like	integers,	strings,	and	Booleans,	but	resolvers	can	also	return
objects.

For	our	photo	app,	let’s	create	a	Photo	type	and	an	allPhotos	query	field	that	will
return	a	list	of	Photo	objects:

const	typeDefs	=	`

		#	1.	Add	Photo	type	definition
				type	Photo	{
						id:	ID!
						url:	String!
						name:	String!
						description:	String
				}

		#	2.	Return	Photo	from	allPhotos
				type	Query	{
						totalPhotos:	Int!
						allPhotos:	[Photo!]!
				}

		#	3.	Return	the	newly	posted	photo	from	the	mutation
				type	Mutation	{
						postPhoto(name:	String!	description:	String):	Photo!
				}
`

Because	we’ve	added	the	Photo	object	and	the	allPhotos	query	to	our	type
definitions,	we	need	reflect	these	adjustments	in	the	resolvers.	The	postPhoto
mutation	needs	to	return	data	in	the	shape	of	the	Photo	type.	The	query	allPhotos
needs	to	return	a	list	of	objects	that	have	the	same	shape	as	the	Photo	type:

//	1.	A	variable	that	we	will	increment	for	unique	ids
var	_id	=	0
var	photos	=	[]

const	resolvers	=	{
		Query:	{
				totalPhotos:	()	=>	photos.length,
				allPhotos:	()	=>	photos
		},
		Mutation:	{
				postPhoto(parent,	args)	{

						//	2.	Create	a	new	photo,	and	generate	an	id
								var	newPhoto	=	{
										id:	_id++,
										...args
						}
						photos.push(newPhoto)

						//	3.	Return	the	new	photo
						return	newPhoto

				}
		}
}

Because	the	Photo	type	requires	an	ID,	we	created	a	variable	to	store	the	ID.	In
the	postPhoto	resolver,	we	will	generate	IDs	by	incrementing	this	value.	The
args	variable	provides	the	name	and	description	fields	for	the	photo,	but	we	also
need	an	ID.	It	is	typically	up	to	the	server	to	create	variables	like	identifiers	and
timestamps.	So,	when	we	create	a	new	photo	object	in	the	postPhoto	resolver,
we	add	the	ID	field	and	spread	the	name	and	description	fields	from	args	into
our	new	photo	object.

Instead	of	returning	a	Boolean,	the	mutation	returns	an	object	that	matches	the
shape	of	the	Photo	type.	This	object	is	constructed	with	the	generated	ID	and	the
name	and	description	fields	that	were	passed	in	with	data.	Additionally,	the
postPhoto	mutation	adds	photo	objects	to	the	photos	array.	These	objects	match
the	shape	of	the	Photo	type	that	we	defined	in	our	schema,	so	we	can	return	the
entire	array	of	photos	from	the	allPhotos	query.

WARNING

Generating	unique	IDs	with	an	incremented	variable	is	clearly	a	very
unscalable	way	to	create	IDs,	but	will	serve	our	purposes	here	as	a
demonstration.	In	a	real	app,	your	ID	would	likely	be	generated	by	the
database.

To	verify	that	postPhoto	is	working	correctly,	we	can	adjust	the	mutation.
Because	Photo	is	a	type,	we	need	to	add	a	selection	set	to	our	mutation:

mutation	newPhoto($name:	String!,	$description:	String)	{
				postPhoto(name:	$name,	description:	$description)	{
								id
								name
								description
				}
}

After	adding	a	few	photos	via	mutations,	the	following	allPhotos	query	should
return	an	array	of	all	of	the	Photo	objects	added:

query	listPhotos	{
				allPhotos	{
								id
								name
								description
				}
}

We	also	added	a	non-nullable	url	field	to	our	photo	schema.	What	happens	when
we	add	a	url	to	our	selection	set?

query	listPhotos	{
				allPhotos	{
								id
								name
								description
								url
				}
}

When	url	is	added	to	our	query’s	selection	set,	an	error	is	displayed:	Cannot
return	null	for	non-nullable	field	Photo.url.	We	do	not	add	a	url	field	in	the
dataset.	We	do	not	need	to	store	URLs,	because	they	can	be	automatically
generated.	Each	field	in	our	schema	can	map	to	a	resolver.	All	we	need	to	do	is
add	a	Photo	object	to	our	list	of	resolvers	and	define	the	fields	that	we	want	to
map	to	functions.	In	this	case,	we	want	to	use	a	function	to	help	us	resolve
URLs:

const	resolvers	=	{
		Query:	{	...	},
		Mutation:	{	...	},
		Photo:	{
				url:	parent	=>	`http://yoursite.com/img/${parent.id}.jpg`
		}
}

Because	we	are	going	to	use	a	resolver	for	photo	URLs,	we’ve	added	a	Photo
object	to	our	resolvers.	This	Photo	resolver	added	to	the	root	is	called	a	trivial
resolver.	Trivial	resolvers	are	added	to	the	top	level	of	the	resolvers	object,	but
they	are	not	required.	We	have	the	option	to	create	custom	resolvers	for	the
Photo	object	using	a	trivial	resolver.	If	you	do	not	specify	a	trivial	resolver,
GraphQL	will	fall	back	to	a	default	resolver	that	returns	a	property	as	the	same
name	as	the	field.

When	we	select	a	photo’s	url	in	our	query,	the	corresponding	resolver	function	is
invoked.	The	first	argument	sent	to	resolvers	is	always	the	parent	object.	In	this
case,	the	parent	represents	the	current	Photo	object	that	is	being	resolved.	We’re
assuming	here	that	our	service	handles	only	JPEG	images.	Those	images	are
named	by	their	photo	ID	and	can	be	found	on	the	http://yoursite.com/img/	route.
Because	the	parent	is	the	photo,	we	can	obtain	the	photo’s	ID	through	this
argument	and	use	it	to	automatically	generate	a	URL	for	the	current	photo.

When	we	define	a	GraphQL	schema,	we	describe	the	data	requirements	of	our
application.	With	resolvers,	we	can	powerfully	and	flexibly	fulfill	those
requirements.	Functions	give	us	this	power	and	flexibility.	Functions	can	be
asynchronous,	can	return	scalar	types	and	return	objects,	and	can	return	data
from	various	sources.	Resolvers	are	just	functions,	and	every	field	in	our
GraphQL	schema	can	map	to	a	resolver.

Using	Inputs	and	Enums
It’s	time	to	introduce	an	enumeration	type,	PhotoCategory,	and	an	input	type,
PostPhotoInput,	to	our	typeDefs:

		enum	PhotoCategory	{
				SELFIE
				PORTRAIT
				ACTION
				LANDSCAPE
				GRAPHIC
		}

		type	Photo	{
				...
				category:	PhotoCategory!
		}

		input	PostPhotoInput	{
				name:	String!
				category:	PhotoCategory=PORTRAIT
				description:	String
		}

		type	Mutation	{
				postPhoto(input:	PostPhotoInput!):	Photo!
		}

In	Chapter	4,	we	created	these	types	when	we	designed	the	schema	for	the
PhotoShare	application.	We	also	added	the	PhotoCategory	enumeration	type	and
added	a	category	field	to	our	photos.	When	resolving	photos,	we	need	to	make
sure	that	the	photo	category—a	string	that	matches	the	values	defined	in	the
enumeration	type—is	available.	We	also	need	to	collect	a	category	when	users
post	new	photos.

We’ve	added	a	PostPhotoInput	type	to	organize	the	argument	for	the	postPhoto
mutation	under	a	single	object.	This	input	type	has	a	category	field.	Even	when	a
user	does	not	supply	a	category	field	as	an	argument,	the	default,	PORTRAIT,
will	be	used.

For	the	postPhoto	resolver,	we	need	to	make	some	adjustments,	as	well.	The
details	for	the	photo,	the	name,	description,	and	category	are	now	nested	within
the	input	field.	We	need	to	make	sure	that	we	access	these	values	at	args.input
instead	of	args:

postPhoto(parent,	args)	{
				var	newPhoto	=	{
								id:	_id++,
								...args.input
				}
				photos.push(newPhoto)
				return	newPhoto
}

Now,	we	run	the	mutation	with	the	new	input	type:

mutation	newPhoto($input:	PostPhotoInput!)	{
		postPhoto(input:$input)	{
				id
				name
				url
				description
				category
		}
}

We	also	need	to	send	the	corresponding	JSON	in	the	Query	Variables	panel:

{
		"input":	{
				"name":	"sample	photo	A",
				"description":	"A	sample	photo	for	our	dataset"
	}
}

If	the	category	is	not	supplied,	it	will	default	to	PORTRAIT.	Alternatively,	if	a
value	is	provided	for	category,	it	will	be	validated	against	our	enumeration	type
before	the	operation	is	even	sent	to	the	server.	If	it’s	a	valid	category,	it	will	be
passed	to	the	resolver	as	an	argument.

With	input	types,	we	can	make	passing	arguments	to	mutations	more	reusable
and	less	error-prone.	When	combining	input	types	and	enums,	we	can	be	more
specific	about	the	types	of	inputs	that	can	be	supplied	to	specific	fields.	Inputs
and	enums	are	incredibly	valuable	and	are	made	even	better	when	you	use	them
together.

Edges	and	Connections
As	we’ve	discussed	previously,	the	power	of	GraphQL	comes	from	the	edges:
the	connections	between	data	points.	When	standing	up	a	GraphQL	server,	types
typically	map	to	models.	Think	of	these	types	as	being	saved	in	tables	of	like
data.	From	there,	we	link	types	with	connections.	Let’s	explore	the	kinds	of
connections	that	we	can	use	to	define	the	interconnected	relationships	between
types.

One-to-many	connections

Users	need	to	access	the	list	of	photos	they	previously	posted.	We	will	access
this	data	on	a	field	called	postedPhotos	that	will	resolve	to	a	filtered	list	of
photos	that	the	user	has	posted.	Because	one	User	can	post	many	Photos,	we	call
this	a	one-to-many	relationship.	Let’s	add	the	User	to	our	typeDefs:

type	User	{
		githubLogin:	ID!
		name:	String
		avatar:	String
		postedPhotos:	[Photo!]!
}

At	this	point,	we’ve	created	a	directed	graph.	We	can	traverse	from	the	User	type
to	the	Photo	type.	To	have	an	undirected	graph,	we	need	to	provide	a	way	back
to	the	User	type	from	the	Photo	type.	Let’s	add	a	postedBy	field	to	the	Photo
type:

type	Photo	{
		id:	ID!
		url:	String!
		name:	String!
		description:	String
		category:	PhotoCategory!
		postedBy:	User!
}

By	adding	the	postedBy	field,	we	have	created	a	link	back	to	the	User	who
posted	the	Photo,	creating	an	undirected	graph.	This	is	a	one-to-one	connection

because	one	photo	can	only	be	posted	by	one	User.

SAMPLE	USERS

To	test	our	server,	let’s	add	some	sample	data	to	our	index.js	file.	Be	sure	to
remove	the	current	photos	variable	that	is	set	to	an	empty	array:

var	users	=	[
		{	"githubLogin":	"mHattrup",	"name":	"Mike	Hattrup"	},
		{	"githubLogin":	"gPlake",	"name":	"Glen	Plake"	},
		{	"githubLogin":	"sSchmidt",	"name":	"Scot	Schmidt"	}
]

var	photos	=	[
		{
				"id":	"1",
				"name":	"Dropping	the	Heart	Chute",
				"description":	"The	heart	chute	is	one	of	my	favorite	chutes",
				"category":	"ACTION",
				"githubUser":	"gPlake"
		},
		{
				"id":	"2",
				"name":	"Enjoying	the	sunshine",
				"category":	"SELFIE",
				"githubUser":	"sSchmidt"
		},
		{
				id:	"3",
				"name":	"Gunbarrel	25",
				"description":	"25	laps	on	gunbarrel	today",
				"category":	"LANDSCAPE",
				"githubUser":	"sSchmidt"
		}
]

Because	connections	are	created	using	the	fields	of	an	object	type,	they	can	map
to	resolver	functions.	Inside	these	functions,	we	can	use	the	details	about	the
parent	to	help	us	locate	and	return	the	connected	data.

Let’s	add	the	postedPhotos	and	postedBy	resolvers	to	our	service:

const	resolvers	=	{
		...
		Photo:	{
				url:	parent	=>	`http://yoursite.com/img/${parent.id}.jpg`,
				postedBy:	parent	=>	{
						return	users.find(u	=>	u.githubLogin	===	parent.githubUser)
				}
		},
		User:	{
				postedPhotos:	parent	=>	{
						return	photos.filter(p	=>	p.githubUser	===	parent.githubLogin)
				}
}

In	the	Photo	resolver,	we	need	to	add	a	field	for	postedBy.	Within	this	resolver,
it’s	up	to	us	to	figure	out	how	to	find	the	connected	data.	Using	the	.find()	array
method,	we	can	obtain	the	user	who’s	githubLogin	matches	the	githubUser	value
saved	with	each	photo.	The	.find()	method	returns	a	single	user	object.

In	the	User	resolver,	we	retrieve	a	list	of	photos	posted	by	that	user	using	the
array’s	.filter()	method.	This	method	returns	an	array	of	only	those	photos	that
contain	a	githubUser	value	that	matches	the	parent	user’s	githubLogin	value.
The	filter	method	returns	an	array	of	photos.

Now	let’s	try	to	send	the	allPhotos	query:

query	photos	{
		allPhotos	{
				name
				url
				postedBy	{
						name
				}
		}
}

When	we	query	each	photo,	we	are	able	to	query	the	user	who	posted	that	photo.
The	user	object	is	being	located	and	returned	by	the	resolver.	In	this	example,	we
select	only	the	name	of	the	user	who	posted	the	photo.	Given	our	sample	data,

the	result	should	return	the	following	JSON:

{
		"data":	{
				"allPhotos":	[
						{
								"name":	"Dropping	the	Heart	Chute",
								"url":	"http://yoursite.com/img/1.jpg",
								"postedBy":	{
										"name":	"Glen	Plake"
								}
						},
						{
								"name":	"Enjoying	the	sunshine",
								"url":	"http://yoursite.com/img/2.jpg",
								"postedBy":	{
										"name":	"Scot	Schmidt"
								}
						},
						{
								"name":	"Gunbarrel	25",
								"url":	"http://yoursite.com/img/3.jpg",
								"postedBy":	{
										"name":	"Scot	Schmidt"
								}
						}
]
		}
}

We	are	responsible	for	connecting	the	data	with	resolvers,	but	as	soon	as	we	are
able	to	return	that	connected	data,	our	clients	can	begin	writing	powerful	queries.
In	the	next	section,	we	show	you	some	techniques	to	create	many-to-many
connections.

Many-to-many

The	next	feature	we	want	to	add	to	our	service	is	the	ability	to	tag	users	in
photos.	This	means	that	a	User	could	be	tagged	in	many	different	photos,	and
Photo	could	have	many	different	users	tagged	in	it.	The	relationship	that	photo
tags	will	create	between	users	and	photos	can	be	referred	to	as	many-to-many—

many	users	to	many	photos.

To	facilitate	the	many-to-many	relationship,	we	add	the	taggedUsers	field	to
Photo	and	a	inPhotos	field	to	User.	Let’s	modify	the	typeDefs:

		type	User	{
								...
								inPhotos:	[Photo!]!
				}

				type	Photo	{
								...
								taggedUsers:	[User!]!
		}

The	taggedUsers	field	returns	a	list	of	users,	and	the	inPhotos	field	returns	a	list
of	photos	in	which	a	user	appears.	To	facilitate	this	many-to-many	connection,
we	need	to	add	a	tags	array.	To	test	the	tagging	feature,	you	need	to	populate
some	sample	data	for	tags:

var	tags	=	[
				{	"photoID":	"1",	"userID":	"gPlake"	},
				{	"photoID":	"2",	"userID":	"sSchmidt"	},
				{	"photoID":	"2",	"userID":	"mHattrup"	},
				{	"photoID":	"2",	"userID":	"gPlake"	}
]

When	we	have	a	photo,	we	must	search	our	datasets	to	find	the	users	who	have
been	tagged	in	the	photo.	When	we	have	a	user,	it	is	up	to	us	to	find	the	list	of
photos	in	which	that	user	appears.	Because	our	data	is	currently	stored	in
JavaScript	arrays,	we	will	use	array	methods	within	the	resolvers	to	find	the
data:

Photo:	{
				...
				taggedUsers:	parent	=>	tags

						//	Returns	an	array	of	tags	that	only	contain	the	current	photo
						.filter(tag	=>	tag.photoID	===	parent.id)

						//	Converts	the	array	of	tags	into	an	array	of	userIDs
						.map(tag	=>	tag.userID)

						//	Converts	array	of	userIDs	into	an	array	of	user	objects
						.map(userID	=>	users.find(u	=>	u.githubLogin	===	userID))

		},
		User:	{
				...
				inPhotos:	parent	=>	tags

						//	Returns	an	array	of	tags	that	only	contain	the	current	user
						.filter(tag	=>	tag.userID	===	parent.id)

						//	Converts	the	array	of	tags	into	an	array	of	photoIDs
						.map(tag	=>	tag.photoID)

						//	Converts	array	of	photoIDs	into	an	array	of	photo	objects
						.map(photoID	=>	photos.find(p	=>	p.id	===	photoID))

		}

The	taggedUsers	field	resolver	filters	out	any	photos	that	are	not	the	current
photo	and	maps	that	filtered	list	to	an	array	of	actual	User	objects.	The	inPhotos
field	resolver	filters	the	tags	by	user	and	maps	the	user	tags	to	an	array	of	actual
Photo	objects.

We	can	now	view	which	users	are	tagged	in	every	photo	by	sending	a	GraphQL
query:

query	listPhotos	{
		allPhotos	{
				url
				taggedUsers	{
						name
				}
		}
}

You	might	have	noticed	that	we	have	an	array	for	tags,	but	we	do	not	have	a
GraphQL	type	called	Tag.	GraphQL	does	not	require	our	data	models	to	exactly

match	the	types	in	our	schema.	Our	clients	can	find	the	tagged	users	in	every
photo	and	the	photos	that	any	users	are	tagged	in	by	querying	the	User	type	or
the	Photo	type.	They	don’t	need	to	query	a	Tag	type:	that	would	just	complicate
things.	We’ve	already	done	the	heavy	lifting	of	finding	the	tagged	users	or
photos	in	our	resolver	specifically	to	make	it	easy	for	clients	to	query	this	data.

Custom	Scalars
As	discussed	in	Chapter	4,	GraphQL	has	a	collection	of	default	scalar	types	that
you	can	use	for	any	fields.	Scalars	like	Int,	Float,	String,	Boolean,	and	ID	are
suitable	for	the	majority	of	situations,	but	there	might	be	instances	for	which	you
need	to	create	a	custom	scalar	type	to	suit	your	data	requirements.

When	we	implement	a	custom	scalar,	we	need	to	create	rules	around	how	the
type	should	be	serialized	and	validated.	For	example,	if	we	create	a	DateTime
type,	we	will	need	to	define	what	should	be	considered	a	valid	DateTime.

Let’s	add	this	custom	DateTime	scalar	to	our	typeDefs	and	use	it	in	the	Photo
type	for	the	created	field.	The	created	field	is	used	to	store	the	date	and	time	at
which	a	specific	photo	was	posted:

const	typeDefs	=	`
		scalar	DateTime
		type	Photo	{
				...
				created:	DateTime!
		}
		...
`

Every	field	in	our	schema	needs	to	map	to	a	resolver.	The	created	field	needs	to
map	to	a	resolver	for	the	DateTime	type.	We	created	a	custom	scalar	type	for
DateTime	because	we	want	to	parse	and	validate	any	fields	that	use	this	scalar	as
JavaScript	Date	types.

Consider	the	various	ways	in	which	we	can	represent	a	date	and	time	as	a	string.
All	of	these	strings	represent	valid	dates:

“4/18/2018”

“4/18/2018	1:30:00	PM”

“Sun	Apr	15	2018	12:10:17	GMT-0700	(PDT)”

“2018-04-15T19:09:57.308Z”

We	can	use	any	of	these	strings	to	create	datetime	objects	with	JavaScript:

var	d	=	new	Date("4/18/2018")
console.log(d.toISOString())
//	"2018-04-18T07:00:00.000Z"

Here,	we	created	a	new	date	object	using	one	format	and	then	converted	that
datetime	string	into	an	ISO-formatted	date	string.

Anything	that	the	JavaScript	Date	object	does	not	understand	is	invalid.	You	can
try	to	parse	the	following	data:

var	d	=	new	Date("Tuesday	March")
console.log(d.toString())
//	"Invalid	Date"

When	we	query	the	photo’s	created	field,	we	want	to	make	sure	that	the	value
returned	by	this	field	contains	a	string	in	the	ISO	date-time	format.	Whenever	a
field	returns	a	date	value,	we	serialize	that	value	as	an	ISO-formatted	string:

const	serialize	=	value	=>	new	Date(value).toISOString()

The	serialize	function	obtains	the	field	values	from	our	object,	and	as	long	as
that	field	contains	a	date	formatted	as	a	JavaScript	object	or	any	valid	datetime
string,	it	will	always	be	returned	by	GraphQL	in	the	ISO	datetime	format.

When	your	schema	implements	a	custom	scalar,	it	can	be	used	as	an	argument	in
a	query.	Let’s	assume	that	we	created	a	filter	for	the	allPhotos	query.	This	query
would	return	a	list	of	photos	taken	after	a	specific	date:

type	Query	{
		...
		allPhotos(after:	DateTime):	[Photo!]!
}

If	we	had	this	field,	clients	could	send	us	a	query	that	contains	a	DateTime
value:

query	recentPhotos(after:DateTime)	{
		allPhotos(after:	$after)	{
				name
				url

		}
}

And	they	would	send	the	$after	argument	using	query	variables:

{
		"after":	"4/18/2018"
}

We	want	to	make	sure	that	the	after	argument	is	parsed	into	a	JavaScript	Date
object	before	it	is	sent	to	the	resolver:

const	parseValue	=	value	=>	new	Date(value)

We	can	use	the	parseValue	function	to	parse	the	values	of	incoming	strings	that
are	sent	along	with	queries.	Whatever	parseValue	returns	is	passed	to	the
resolver	arguments:

const	resolvers	=	{
		Query:	{
				allPhotos:	(parent,	args)	=>	{
						args.after	//	JavaScript	Date	Object
						...
				}
		}
}

Custom	scalars	need	to	be	able	to	serialize	and	parse	date	values.	There	is	one
more	place	that	we	need	to	handle	date	strings.	This	is	when	clients	add	the	date
string	directly	to	the	query	itself:

query	{
		allPhotos(after:	"4/18/2018")	{
				name
				url
		}
}

The	after	argument	is	not	being	passed	as	a	query	variable.	Instead,	it	has	been

added	directly	to	the	query	document.	Before	we	can	parse	this	value,	we	need	to
obtain	it	from	the	query	after	it	has	been	parsed	into	an	abstract	syntax	tree
(AST).	We	use	the	parseLiteral	function	to	obtain	these	values	from	the	query
document	before	they	are	parsed:

const	parseLiteral	=	ast	=>	ast.value

The	parseLiteral	function	is	used	to	obtain	the	value	of	the	date	that	was	added
directly	to	the	query	document.	In	this	case,	all	we	need	to	do	is	return	that
value,	but	if	needed,	we	could	take	extra	parsing	steps	inside	this	function.

We	need	all	three	of	these	functions	that	we	designed	to	handle	DateTime	values
when	we	create	our	custom	scalar.	Let’s	add	the	resolver	for	our	custom
DateTime	scalar	to	our	code:

const	{	GraphQLScalarType	}	=	require('graphql')
...
const	resolvers	=	{
		Query:	{	...	},
		Mutation:	{	...	},
		Photo:	{	...	},
		User:	{	...	},
		DateTime:	new	GraphQLScalarType({
						name:	'DateTime',
						description:	'A	valid	date	time	value.',
						parseValue:	value	=>	new	Date(value),
						serialize:	value	=>	new	Date(value).toISOString(),
						parseLiteral:	ast	=>	ast.value
		})
}

We	use	the	GraphQLScalarType	object	to	create	resolvers	for	custom	scalars.
The	DateTime	resolver	is	placed	within	our	list	of	resolvers.	When	creating	a
new	scalar	type,	we	need	to	add	the	three	functions:	serialize,	parseValue,	and
parseLiteral,	which	will	handle	any	fields	or	arguments	that	implement	the
DateType	scalar.

SAMPLE	DATES

Within	the	data,	let’s	also	be	sure	to	add	a	created	key	and	a	date	value	for

the	two	existing	photos.	Any	valid	date	string	or	date	object	will	work
because	the	created	field	will	be	serialized	before	it	is	returned:

var	photos	=	[
		{
				...
				"created":	"3-28-1977"
		},
		{
				...
				"created":	"1-2-1985"
		},
		{
				...
				"created":	"2018-04-15T19:09:57.308Z"
		}
]

Now,	when	we	add	DateTime	fields	to	our	selection	sets,	we	can	see	those	dates
and	types	formatted	as	ISO	date	strings:

query	listPhotos	{
		allPhotos	{
				name
				created
		}
}

The	only	thing	left	to	do	is	make	sure	that	we	add	a	timestamp	to	each	photo
when	it	is	posted.	We	do	this	by	adding	a	created	field	to	every	photo	and
timestamping	it	with	the	current	DateTime	using	the	JavaScript	Date	object:

postPhoto(parent,	args)	{
				var	newPhoto	=	{
								id:	_id++,
								...args.input,
								created:	new	Date()
				}
				photos.push(newPhoto)

				return	newPhoto
}

Now,	when	new	photos	are	posted,	they	will	be	timestamped	with	the	date	and
time	that	they	were	created.

apollo-server-express
There	might	be	a	scenario	where	you	want	to	add	Apollo	Server	to	an	existing
app,	or	you	might	want	to	take	advantage	of	Express	middleware.	In	that	case,
you	might	consider	using	apollo-server-express.	With	Apollo	Server	Express,
you’ll	get	to	use	all	of	the	latest	features	of	Apollo	Server,	but	you’ll	also	be	able
to	set	up	a	more	custom	configuration.	For	our	purposes,	we	are	going	to	refactor
the	server	to	use	Apollo	Server	Express	in	order	to	set	up	a	custom	home	route,	a
playground	route,	and	later	to	allow	for	images	that	are	posted	to	be	uploaded
and	saved	on	the	server.

Let’s	start	by	removing	apollo-server:

npm	remove	apollo-server

Then,	let’s	install	Apollo	Server	Express	and	Express:

npm	install	apollo-server-express	express

EXPRESS
Express	is	by	far	one	of	the	most	popular	projects	in	the	Node.js	ecosystem.	It
allows	you	to	set	up	a	Node.js	web	application	quickly	and	efficiently.

From	here,	we	can	refactor	our	index.js	file.	We’ll	start	by	changing	the	require
statement	to	include	apollo-server-express.	Then	we’ll	include	express:

//	1.	Require	`apollo-server-express`	and	`express`
const	{	ApolloServer	}	=	require('apollo-server-express')
const	express	=	require('express')

...

//	2.	Call	`express()`	to	create	an	Express	application
var	app	=	express()

const	server	=	new	ApolloServer({	typeDefs,	resolvers	})

//	3.	Call	`applyMiddleware()`	to	allow	middleware	mounted	on	the	same	path
server.applyMiddleware({	app	})

//	4.	Create	a	home	route
app.get('/',	(req,	res)	=>	res.end('Welcome	to	the	PhotoShare	API'))

//	5.	Listen	on	a	specific	port
app.listen({	port:	4000	},	()	=>
		console.log(`GraphQL	Server	running	@	
http://localhost:4000${server.graphqlPath}`)
)

By	including	Express,	we	can	take	advantage	of	all	of	the	middleware	functions
provided	to	us	by	the	framework.	To	incorporate	this	into	the	server,	we	just
need	to	call	the	express	function,	call	applyMiddleware,	and	then	we	can	set	up	a
custom	route.	Now	when	we	visit	http://localhost:4000,	we	should	see	a	page
that	reads	“Welcome	to	the	PhotoShare	API”.	This	is	a	placeholder	for	now.

Next,	we	want	to	set	up	a	custom	route	for	the	GraphQL	Playground	to	run	at

http://localhost:4000/playground.	We	can	do	so	by	installing	a	helper	package
from	npm.	First,	we	need	to	install	the	package,	graphql-playground-
middleware-express:

npm	install	graphql-playground-middleware-express

Then	require	this	package	at	the	top	of	the	index	file:

const	expressPlayground	=	require('graphql-playground-middleware-express').default

...

app.get('/playground',	expressPlayground({	endpoint:	'/graphql'	}))

Then	we’ll	use	Express	to	create	a	route	for	the	Playground,	so	anytime	we	want
to	use	the	Playground,	we’ll	visit	http://localhost:4000/playground.

Now	our	server	is	set	up	with	Apollo	Server	Express,	and	we	have	three	distinct
routes	running:

/	for	a	homepage

/graphql	for	the	GraphQL	endpoint

/playground	for	the	GraphQL	Playground

At	this	point,	we’ll	also	reduce	the	length	of	our	index	file	by	moving	the
typeDefs	and	resolvers	to	their	own	files.

First,	we’ll	create	a	file	called	typeDefs.graphql	and	place	it	at	the	root	of	the
project.	This	will	be	just	the	schema,	only	text.	You	can	also	move	the	resolvers
to	their	own	folder	called	resolvers.	You	can	place	these	functions	in	an	index.js
file,	or	you	can	modularize	the	resolver	files	as	we	do	in	the	repository.

Once	complete,	you	can	import	the	typeDefs	and	resolvers	as	shown	below.
We’ll	use	the	fs	module	from	Node.js	to	read	the	typeDefs.graphql	file:

const	{	ApolloServer	}	=	require('apollo-server-express')
const	express	=	require('express')
const	expressPlayground	=	require('graphql-playground-middleware-express').default
const	{	readFileSync	}	=	require('fs')

https://github.com/MoonHighway/learning-graphql/tree/master/chapter-05/photo-share-api/resolvers

const	typeDefs	=	readFileSync('./typeDefs.graphql',	'UTF-8')
const	resolvers	=	require('./resolvers')

var	app	=	express()

const	server	=	new	ApolloServer({	typeDefs,	resolvers	})

server.applyMiddleware({	app	})

app.get('/',	(req,	res)	=>	res.end('Welcome	to	the	PhotoShare	API'))
app.get('/playground',	expressPlayground({	endpoint:	'/graphql'	}))

app.listen({	port:	4000	},	()	=>
		console.log(`GraphQL	Server	running	at	http://localhost:4000${server.graphqlPath}`)
)

Now	that	we’ve	refactored	the	server,	we’re	ready	to	take	the	next	step:
integrating	a	database.

Context
In	this	section,	we	take	a	look	at	context,	which	is	the	location	where	you	can
store	global	values	that	any	resolver	can	access.	Context	is	a	good	place	to	store
authentication	information,	database	details,	local	data	caches,	and	anything	else
that	is	needed	to	resolve	a	GraphQL	operation.

You	can	directly	call	REST	APIs	and	databases	in	your	resolvers,	but	we
commonly	abstract	that	logic	into	an	object	that	we	place	on	the	context	to
enforce	separation	of	concerns	and	allow	for	easier	refactors	later.	You	can	also
use	context	to	access	REST	data	from	an	Apollo	Data	Source.	For	more
information	on	that,	check	out	Apollo	Data	Sources	in	the	documentation.

For	our	purposes	here	though,	we	are	going	to	incorporate	context	now	to
address	some	of	our	app’s	current	limitations.	First	of	all,	we’re	storing	data	in
memory,	which	is	not	a	very	scalable	solution.	We	are	also	handling	IDs
sloppily	by	incrementing	these	values	with	each	mutation.	Instead,	we	are	going
to	rely	on	a	database	to	handle	data	storage	and	ID	generation.	Our	resolvers	will
be	able	to	access	this	database	from	context.

http://bit.ly/2vac9ZC

Installing	Mongo
GraphQL	does	not	care	what	database	you	use.	You	can	use	Postgres,	Mongo,
SQL	Server,	Firebase,	MySQL,	Redis,	Elastic—whatever	you	want.	Due	to	its
popularity	among	the	Node.js	community,	we	will	use	Mongo	as	the	data	storage
solution	for	our	application.

To	get	started	with	MongoDB	on	a	Mac,	we	will	use	Homebrew.	To	install
Homebrew,	visit	https://brew.sh/.	After	you	have	installed	Homebrew,	we	will
go	through	the	process	of	installing	Mongo	with	it	by	running	the	following
commands:

brew	install	mongo
brew	services	list
brew	services	start

After	you	have	successfully	started	MongoDB,	we	can	start	reading	and	writing
data	to	the	local	Mongo	instance.

https://brew.sh/

NOTE	FOR	WINDOWS	USERS
If	you	want	to	run	a	local	version	of	MongoDB	on	Windows,	check	out
http://bit.ly/inst-mdb-windows.

You	can	also	use	an	online	Mongo	service	like	mLab,	as	pictured	in	Figure	5-1.
You	can	create	a	sandbox	database	for	free.

Figure	5-1.	mLab

http://bit.ly/inst-mdb-windows

Adding	Database	to	Context
Now	it’s	time	to	connect	to	our	database	and	add	the	connection	to	context.	We
are	going	to	use	a	package	called	mongodb	to	communicate	with	our	database.
We	can	install	this	by	using	the	command:	npm	install	mongodb.

After	we	install	this	package,	we	will	modify	the	Apollo	Server	configuration
file,	the	index.js.	We	need	to	wait	until	mongodb	successfully	connects	to	our
database	to	start	the	service.	We	also	will	need	to	pull	the	database	host
information	from	an	environment	variable	called	DB_HOST.	We’ll	make	this
environment	variable	accessible	in	our	project	in	a	file	called	.env	at	the	root	of
the	project.

If	you’re	using	Mongo	locally,	your	URL	will	look	something	like	this:

DB_HOST=mongodb://localhost:27017/<Your-Database-Name>

If	you’re	using	mLab,	your	URL	will	look	like	this.	Be	sure	to	create	a	user	and
password	for	the	database	and	replace	<dbuser>	and	<dbpassword>	with	those
values.

DB_HOST=mongodb://<dbuser>:<dbpassword>@5555.mlab.com:5555/<Your-
Database-Name>

Let’s	connect	to	the	database	and	build	a	context	object	before	starting	the
service.	We’ll	also	use	the	dotenv	package	to	load	the	DB_HOST	URL:

const	{	MongoClient	}	=	require('mongodb')
require('dotenv').config()

...

//	1.	Create	Asynchronous	Function
async	function	start()	{
		const	app	=	express()
		const	MONGO_DB	=	process.env.DB_HOST

		const	client	=	await	MongoClient.connect(
				MONGO_DB,

				{	useNewUrlParser:	true	}
)
		const	db	=	client.db()

		const	context	=	{	db	}

		const	server	=	new	ApolloServer({	typeDefs,	resolvers,	context	})

		server.applyMiddleware({	app	})

		app.get('/',	(req,	res)	=>	res.end('Welcome	to	the	PhotoShare	API'))

		app.get('/playground',	expressPlayground({	endpoint:	'/graphql'	}))

		app.listen({	port:	4000	},	()	=>
				console.log(
						`GraphQL	Server	running	at	http://localhost:4000${server.graphqlPath}`
)
)
}

//	5.	Invoke	start	when	ready	to	start
start()

With	start,	we	connect	to	the	database.	Connecting	to	a	database	is	an
asynchronous	process.	It	will	take	some	time	to	successfully	connect	to	a
database.	This	asynchronous	function	allows	us	to	wait	for	a	promise	to	resolve
with	the	await	keyword.	The	first	thing	we	do	in	this	function	is	wait	for	a
successful	connection	to	the	local	or	remote	database.	After	we	have	a	database
connection,	we	can	add	that	connection	to	the	context	object	and	start	our	server.

Now	we	can	modify	our	query	resolvers	to	return	information	from	our	Mongo
collections	instead	of	local	arrays.	We’ll	also	add	queries	for	totalUsers	and
allUsers	and	add	them	to	the	schema:

Schema

		type	Query	{
						...
						totalUsers:	Int!
						allUsers:	[User!]!
		}

Resolvers

Query:	{

		totalPhotos:	(parent,	args,	{	db	})	=>
						db.collection('photos')
								.estimatedDocumentCount(),

		allPhotos:	(parent,	args,	{	db	})	=>
				db.collection('photos')
						.find()
						.toArray(),

		totalUsers:	(parent,	args,	{	db	})	=>
				db.collection('users')
						.estimatedDocumentCount(),

		allUsers:	(parent,	args,	{	db	})	=>
				db.collection('users')
						.find()
						.toArray()

}

db.collection('photos')	is	how	you	access	a	Mongo	collection.	We	can	count	the
documents	in	the	collection	with	.estimatedDocumentCount().	We	can	list	all	of
the	documents	in	a	collection	and	convert	them	to	an	array	with
.find().toArray().	At	this	point,	the	photos	collection	is	empty,	but	this	code	will
work.	The	totalPhotos	and	totalUsers	resolver	should	return	nothing.	The
allPhotos	and	allUsers	resolvers	should	return	empty	arrays.

To	add	photos	to	the	database,	a	user	must	be	logged	in.	In	the	next	section,	we
handle	authorizing	a	user	with	GitHub	and	posting	our	first	photo	to	the
database.

GitHub	Authorization
Authorizing	and	authenticating	users	is	an	important	part	of	any	application.
There	are	a	number	of	strategies	that	we	can	use	to	make	this	happen.	Social
authorization	is	a	popular	one	because	it	leaves	a	lot	of	the	account	management
details	up	to	the	social	provider.	It	also	can	help	users	feel	more	secure	when
logging	in,	because	the	social	provider	might	be	a	service	with	which	they’re
already	comfortable.	For	our	application,	we	implement	a	GitHub	authorization
because	it’s	highly	likely	that	you	already	have	a	GitHub	account	(and	if	you
don’t,	it’s	simple	and	quick	to	get	one!).1

Setting	Up	GitHub	OAuth
Before	we	get	started,	you	need	to	set	up	GitHub	authorization	for	this	app	to
work.	To	do	this,	perform	the	following	steps:

1.	 Go	to	https://www.github.com	and	log	in.

2.	 Go	to	Account	Settings.

3.	 Go	to	Developer	Settings.

4.	 Click	New	OAuth	App.

5.	 Add	the	following	settings	(as	shown	in	Figure	5-2):

Application	name

Localhost	3000

Homepage	URL

http://localhost:3000

Application	description

All	authorizations	for	local	GitHub	Testing

Authorization	callback	URL

http://localhost:3000

https://www.github.com
http://localhost:3000
http://localhost:3000

Figure	5-2.	New	OAuth	App

6.	 Click	Save.

7.	 Go	to	the	OAuth	Account	Page	and	get	your	client_id	and	client_secret,
as	shown	in	Figure	5-3.

Figure	5-3.	OAuth	App	Settings

With	this	setup	in	place,	we	can	now	get	an	auth	token	and	information	about	the

user	from	GitHub.	Specifically,	we	will	need	the	client_id	and	client_secret.

The	Authorization	Process
The	process	of	authorizing	a	GitHub	app	happens	on	the	client	and	the	server.	In
this	section,	we	discuss	how	to	handle	the	server,	and	in	Chapter	6,	we	go	over
the	client	implementation.	As	Figure	5-4	illustrates	below,	the	full	authorization
process	occurs	in	the	following	steps.	Bold	steps	indicate	what	will	happen	in
this	chapter	on	the	server:

1.	 Client:	Asks	GitHub	for	a	code	using	a	url	with	a	client_id

2.	 User:	Allows	access	to	account	information	on	GitHub	for	client
application

3.	 GitHub:	Sends	code	to	OAuth	redirect	url:	http://localhost:3000?
code=XYZ

4.	 Client:	Sends	GraphQL	Mutation	githubAuth(code)	with	code

5.	 API:	Requests	a	GitHub	access_token	with	credentials:	client_id,
client_secret,	and	client_code

6.	 GitHub:	Responds	with	access_token	that	can	be	used	with	future
info	requests

7.	 API:	Request	user	info	with	access_token

8.	 GitHub:	Responds	with	user	info:	name,	githubLogin,	and	avatar

9.	 API:	Resolves	authUser(code)	mutation	with	AuthPayload,	which
contains	a	token	and	the	user

10.	 Client:	Saves	token	to	send	with	future	GraphQL	requests

Figure	5-4.	Authorization	Process

To	implement	the	githubAuth	mutation,	we’ll	assume	that	we	have	a	code.	After
we	use	the	code	to	obtain	a	token,	we’ll	save	the	new	user	information	and	the
token	to	our	local	database.	We’ll	also	return	that	info	to	the	client.	The	client
will	save	the	token	locally	and	send	it	back	to	us	with	each	request.	We’ll	use	the
token	to	authorize	the	user	and	access	their	data	record.

githubAuth	Mutation
We	handle	authorizing	users	by	using	a	GitHub	mutation.	In	Chapter	4,	we
designed	a	custom	payload	type	for	our	schema	called	AuthPayload.	Let’s	add
the	AuthPayload	and	the	githubAuth	mutation	to	our	typeDefs:

type	AuthPayload	{
		token:	String!
		user:	User!
}

type	Mutation	{
		...
		githubAuth(code:	String!):	AuthPayload!
}

The	AuthPayload	type	is	used	only	as	a	response	to	authorization	mutations.	It
contains	the	user	who	was	authorized	by	the	mutation	along	with	a	token	that
they	can	use	to	identify	themselves	during	future	requests.

Before	we	program	the	githubAuth	resolver,	we	need	to	build	two	functions	to
handle	GitHub	API	requests:

const	requestGithubToken	=	credentials	=>
				fetch(
								'https://github.com/login/oauth/access_token',
								{
												method:	'POST',
												headers:	{
																'Content-Type':	'application/json',
																Accept:	'application/json'
												},
												body:	JSON.stringify(credentials)
								}
)
				.then(res	=>	res.json())
				.catch(error	=>	{
						throw	new	Error(JSON.stringify(error))
				})

The	requestGithubToken	function	returns	a	fetch	promise.	The	credentials	are
sent	to	a	GitHub	API	URL	in	the	body	of	a	POST	request.	The	credentials
consist	of	three	things:	the	client_id,	client_secret,	and	code.	After	it	is
completed,	the	GitHub	response	is	then	parsed	as	JSON.	We	can	now	use	this
function	to	request	a	GitHub	access	token	with	credentials.	This	and	future
helper	functions	can	be	found	in	a	lib.js	file	in	the	repo.

As	soon	as	we	have	a	GitHub	token,	we	need	to	access	information	from	the
current	user’s	account.	Specifically,	we	want	their	GitHub	login,	name,	and
profile	picture.	To	obtain	this	information,	we	need	to	send	another	request	to
the	GitHub	API	along	with	the	access	token	that	we	obtained	from	the	previous
request:

const	requestGithubUserAccount	=	token	=>
				fetch(`https://api.github.com/user?access_token=${token}`)
								.then(toJSON)
								.catch(throwError)

This	function	also	returns	a	fetch	promise.	On	this	GitHub	API	route,	we	can
access	information	about	the	current	user	so	long	as	we	have	an	access	token.

Now,	let’s	combine	both	of	these	requests	into	a	single	asynchronous	function
that	we	can	use	to	authorize	a	user	with	GitHub:

async	authorizeWithGithub(credentials)	{
		const	{	access_token	}	=	await	requestGithubToken(credentials)
		const	githubUser	=	await	requestGithubUserAccount(access_token)
		return	{	...githubUser,	access_token	}
}

Using	async/await	here	makes	it	possible	to	handle	multiple	asynchronous
requests.	First,	we	request	the	access	token	and	wait	for	the	response.	Then,
using	the	access_token,	we	request	the	GitHub	user	account	information	and
wait	for	a	response.	After	we	have	the	data,	we’ll	put	it	all	together	in	a	single
object.

We’ve	created	the	helper	functions	that	will	support	the	functionality	of	the
resolver.	Now,	let’s	actually	write	the	resolver	to	obtain	a	token	and	a	user
account	from	GitHub:

https://github.com/MoonHighway/learning-graphql/blob/master/chapter-05/photo-share-api/lib.js/

async	githubAuth(parent,	{	code	},	{	db	})	{
		//	1.	Obtain	data	from	GitHub
				let	{
						message,
						access_token,
						avatar_url,
						login,
						name
				}	=	await	authorizeWithGithub({
						client_id:	<YOUR_CLIENT_ID_HERE>,
						client_secret:	<YOUR_CLIENT_SECRET_HERE>,
						code
				})
		//	2.	If	there	is	a	message,	something	went	wrong
				if	(message)	{
						throw	new	Error(message)
				}
		//	3.	Package	the	results	into	a	single	object
				let	latestUserInfo	=	{
						name,
						githubLogin:	login,
						githubToken:	access_token,
						avatar:	avatar_url
				}
		//	4.	Add	or	update	the	record	with	the	new	information
				const	{	ops:[user]	}	=	await	db
						.collection('users')
						.replaceOne({	githubLogin:	login	},	latestUserInfo,	{	upsert:	true	})
		//	5.	Return	user	data	and	their	token
				return	{	user,	token:	access_token	}

		}

Resolvers	can	be	asynchronous.	We	can	wait	for	a	network	response	before
returning	the	result	of	an	operation	to	a	client.	The	githubAuth	resolver	is
asynchronous	because	we	must	wait	for	two	responses	from	GitHub	before	we’ll
have	the	data	that	we	need	to	return.

After	we	have	obtained	the	user’s	data	from	GitHub,	we	check	our	local
database	to	see	if	this	user	has	signed	in	to	our	app	in	the	past,	which	would
mean	that	they	already	have	an	account.	If	the	user	has	an	account,	we	will
update	their	account	details	with	the	information	that	we	received	from	GitHub.

They	might	have	changed	their	name	or	profile	picture	since	they	last	logged	in.
If	they	do	not	already	have	an	account,	we	will	add	the	new	user	to	our
collection	of	users.	In	both	cases,	we	return	the	logged	in	user	and	the	token
from	this	resolver.

It’s	time	to	test	this	authorization	process,	and	to	test,	you	need	code.	To	obtain
the	code,	you’ll	need	to	add	your	client	ID	to	this	URL:

https://github.com/login/oauth/authorize?client_id=YOUR-ID-HERE&scope=user

Paste	the	URL	with	your	GitHub	client_id	into	the	location	bar	of	a	new	browser
window.	You	will	be	directed	to	GitHub,	where	you	will	agree	to	authorize	this
app.	When	you	authorize	the	app,	GitHub	will	redirect	you	back	to
http://localhost:3000	with	a	code:

http://locahost:3000?code=XYZ

Here,	the	code	is	XYZ.	Copy	the	code	from	the	browser	URL	and	then	send	it
with	the	githubAuth	mutation:

mutation	{
		githubAuth(code:"XYZ")	{
				token
				user	{
						githubLogin
						name
						avatar
				}
		}
}

This	mutation	will	authorize	the	current	user	and	return	a	token	along	with
information	about	that	user.	Save	the	token.	We’ll	need	to	send	it	in	the	header
with	future	requests.

BAD	CREDENTIALS
When	you	see	the	error	“Bad	Credentials,”	the	client	ID,	client	secret,	or	code
that	was	sent	to	the	GitHub	API	is	incorrect.	Check	the	client	ID	and	client
secret	to	be	sure;	often	it’s	the	code	that	causes	this	error.

GitHub	codes	are	good	for	only	a	limited	time	period	and	can	be	used	only
once.	If	there	is	a	bug	in	the	resolver	after	the	credentials	were	requested,	the
code	used	in	the	request	will	no	longer	be	valid.	Typically,	you	can	resolve	this
error	by	requesting	another	code	from	GitHub.

Authenticating	Users
To	identify	yourself	in	future	requests,	you	will	need	to	send	your	token	with
every	request	in	the	Authorization	header.	That	token	will	be	used	to	identify	the
user	by	looking	up	their	database	record.

The	GraphQL	Playground	has	a	location	where	you	can	add	headers	to	each
request.	In	the	bottom	corner,	there	is	a	tab	right	next	to	“Query	Variables”
called	“HTTP	Headers.”	You	can	add	HTTP	Headers	to	your	request	using	this
tab.	Just	send	the	headers	as	JSON:

{
		"Authorization":	"<YOUR_TOKEN>"
}

Replace	<YOUR_TOKEN>	with	the	token	that	was	returned	from	the
githubAuth	mutation.	Now,	you	are	sending	the	key	to	your	identification	with
each	GraphQL	request.	We	need	to	use	that	key	to	find	your	account	and	add	it
to	context.

me	Query

From	here,	we	want	to	create	a	query	that	refers	back	to	our	own	user
information:	the	me	query.	This	query	returns	the	current	logged-in	user	based
on	the	token	sent	in	the	HTTP	headers	of	the	request.	If	there	is	not	currently	a
logged-in	user,	the	query	will	return	null.

The	process	begins	when	a	client	sends	the	GraphQL	query,	me,	with
Authorization:	token	for	secure	user	information.	The	API	then	captures	an
Authorization	header	and	uses	the	token	to	look	up	the	current	user	record	in	the
database.	It	also	adds	the	current	user	account	to	context.	After	it’s	in	context,
every	resolver	will	have	access	to	the	current	user.

It’s	up	to	us	to	identify	the	current	user	and	put	them	in	context.	Let’s	modify	the
configuration	of	our	server.	We’ll	need	to	change	the	way	we	build	the	context
object.	Instead	of	an	object,	we	will	use	a	function	to	handle	context:

async	function	start()	{
				const	app	=	express()

				const	MONGO_DB	=	process.env.DB_HOST

				const	client	=	await	MongoClient.connect(
						MONGO_DB,
						{	useNewUrlParser:	true	}
)

				const	db	=	client.db()

				const	server	=	new	ApolloServer({
						typeDefs,
						resolvers,
						context:	async	({	req	})	=>	{
								const	githubToken	=	req.headers.authorization
								const	currentUser	=	await	db.collection('users').findOne({	githubToken	})
								return	{	db,	currentUser	}
						}
				})

				...

}

Context	can	be	an	object	or	a	function.	For	our	application	to	work,	we	need	it	to
be	a	function	so	that	we	can	set	the	context	every	time	there	is	a	request.	When
context	is	a	function,	it	is	invoked	for	every	GraphQL	request.	The	object	that	is
returned	by	this	function	is	the	context	that	is	sent	to	the	resolver.

In	the	context	function,	we	can	capture	the	authorization	header	from	the	request
and	parse	it	for	the	token.	After	we	have	a	token,	we	can	use	it	to	look	up	a	user
in	our	database.	If	we	have	a	user,	they	will	be	added	to	context.	If	not,	the	value
for	user	in	context	will	be	null.

With	this	code	in	place,	it	is	time	to	add	the	me	query.	First,	we	need	to	modify
our	typeDefs:

type	Query	{
		me:	User
		...
}

The	me	query	returns	a	nullable	user.	It	will	be	null	if	a	current	authorized	user
is	not	found.	Let’s	add	the	resolver	for	the	me	query:

const	resolvers	=	{
		Query:	{
				me:	(parent,	args,	{	currentUser	})	=>	currentUser,
				...
		}
}

We’ve	already	done	the	heavy	lifting	of	looking	up	the	user	based	on	their	token.
At	this	point,	you’ll	simply	return	the	currentUser	object	from	context.	Again,
this	will	be	null	if	there	is	not	a	user.

If	the	correct	token	has	been	added	to	the	HTTP	authorization	header,	you	can
send	a	request	to	obtain	details	about	yourself	using	the	me	query:

query	currentUser	{
		me	{
				githubLogin
				name
				avatar
		}
}

When	you	run	this	query,	you	will	be	identified.	A	good	test	to	confirm	that
everything	is	correct	is	to	try	to	run	this	query	without	the	authorization	header
or	with	an	incorrect	token.	Given	a	wrong	token	or	missing	header,	you	should
see	that	the	me	query	is	null.

postPhoto	mutation

To	post	a	photo	to	our	application,	a	user	must	be	logged	in.	The	postPhoto
mutation	can	determine	who	is	logged	in	by	checking	context.	Let’s	modify	the
postPhoto	mutation:

async	postPhoto(parent,	args,	{	db,	currentUser	})	{

		//	1.	If	there	is	not	a	user	in	context,	throw	an	error
		if	(!currentUser)	{

						throw	new	Error('only	an	authorized	user	can	post	a	photo')
		}

		//	2.	Save	the	current	user's	id	with	the	photo
		const	newPhoto	=	{
						...args.input,
						userID:	currentUser.githubLogin,
						created:	new	Date()
		}

		//	3.	Insert	the	new	photo,	capture	the	id	that	the	database	created
		const	{	insertedIds	}	=	await	db.collection('photos').insert(newPhoto)
		newPhoto.id	=	insertedIds[0]

		return	newPhoto

}

The	postPhoto	mutation	has	undergone	several	changes	in	order	to	save	a	new
photo	to	the	database.	First,	the	currentUser	is	obtained	from	context.	If	this
value	is	null,	we	throw	an	error	and	prevent	the	postPhoto	mutation	from
executing	any	further.	To	post	a	photo,	the	user	must	send	the	correct	token	in
the	Authorization	header.

Next,	we	add	the	current	user’s	ID	to	the	newPhoto	object.	Now,	we	can	save	the
new	photo	record	to	the	photos	collection	in	the	database.	Mongo	creates	a
unique	identifier	for	each	document	that	it	saves.	When	the	new	photo	is	added,
we	can	obtain	that	identifier	by	using	the	insertedIds	array.	Before	we	return	the
photo,	we	need	to	make	sure	that	it	has	a	unique	identifier.

We	also	need	to	change	the	Photo	resolvers:

const	resolvers	=	{
		...
		Photo:	{
				id:	parent	=>	parent.id	||	parent._id,
				url:	parent	=>	`/img/photos/${parent._id}.jpg`,
				postedBy:	(parent,	args,	{	db	})	=>
						db.collection('users').findOne({	githubLogin:	parent.userID	})
}

First,	if	the	client	asks	for	a	photo	ID,	we	need	to	make	sure	it	receives	the
correct	value.	If	the	parent	photo	does	not	already	have	an	ID,	we	can	assume
that	a	database	record	has	been	created	for	the	parent	photo	and	it	will	have	an
ID	saved	under	the	field	_id.	We	need	to	make	sure	that	the	ID	field	of	the	photo
resolves	to	the	database	ID.

Next,	let’s	assume	that	we	are	serving	these	photos	from	the	same	web	server.
We	return	the	local	route	to	the	photo.	This	local	route	is	created	using	the
photo’s	ID.

Finally,	we	need	to	modify	the	postedBy	resolver	to	look	up	the	user	who	posted
the	photo	in	the	database.	We	can	use	the	userID	that	is	saved	with	the	parent
photo	to	look	up	that	user’s	record	in	the	database.	The	photo’s	userID	should
match	the	users	githubLogin,	so	the	.findOne()	method	should	return	one	user
record,	the	user	who	posted	the	photo.

With	our	authorization	header	in	place,	we	should	be	able	to	post	new	photos	to
the	GraphQL	service:

mutation	post($input:	PostPhotoInput!)	{
		postPhoto(input:	$input)	{
				id
				url
				postedBy	{
						name
						avatar
				}
		}
}

After	we	post	the	photo,	we	can	ask	for	its	id	and	url,	along	with	the	name	and
the	avatar	of	the	user	who	posted	the	photo.

Add	fake	users	mutation

To	test	our	application	with	users	other	than	ourselves,	we	are	going	to	add	a
mutation	that	will	allow	us	to	populate	the	database	with	fake	users	from	the
random.me	API.

We	can	handle	this	with	a	mutation	called	addFakeUsers.	Let’s	first	add	this	to
the	schema:

type	Mutation	{
		addFakeUsers(count:	Int	=	1):	[User!]!
		...
}

Notice	that	the	count	argument	takes	in	the	number	of	fake	users	to	add	and
returns	a	list	of	users.	This	list	of	users	contains	the	accounts	of	the	fake	users
added	by	this	mutation.	By	default,	we	add	one	user	at	a	time,	but	you	can	add
more	by	sending	this	mutation	a	different	count:

addFakeUsers:	async	(root,	{count},	{db})	=>	{

				var	randomUserApi	=	`https://randomuser.me/api/?results=${count}`

				var	{	results	}	=	await	fetch(randomUserApi)
						.then(res	=>	res.json())

				var	users	=	results.map(r	=>	({
						githubLogin:	r.login.username,
						name:	`${r.name.first}	${r.name.last}`,
						avatar:	r.picture.thumbnail,
						githubToken:	r.login.sha1
				}))

				await	db.collection('users').insert(users)

				return	users
}

To	test	adding	new	users,	first	we	want	to	obtain	some	fake	data	from
randomuser.me.	addFakeUsers	is	an	asynchronous	function	that	we	can	use	to
fetch	that	data.	Then,	we	serialize	the	data	from	randomuser.me,	creating	user
objects	that	match	our	schema.	Next,	we	add	these	new	users	to	the	database	and
return	the	list	of	new	users.

Now,	we	can	populate	the	database	with	a	mutation:

mutation	{
		addFakeUsers(count:	3)	{
				name
		}

}

This	mutation	adds	three	fake	users	to	the	database.	Now	that	we	have	fake
users,	we	also	want	to	sign	in	with	a	fake	user	account	via	a	mutation.	Let’s	add
a	fakeUserAuth	to	our	Mutation	type:

type	Mutation	{
		fakeUserAuth(githubLogin:	ID!):	AuthPayload!
		...
}

Next,	we	need	to	add	a	resolver	that	returns	a	token	that	we	can	use	to	authorize
our	fake	users:

async	fakeUserAuth	(parent,	{	githubLogin	},	{	db	})	{

		var	user	=	await	db.collection('users').findOne({	githubLogin	})

		if	(!user)	{
						throw	new	Error(`Cannot	find	user	with	githubLogin	"${githubLogin}"`)
		}

		return	{
						token:	user.githubToken,
						user
		}

}

The	fakeUserAuth	resolver	obtains	the	githubLogin	from	the	mutation’s
arguments	and	uses	it	to	find	that	user	in	the	database.	After	it	finds	that	user,	the
user’s	token	and	user	account	are	returned	in	the	shape	of	our	AuthPayload	type.

Now	we	can	authenticate	fake	users	by	sending	a	mutation:

mutation	{
		fakeUserAuth(githubLogin:"jDoe")	{
				token
		}
}

Add	the	returned	token	to	the	authorization	HTTP	header	to	post	new	photos	as
this	fake	user.

Conclusion
Well,	you	did	it.	You	built	a	GraphQL	Server.	You	started	by	getting	a	thorough
understanding	of	resolvers.	You	handled	queries	and	mutations.	You	added
GitHub	authorization.	You	identified	the	current	user	via	an	access	token	that	is
added	to	the	header	of	every	request.	And	finally,	you	modified	the	mutation	that
reads	the	user	from	the	resolver’s	context	and	allows	users	to	post	photos.

If	you	want	to	run	a	completed	version	of	the	service	that	we	constructed	in	this
chapter,	you	can	find	it	in	this	book’s	repository.	This	app	will	need	to	know
what	database	to	use	and	which	GitHub	OAuth	credentials	to	use.	You	can	add
these	values	by	created	a	new	file	named	.env	and	placing	it	in	the	project	root:

DB_HOST=<YOUR_MONGODB_HOST>
CLIENT_ID=<YOUR_GITHUB_CLIENT_ID>
CLIENT_SECRET=<YOUR_GITHUB_CLIENT_SECRET>

With	the	.env	file	in	place,	you	are	ready	to	install	the	dependencies:	yarn	or
npm	install	and	run	the	service:	yarn	start	or	npm	start.	Once	the	service	is
running	on	port	4000,	you	can	send	queries	to	it	using	the	Playground	at:
http://localhost:4000/playground.	You	can	request	a	GitHub	code	by	clicking	the
link	found	at	http://localhost:4000.	If	you	want	to	access	the	GraphQL	endpoint
from	some	other	client,	you	can	find	it	at:	http://localhost:4000/graphql.

In	Chapter	7,	we	show	you	how	to	modify	this	API	to	handle	subscriptions	and
file	uploads.	But	before	we	do	that,	we	need	to	show	you	how	clients	will
consume	this	API,	so	in	Chapter	6,	we	look	at	how	to	construct	a	frontend	that
can	work	with	this	service.

You	can	create	an	account	at	https://www.github.com.1

https://github.com/MoonHighway/learning-graphql/tree/master/chapter-05/photo-share-api/
https://www.github.com

Chapter	6.	GraphQL	Clients

With	your	GraphQL	server	built,	it’s	now	time	to	set	up	GraphQL	on	the	client
side.	Very	broadly,	a	client	is	just	an	application	that	communicates	with	a
server.	Because	of	the	flexibility	of	GraphQL,	there’s	no	prescription	for	how	to
build	a	client.	You	might	be	building	apps	for	web	browsers.	You	might	be
creating	native	applications	for	phones.	You	might	be	building	a	GraphQL
service	for	a	screen	on	your	refrigerator.	It	also	does	not	matter	to	the	client	in
which	language	the	service	is	written.

All	you	really	need	to	send	queries	and	mutations	is	the	ability	to	send	an	HTTP
request.	When	the	service	responds	with	some	data,	you	can	use	it	in	your	client
no	matter	what	that	client	is.

Using	a	GraphQL	API
The	easiest	way	to	begin	is	just	to	make	an	HTTP	request	to	your	GraphQL
endpoint.	To	test	the	server	that	we	built	in	Chapter	5,	make	sure	your	service	is
running	locally	at	http://localhost:4000/graphql.	You	can	also	find	all	of	these
samples	running	on	CodeSandbox	at	the	links	found	in	the	Chapter	6	repository.

http://localhost:4000/graphql
https://github.com/MoonHighway/learning-graphql/tree/master/chapter-06

fetch	Requests
As	you	saw	in	Chapter	3,	you	can	send	requests	to	a	GraphQL	service	by	using
cURL.	All	you	need	is	a	few	different	values:

A	query:	{totalPhotos,	totalUsers}

A	GraphQL	endpoint:	http://localhost:4000/graphql

A	content	type:	Content-Type:	application/json

From	there,	you	send	the	cURL	request	directly	from	the	terminal/command
prompt	using	the	POST	method:

curl	-X	POST	\
					-H	"Content-Type:	application/json"	\
					--data	'{	"query":	"{totalUsers,	totalPhotos}"	}'	\
					http://localhost:4000/graphql

If	we	send	this	request,	we	should	see	the	correct	results,	{"data":
{"totalUsers":7,"totalPhotos":4}},	as	JSON	data	returned	in	the	terminal.	Your
numbers	for	totalUsers	and	totalPhotos	will	reflect	your	current	data.	If	your
client	is	a	shell	script,	you	can	start	building	that	script	with	cURL.

Because	we’re	using	cURL,	we	can	use	anything	that	sends	an	HTTP	request.
We	could	build	a	tiny	client	by	using	fetch,	which	will	work	in	the	browser:

var	query	=	`{totalPhotos,	totalUsers}`
var	url	=	'http://localhost:4000/graphql'

var	opts	=	{
		method:	'POST',
		headers:	{	'Content-Type':	'application/json'	},
		body:	JSON.stringify({	query	})
}

fetch(url,	opts)
		.then(res	=>	res.json())
		.then(console.log)
		.catch(console.error)

After	we	fetch	the	data,	we’ll	see	the	expected	result	logged	in	the	console:

{
		"data":	{
				"totalPhotos":	4,
				"totalUsers":	7
		}
}

We	can	use	the	resulting	data	on	the	client	to	build	applications.	Let’s	consider	a
basic	example	to	see	how	we	might	list	totalUsers	and	totalPhotos	directly	in	the
DOM:

fetch(url,	opts)
		.then(res	=>	res.json())
		.then(({data})	=>	`
								<p>photos:	${data.totalPhotos}</p>
								<p>users:	${data.totalUsers}</p>
		`)
		.then(text	=>	document.body.innerHTML	=	text)
		.catch(console.error)

Instead	of	logging	the	results	to	the	console,	we	use	the	data	to	build	some
HTML	text.	We	can	then	take	that	text	and	write	it	directly	to	the	document’s
body.	Be	careful:	it’s	possible	to	overwrite	anything	that	was	in	the	body	after
the	request	is	complete.

If	you	already	know	how	to	send	HTTP	requests	using	your	favorite	client,	you
already	have	the	tools	necessary	to	build	a	client	application	that	communicates
with	any	GraphQL	API.

graphql-request
Though	cURL	and	fetch	work	well,	there	are	other	frameworks	that	you	can	use
to	send	GraphQL	operations	to	an	API.	One	of	the	most	notable	examples	of	this
is	graphql-request.	graphql-request	wraps	fetch	requests	in	a	promise	that	can	be
used	to	make	requests	to	the	GraphQL	server.	It	also	handles	the	details	of
making	the	request	and	parsing	the	data	for	you.

To	get	started	with	graphql-request,	you	first	need	to	install	it:

npm	install	graphql-request

From	there,	you	import	and	use	the	module	as	request.	Be	sure	to	keep	the	photo
service	running	on	port	4000:

import	{	request	}	from	'graphql-request'

var	query	=	`
		query	listUsers	{
				allUsers	{
						name
						avatar
				}
		}
`

request('http://localhost:4000/graphql',	query)
				.then(console.log)
				.catch(console.error)

The	request	function	takes	in	url	and	query,	makes	the	request	to	the	server,	and
returns	the	data	in	one	line	of	code.	The	data	returned	is,	as	expected,	a	JSON
response	of	all	of	the	users:

{
		"allUsers":	[
				{	"name":	"sharon	adams",	"avatar":	"http://..."	},
				{	"name":	"sarah	ronau",	"avatar":	"http://..."	},
				{	"name":	"paul	young",	"avatar":	"http://..."	},

]
}

We	can	begin	using	this	data	in	our	client	straight	away.

You	can	also	send	mutations	with	graphql-request:

import	{	request	}	from	'graphql-request'

var	url	=	'http://localhost:4000/graphql'

var	mutation	=	`
				mutation	populate($count:	Int!)	{
								addFakeUsers(count:$count)	{
												id
												name
								}
				}
`

var	variables	=	{	count:	3	}

request(url,	mutation,	variables)
				.then(console.log)
				.catch(console.error)

The	request	function	takes	in	the	API	URL,	the	mutation,	and	a	third	argument
for	variables.	This	is	just	a	JavaScript	object	that	passes	in	a	field	and	value	for
the	query	variables.	After	we	invoke	request,	we	issue	the	addFakeUsers
mutation.

Though	graphql-request	doesn’t	offer	any	formal	integration	with	UI	libraries
and	frameworks,	we	can	incorporate	a	library	fairly	simply.	Let’s	load	some	data
into	a	React	component	using	graphql-request,	as	demonstrated	in	Example	6-1.

Example	6-1.	GraphQL	Request	and	React
		import	React	from	'react'
		import	ReactDOM	from	'react-dom'
		import	{	request	}	from	'graphql-request'

		var	url	=	'http://localhost:4000/graphql'

		var	query	=	`
				query	listUsers	{
						allUsers	{
								avatar
								name
						}
				}
		`

		var	mutation	=	`
						mutation	populate($count:	Int!)	{
										addFakeUsers(count:$count)	{
														githubLogin
										}
						}
		`

		const	App	=	({	users=[]	})	=>
						<div>
										{users.map(user	=>
														<div	key={user.githubLogin}>
																		
																		{user.name}
														</div>
)}
										<button	onClick={addUser}>Add	User</button>
						</div>

		const	render	=	({	allUsers=[]	})	=>
						ReactDOM.render(
										<App	users={allUsers}	/>,
										document.getElementById('root')
)

		const	addUser	=	()	=>
						request(url,	mutation,	{count:1})
										.then(requestAndRender)
										.catch(console.error)

		const	requestAndRender	=	()	=>
						request(url,	query)
										.then(render)

										.catch(console.error)

		requestAndRender()

Our	file	starts	with	an	import	of	both	React	and	ReactDOM.	We	then	create	an
App	component.	App	maps	over	the	users	that	are	passed	as	props	and	creates
div	elements	containing	their	avatar	and	username.	The	render	function	renders
the	App	to	the	#root	element	and	passes	in	allUsers	as	a	property.

From	there,	requestAndRender	calls	request	from	graphql-request.	This	issues
the	query,	receives	the	data,	and	then	calls	render,	which	provides	the	data	to	the
App	component.

This	little	app	also	handles	mutations.	In	the	App	component,	the	button	has	an
onClick	event	that	calls	the	addUser	function.	When	invoked,	this	sends	the
mutation	and	then	calls	requestAndRender	to	issue	a	new	request	for	the	services
users	and	rerenders	the	<App	/>	with	the	new	list	of	users.

So	far,	we’ve	looked	at	a	few	different	ways	to	begin	building	client	apps	using
GraphQL.	You	can	write	shell	scripts	with	cURL.	You	can	build	web	pages	with
fetch.	You	can	build	apps	a	little	faster	with	graphql-request.	You	could	stop
right	there	if	you	wanted	to,	but	there	are	even	more	powerful	GraphQL	clients
available.	Let’s	go	for	it.

Apollo	Client
A	huge	benefit	of	using	Representational	State	Transfer	(REST)	is	the	ease	with
which	you	can	handle	caching.	With	REST,	you	can	save	the	response	data	from
a	request	in	a	cache	under	the	URL	that	was	used	to	access	that	request.	Caching
done,	no	problem.	Caching	GraphQL	is	a	little	trickier.	We	don’t	have	a
multitude	of	routes	with	a	GraphQL	API—everything	is	sent	and	received	over	a
single	endpoint,	so	we	cannot	simply	save	the	data	returned	from	a	route	under
the	URL	that	was	used	to	request	it.

To	build	a	robust,	performant	application,	we	need	a	way	to	cache	queries	and
their	resulting	objects.	Having	a	localized	caching	solution	is	essential	as	we
constantly	strive	to	create	fast,	efficient	apps.	We	could	create	something	like
this	ourselves,	or	we	could	lean	on	one	of	the	vetted	clients	that	already	exist.

The	most	prominent	GraphQL	client	solutions	available	today	are	Relay	and
Apollo	Client.	Relay	was	open	sourced	by	Facebook	in	2015	at	the	same	time	as
GraphQL.	It	brings	together	everything	that	Facebook	learned	about	using
GraphQL	in	production.	Relay	is	compatible	with	React	and	React	Native	only,
which	means	that	there	was	an	opportunity	to	create	a	GraphQL	client	to	support
developers	who	might	not	use	React.

Enter	Apollo	Client.	Brought	to	you	by	Meteor	Development	Group,	Apollo
Client	is	a	community-driven	project	to	build	a	flexible	GraphQL	client	solution
to	handle	tasks	like	caching,	optimistic	UI	updates,	and	more.	The	team	has
created	packages	that	supply	bindings	for	React,	Angular,	Ember,	Vue,	iOS,	and
Android.

We’ve	already	been	using	several	tools	from	the	Apollo	team	on	the	server,	but
Apollo	Client	focuses	specifically	on	sending	and	receiving	requests	from	the
client	to	the	server.	It	handles	the	network	requests	with	Apollo	Link	and
handles	all	caching	with	Apollo	Cache.	Apollo	Client	then	wraps	the	link	and	the
cache	and	manages	all	interactions	with	the	GraphQL	service	efficiently.

For	the	rest	of	the	chapter,	we	take	a	closer	look	at	Apollo	Client.	We’re	going	to
be	using	React	to	build	out	our	UI	components,	but	we	can	apply	many	of	the
techniques	described	here	to	projects	that	use	different	libraries	and	frameworks.

Apollo	Client	with	React
Since	working	with	React	is	what	led	us	to	GraphQL	in	the	first	place,	we	have
chosen	React	as	the	user	interface	library.	We	haven’t	offered	much	explanation
about	React	itself.	It	is	a	library	that	was	created	at	Facebook	that	uses	a
component-based	architecture	to	compose	UIs.	If	you	are	a	user	of	a	different
library	and	you	never	want	to	look	at	React	again	after	this,	that’s	ok.	The	ideas
presented	in	this	next	section	are	applicable	to	other	UI	frameworks.

Project	Setup
In	this	chapter,	we	show	you	how	to	build	a	React	app	that	interacts	with	a
GraphQL	service	using	Apollo	Client.	To	begin,	we	need	to	scaffold	the
frontend	of	this	project	using	create-react-app.	create-react-app	allows	you	to
generate	an	entire	React	project	without	setting	up	any	build	configuration.	If
you	haven’t	used	create-react-app	before,	you	might	need	to	install	it:

npm	install	-g	create-react-app

Once	installed,	you	can	create	a	React	project	anywhere	on	your	computer	with:

create-react-app	photo-share-client

This	command	installs	a	new	base	React	application	in	a	folder	named	photo-
share-client.	It	automatically	adds	and	installs	everything	that	you	will	need	to
get	started	building	a	React	app.	To	start	the	application,	navigate	to	the	photo-
share-client	folder	and	run	npm	start.	You’ll	see	your	browser	open	to
http://localhost:3000	where	your	React	client	application	is	running.	Remember,
you	can	find	all	of	the	files	for	this	chapter	in	the	repository	at
http://github.com/moonhighway/learning-graphql.

http://github.com/moonhighway/learning-graphql

Configure	Apollo	Client
You’ll	need	to	install	a	few	packages	to	build	a	GraphQL	client	with	Apollo
tools.	First,	you’ll	need	graphql	which	includes	the	GraphQL	language	parser.
Then	you’ll	need	a	package	called	apollo-boost.	Apollo	Boost	includes	the
Apollo	packages	necessary	for	creating	an	Apollo	Client	and	sending	operations
to	that	client.	Finally,	we’ll	need	react-apollo.	React	Apollo	is	an	npm	library
that	contains	React	components	that	we	will	use	to	construct	a	user	interface
with	Apollo.

Let’s	install	these	three	packages	at	the	same	time:

npm	install	graphql	apollo-boost	react-apollo

Now	we	are	ready	to	create	our	client.	The	ApolloClient	constructor	found	in
apollo-boost	can	be	used	to	create	our	first	client.	Open	the	src/index.js	file	and
replace	the	code	in	that	file	with	the	following:

import	ApolloClient	from	'apollo-boost'

const	client	=	new	ApolloClient({	uri:	'http://localhost:4000/graphql'	})

Using	the	ApolloClient	constructor,	we’ve	created	a	new	client	instance.	The
client	is	ready	to	handle	all	network	communication	with	the	GraphQL	service
hosted	at	http://localhost:4000/graphql.	For	example,	we	can	use	the	client	to
send	a	query	to	the	PhotoShare	Service:

import	ApolloClient,	{	gql	}	from	'apollo-boost'

const	client	=	new	ApolloClient({	uri:	'http://localhost:4000/graphql'	})

const	query	=	gql`
				{
								totalUsers
								totalPhotos
				}
`

client.query({query})

				.then(({	data	})	=>	console.log('data',	data))
				.catch(console.error)

This	code	uses	the	client	to	send	a	query	for	the	total	photo	count	and	the	total
user	count.	To	make	this	happen,	we	imported	the	gql	function	from	apollo-
boost.	This	function	is	a	part	of	the	graphql-tag	package	that	was	automatically
included	with	apollo-boost.	The	gql	function	is	used	to	parse	a	query	into	an
AST	or	abstract	syntax	tree.

We	can	send	the	AST	to	the	client	by	invoking	client.query({query}).	This
method	returns	a	promise.	It	sends	the	query	as	an	HTTP	request	to	our
GraphQL	service	and	resolves	the	data	returned	from	that	service.	In	the	above
example,	we	are	logging	the	response	to	the	console:

{	totalUsers:	4,	totalPhotos:	7,	Symbol(id):	"ROOT_QUERY"	}

GRAPHQL	SERVICE	SHOULD	BE	RUNNING
Make	sure	that	the	GraphQL	service	is	still	running	on	http://localhost:4000	so
that	you	can	test	the	client	connection	to	the	server.

In	addition	to	handling	all	network	requests	to	our	GraphQL	service,	the	client
also	caches	the	responses	locally	in	memory.	At	any	point,	we	can	take	a	look	at
the	cache	by	invoking	client.extract():

console.log('cache',	client.extract())
client.query({query})
				.then(()	=>	console.log('cache',	client.extract()))
				.catch(console.error)

Here	we	have	a	look	at	the	cache	before	the	query	is	sent,	and	another	look	at	it
after	the	query	has	been	resolved.	We	can	see	that	we	now	have	the	results	saved
in	a	local	object	which	is	managed	by	the	client:

				{
								ROOT_QUERY:	{
												totalPhotos:	4,
												totalUsers:	7
								}
				}

The	next	time	we	send	the	client	a	query	for	this	data,	it	will	read	it	from	the
cache	as	opposed	to	sending	another	network	request	to	our	service.	Apollo
Client	provides	us	with	options	to	specify	when,	and	how	often,	we	should	send
HTTP	requests	over	the	network.	We’ll	cover	those	options	later	on	in	this
chapter.	For	now,	it	is	important	to	understand	that	Apollo	Client	is	used	to
handle	all	network	requests	to	our	GraphQL	service.	Additionally,	by	default,	it
automatically	caches	the	results	locally	and	defers	to	the	local	cache	to	improve
our	applications	performance.

To	get	started	with	react-apollo,	all	we	need	to	do	is	create	a	client	and	add	it	to
our	user	interface	with	a	component	called	ApolloProvider.	Replace	the	code
found	in	the	index.js	file	with	the	following:

import	React	from	'react'
import	{	render	}	from	'react-dom'
import	App	from	'./App'
import	{	ApolloProvider	}	from	'react-apollo'
import	ApolloClient	from	'apollo-boost'

const	client	=	new	ApolloClient({	uri:	'http://localhost:4000/graphql'	})

render(
				<ApolloProvider	client={client}>
						<App	/>
				</ApolloProvider>,
				document.getElementById('root')
)

This	is	all	the	code	you	will	need	to	get	started	using	Apollo	with	React.	Here,
we’ve	created	a	client	and	then	placed	that	client	in	React’s	global	scope	with
the	help	of	a	component	called	the	ApolloProvider.	Any	child	component
wrapped	by	the	ApolloProvider	will	have	access	to	the	client.	That	means	that
the	<App	/>	component	and	any	of	its	children	are	ready	to	receive	data	from
our	GraphQL	service	via	Apollo	Client.

The	Query	Component
Using	Apollo	Client,	we	need	a	way	to	handle	queries	to	fetch	data	to	load	into
our	React	UI.	The	Query	component	will	take	care	of	fetching	data,	handling
loading	state,	and	updating	our	UI.	We	can	use	the	Query	component	anywhere
within	the	ApolloProvider.	The	Query	component	sends	a	query	using	the	client.
Once	resolved,	the	client	will	return	the	results	that	we’ll	use	to	construct	the
user	interface.

Open	the	src/App.js	file	and	replace	the	code	that	is	currently	inside	of	this	file
with	the	following:

import	React	from	'react'
import	Users	from	'./Users'
import	{	gql	}	from	'apollo-boost'

export	const	ROOT_QUERY	=	gql`
				query	allUsers	{
								totalUsers
								allUsers	{
												githubLogin
												name
												avatar
								}
				}
`

const	App	=	()	=>	<Users	/>

export	default	App

In	the	App	component,	we’ve	created	a	query	called	ROOT_QUERY.
Remember,	one	of	the	benefits	of	using	GraphQL	is	to	request	everything	you’ll
need	to	construct	your	UI	and	receive	all	of	that	data	in	a	single	response.	That
means	we	are	going	to	request	both	the	totalUsers	count	and	the	allUsers	array	in
a	query	that	we’ve	created	in	the	root	of	our	application.	Using	the	gql	function,
we’ve	converted	our	string	query	an	AST	object	named	ROOT_QUERY,	and
we’ve	exported	this	object	so	that	other	components	can	use	it.

At	this	point,	you	should	see	an	error.	This	is	because	we’ve	told	the	App	to

render	a	component	that	we	have	not	created.	Create	a	new	file	called
src/Users.js	and	place	this	code	inside	of	that	file:

import	React	from	'react'
import	{	Query	}	from	'react-apollo'
import	{	ROOT_QUERY	}	from	'./App'

const	Users	=	()	=>
				<Query	query={ROOT_QUERY}>
								{result	=>
												<p>Users	are	loading:	{result.loading	?	"yes"	:	"no"}</p>
								}
				</Query>

export	default	Users

Now	you	should	see	the	error	clear,	and	the	message	“Users	are	loading:	no”
should	be	displayed	in	the	browser	window.	Under	the	hood,	the	Query
component	is	sending	the	ROOT_QUERY	to	our	GraphQL	service	and	caching
the	result	locally.	We	obtain	the	result	using	a	React	technique	called	render
props.	Render	props	allow	us	to	pass	properties	as	function	arguments	to	child
components.	Notice	that	we	are	obtaining	the	result	from	a	function	and
returning	a	paragraph	element.

The	result	contains	more	information	than	just	the	response	data.	It	will	tell	us
whether	or	not	an	operation	is	loading	via	the	result.loading	property.	In	the
preceding	example,	we	can	tell	the	user	whether	or	not	the	current	query	is
loading.

THROTTLE	THE	HTTP	REQUEST
Your	network	might	be	too	fast	to	see	more	than	a	quick	flicker	of	the	loading
property	in	the	browser.	You	can	use	the	Network	tab	in	Chrome’s	developer
tools	to	throttle	the	HTTP	request.	In	the	developer	tools,	you’ll	find	a
dropdown	that	has	the	“Online”	option	selected.	Selecting	“Slow	3G”	from	the
dropdown	will	simulate	a	slower	response.	This	will	allow	you	to	see	the
loading	happen	in	the	browser.

Once	the	data	has	loaded,	it	will	be	passed	along	with	the	result.

Instead	of	displaying	“yes”	or	“no”	when	the	client	is	loading	data,	we	can
display	UI	components	instead.	Let’s	adjust	the	Users.js	file:

const	Users	=	()	=>
				<Query	query={ROOT_QUERY}>
								{({	data,	loading	})	=>	loading	?
												<p>loading	users...</p>	:
												<UserList	count={data.totalUsers}	users={data.allUsers}	/>
								}
				</Query>

const	UserList	=	({	count,	users	})	=>
				<div>
								<p>{count}	Users</p>
								
												{users.map(user	=>
																<UserListItem	key={user.githubLogin}
																				name={user.name}
																				avatar={user.avatar}	/>
)}
								
				</div>

const	UserListItem	=	({	name,	avatar	})	=>
				
								
								{name}

				

If	the	client	is	loading	the	current	query,	we	will	display	a	“loading	users…”
message.	If	the	data	has	been	loaded,	we	will	pass	the	total	user	count	along	with
an	array	containing	the	name,	githubLogin,	and	avatar	of	every	user	to	the
UserList	component:	exactly	the	data	we	asked	for	in	our	query.	The	UserList
uses	the	result	data	to	build	the	UI.	It	displays	the	count	along	with	a	list	that
displays	the	user’s	avatar	image	alongside	of	their	name.

The	results	object	also	has	several	utility	functions	for	pagination,	refetching,
and	polling.	Let’s	use	the	refetch	function	to	refetch	the	list	of	users	when	we
click	a	button:

const	Users	=	()	=>
				<Query	query={ROOT_QUERY}>
								{({	data,	loading,	refetch	})	=>	loading	?
												<p>loading	users...</p>	:
												<UserList	count={data.totalUsers}
																users={data.allUsers}
																refetchUsers={refetch}	/>
								}
				</Query>

Here	we’ve	obtained	a	function	that	can	be	used	to	refetch	the	ROOT_QUERY
or	request	the	data	from	the	server	again.	The	refetch	property	is	simply	a
function.	We	can	pass	it	to	the	UserList	where	it	can	be	added	to	a	button	click:

const	UserList	=	({	count,	users,	refetch	})	=>
				<div>
								<p>{count}	Users</p>
								<button	onClick={()	=>	refetch()}>Refetch</button>
								
												{users.map(user	=>
																<UserListItem	key={user.githubLogin}
																				name={user.name}
																				avatar={user.avatar}	/>
)}
								
				</div>

In	the	UserList,	we	are	using	the	refetch	function	to	request	the	same	root	data
from	our	GraphQL	service.	Whenever	you	click	the	“Refetch	Users”	button,
another	query	will	be	sent	to	the	GraphQL	endpoint	to	refetch	any	data	changes.
This	is	one	way	to	keep	your	user	interface	in	sync	with	the	data	on	the	server.

NOTE
To	test	this,	we	can	change	the	user	data	after	the	initial	fetch.	You	can	delete
the	users	collection,	delete	user	documents	directly	from	MongoDB,	or	add
fake	users	by	sending	a	query	with	the	server’s	GraphQL	Playground.	When
you	change	the	data	in	the	database,	the	“Refetch	Users”	button	will	need	to	be
clicked	in	order	to	re-render	the	most	up	to	date	data	in	the	browser.

Polling	is	another	option	that	is	available	with	the	Query	component.	When	we
add	the	pollInterval	prop	to	the	Query	component,	data	is	automatically	fetched
over	and	over	again	based	on	a	given	interval:

<Query	query={ROOT_QUERY}	pollInterval={1000}>

Setting	a	pollInterval	automatically	refetches	the	data	at	a	specified	time.	In	this
case,	we	will	refetch	the	data	from	the	server	every	second.	Be	careful	when
using	polling	as	this	code	actually	sends	a	new	network	request	every	second.

In	addition	to	loading,	data,	and	refetch,	the	response	object	has	some	additional
options:

stopPolling

A	function	that	stops	polling

startPolling

A	function	that	will	start	polling

fetchMore

A	function	that	can	be	used	to	fetch	the	next	page	of	data

Before	we	continue,	remove	any	pollInterval	properties	from	the	Query
component.	We	do	not	want	polling	to	take	place	as	we	continue	to	iterate	on
this	example.

The	Mutation	Component
When	we	want	to	send	mutations	to	the	GraphQL	service,	we	can	use	the
Mutation	component.	In	the	next	example,	we	use	this	component	to	handle	the
addFakeUsers	mutation.	When	we	send	this	mutation,	we	write	the	new	list	of
users	directly	to	the	cache.

To	begin,	let’s	import	the	Mutation	component	and	add	a	mutation	to	the
Users.js	file:

import	{	Query,	Mutation	}	from	'react-apollo'
import	{	gql	}	from	'apollo-boost'

...

const	ADD_FAKE_USERS_MUTATION	=	gql`
				mutation	addFakeUsers($count:Int!)	{
								addFakeUsers(count:$count)	{
												githubLogin
												name
												avatar
								}
				}
`

Once	we	have	the	mutation,	we	can	use	it	in	combination	with	the	Mutation
component.	This	component	will	pass	a	function	to	its	children	via	render	props.
This	function	can	be	used	to	send	the	mutation	when	we	are	ready:

const	UserList	=	({	count,	users,	refetchUsers	})	=>
				<div>
								<p>{count}	Users</p>
								<button	onClick={()	=>	refetchUsers()}>Refetch	Users</button>
								<Mutation	mutation={ADD_FAKE_USERS_MUTATION}	variables={{	count:	
1	}}>
												{addFakeUsers	=>
																<button	onClick={addFakeUsers}>Add	Fake	Users</button>
												}
								</Mutation>
								

												{users.map(user	=>
																<UserListItem	key={user.githubLogin}
																				name={user.name}
																				avatar={user.avatar}	/>
)}
								
				</div>

Just	as	we	sent	query	as	a	prop	to	the	Query	component,	we	will	send	a	mutation
prop	to	the	Mutation	component.	Notice	also	that	we’re	using	the	variables
property.	This	will	send	the	necessary	query	variables	with	the	mutation.	In	this
case,	it	sets	the	count	to	1,	which	will	cause	the	mutation	to	add	one	fake	user	at
a	time.	The	Mutation	component	uses	a	function,	addFakeUsers,	that	will	send
the	mutation	once	it	has	been	invoked.	When	the	user	clicks	the	“Add	Fake
Users”	button,	the	mutation	will	be	sent	to	our	API.

Currently,	these	users	are	being	added	to	the	database,	but	the	only	way	to	see
the	changes	is	to	click	the	“Refetch	Users”	button.	We	can	tell	the	Mutation
component	to	refetch	specific	queries	once	the	mutation	has	completed	instead
of	waiting	for	our	users	to	click	a	button:

<Mutation	mutation={ADD_FAKE_USERS_MUTATION}
				variables={{	count:	1	}}
				refetchQueries={[{	query:	ROOT_QUERY	}]}>
				{addFakeUsers	=>
								<button	onClick={addFakeUsers}>Add	Fake	Users</button>
				}
</Mutation>

refetchQueries	is	a	property	that	lets	you	specify	which	queries	to	refetch	after
sending	a	mutation.	Simply	place	a	list	of	objects	that	contain	queries.	Each	of
the	query	operations	found	in	this	list	will	refetch	data	after	the	mutation	has
completed.

Authorization
In	Chapter	5,	we	built	a	mutation	to	authorize	a	user	with	GitHub.	In	the
following	section,	we	show	you	how	to	set	up	user	authorization	on	the	client
side.

The	process	of	authorizing	a	user	involves	several	steps.	The	bold	steps	indicate
the	functionality	we’ll	add	to	the	client:

Client

Redirects	the	user	to	GitHub	with	the	client_id

User

Allows	access	to	account	information	on	GitHub	for	the	client	application

GitHub

Redirects	back	to	the	website	with	code:	http://localhost:3000?code=XYZ

Client

Sends	GraphQL	Mutation	authUser(code)	with	code

API

Requests	a	GitHub	access_token	with	client_id,	client_secret,	and
client_code

GitHub

Responds	with	access_token	that	can	be	used	with	future	info	requests

API

Request	user	info	with	access_token

GitHub

Responds	with	user	info:	name,	github_login,	avatar_url

API

Resolves	authUser(code)	mutation	with	AuthPayload,	which	contains	a

token	and	the	user

Client

Saves	token	to	send	with	future	GraphQL	requests

Authorizing	the	User
It	is	now	time	to	authorize	the	user.	To	facilitate	this	example,	we	use	React
Router,	which	we	install	via	npm:	npm	install	react-router-dom.

Let’s	modify	our	main	<App	/>	component.	We’ll	incorporate	the
BrowserRouter,	and	we’ll	add	a	new	component,	AuthorizedUser,	that	we	can
use	to	authorize	users	with	GitHub:

import	React	from	'react'
import	Users	from	'./Users'
import	{	BrowserRouter	}	from	'react-router-dom'
import	{	gql	}	from	'apollo-boost'
import	AuthorizedUser	from	'./AuthorizedUser'

export	const	ROOT_QUERY	=	gql`
				query	allUsers	{
								totalUsers
								allUsers	{	...userInfo	}
								me	{	...userInfo	}
				}

				fragment	userInfo	on	User	{
								githubLogin
								name
								avatar
				}
`

const	App	=	()	=>
		<BrowserRouter>
				<div>
								<AuthorizedUser	/>
								<Users	/>
				</div>
		</BrowserRouter>

export	default	App

BrowserRouter	wraps	all	of	the	other	components	that	we	want	to	render.	We

also	will	add	a	new	AuthorizedUser	component,	which	we	will	build	in	a	new
file.	We	should	see	an	error	until	we	add	that	component.

We’ve	also	modified	the	ROOT_QUERY	to	get	it	ready	for	authorization.	We
are	now	additionally	asking	for	the	me	field,	which	returns	information	about	the
current	user	when	someone	is	logged	in.	When	a	user	is	not	logged	in,	this	field
will	simply	return	null.	Notice	that	we’ve	added	a	fragment	called	userInfo	to	the
query	document.	This	allows	us	obtain	the	same	information	about	a	User	in	two
places:	the	me	field	and	the	allUsers	field.

The	AuthorizedUser	component	should	redirect	the	user	to	GitHub	to	request	a
code.	That	code	should	be	passed	back	from	GitHub	to	our	app	at
http://localhost:3000.

In	a	new	file	called	AuthorizedUser.js,	let’s	implement	this	process:

import	React,	{	Component	}	from	'react'
import	{	withRouter	}	from	'react-router-dom'

class	AuthorizedUser	extends	Component	{

				state	=	{	signingIn:	false	}

				componentDidMount()	{
								if	(window.location.search.match(/code=/))	{
												this.setState({	signingIn:	true	})
												const	code	=	window.location.search.replace("?code=",	"")
												alert(code)
												this.props.history.replace('/')
								}
				}

				requestCode()	{
						var	clientID	=	<YOUR_GITHUB_CLIENT_ID>
						window.location	=
								`https://github.com/login/oauth/authorize?client_id=${clientID}&scope=user`
				}

				render()	{
								return	(
										<button	onClick={this.requestCode}	disabled={this.state.signingIn}>
														Sign	In	with	GitHub

										</button>
)
				}
}

export	default	withRouter(AuthorizedUser)

The	AuthorizedUser	component	renders	a	“Sign	In	with	GitHub”	button.	Once
clicked,	this	button	will	redirect	the	user	to	GitHub’s	OAuth	process.	Once
authorized,	GitHub	will	pass	a	code	back	to	the	browser:	http://localhost:3000?
code=XYZGNARLYSENDABC.	If	the	code	is	found	in	the	query	string,	the
component	parses	it	from	the	window’s	location	and	displays	it	in	an	alert	box	to
the	user	before	removing	it	with	the	history	property	that	was	sent	to	this
component	with	React	Router.

Instead	of	sending	the	user	an	alert	with	the	GitHub	code,	we	need	to	send	it	to
the	githubAuth	mutation:

import	{	Mutation	}	from	'react-apollo'
import	{	gql	}	from	'apollo-boost'
import	{	ROOT_QUERY	}	from	'./App'

const	GITHUB_AUTH_MUTATION	=	gql`
				mutation	githubAuth($code:String!)	{
								githubAuth(code:$code)	{	token	}
				}
`

The	above	mutation	will	be	used	to	authorize	the	current	user.	All	we	need	is	the
code.	Let’s	add	this	mutation	to	the	render	method	of	this	component:

render()	{
				return	(
								<Mutation	mutation={GITHUB_AUTH_MUTATION}
												update={this.authorizationComplete}
												refetchQueries={[{	query:	ROOT_QUERY	}]}>

												{mutation	=>	{
																this.githubAuthMutation	=	mutation
																return	(
																				<button

																								onClick={this.requestCode}
																								disabled={this.state.signingIn}>
																								Sign	In	with	GitHub
																				</button>
)
												}}

								</Mutation>
)
}

The	Mutation	component	is	tied	to	the	GITHUB_AUTH_MUTATION.	Once
completed,	it	will	invoke	the	component’s	authorizationComplete	method	and
refetch	the	ROOT_QUERY.	The	mutation	function	has	been	added	to	the	scope
of	the	AuthorizedUser	component	by	setting:	this.githubAuthMutation	=
mutation.	We	can	now	invoke	this	this.githubAuthMutation()	function	when	we
are	ready	(when	we	have	a	code).

Instead	of	alerting	the	code,	we	will	send	it	along	with	the	mutation	to	authorize
the	current	user.	Once	authorized,	we	will	save	the	resulting	token	to
localStorage	and	use	the	router’s	history	property	to	remove	the	code	from	the
window’s	location:

class	AuthorizedUser	extends	Component	{

				state	=	{	signingIn:	false	}

				authorizationComplete	=	(cache,	{	data	})	=>	{
								localStorage.setItem('token',	data.githubAuth.token)
								this.props.history.replace('/')
								this.setState({	signingIn:	false	})
				}

				componentDidMount()	{
								if	(window.location.search.match(/code=/))	{
												this.setState({	signingIn:	true	})
												const	code	=	window.location.search.replace("?code=",	"")
												this.githubAuthMutation({	variables:	{code}	})
								}
				}

				...

}

To	start	the	authorization	process,	invoke	this.githubAuthMutation()	and	add	the
code	to	the	operation’s	variables.	Once	complete,	the	authorizationComplete
method	will	be	called.	The	data	passed	to	this	method	is	the	data	that	we	selected
in	the	mutation.	It	has	a	token.	We’ll	save	the	token	locally	and	use	React
Router’s	history	to	remove	the	code	query	string	from	the	window’s	location
bar.

At	this	point,	we	will	have	signed	in	the	current	user	with	GitHub.	The	next	step
will	be	to	make	sure	that	we	send	this	token	along	with	every	request	in	the
HTTP	headers.

Identifying	the	User
Our	next	task	is	to	add	a	token	to	the	authorization	header	for	each	request.
Remember,	the	photo-share-api	service	that	we	created	in	the	last	chapter	will
identify	users	who	pass	an	authorization	token	in	the	header.	All	we	have	to	do	is
make	sure	any	token	saved	to	localStorage	is	sent	along	with	every	request	sent
to	our	GraphQL	service.

Let’s	modify	the	src/index.js	file.	We	need	to	find	the	line	where	we	create	the
Apollo	Client	and	replace	it	with	this	code:

const	client	=	new	ApolloClient({
				uri:	'http://localhost:4000/graphql',
				request:	operation	=>	{
								operation.setContext(context	=>	({
												headers:	{
																...context.headers,
																authorization:	localStorage.getItem('token')
												}
								}))
				}
})

We’ve	now	added	a	request	method	to	our	Apollo	Client	configuration.	This
method	pass	the	details	about	every	operation	just	before	it	is	sent	to	the
GraphQL	service.	Here	we	are	setting	the	context	of	every	operation	to	include
an	authorization	header	that	contains	the	token	saved	to	local	storage.	Don’t
worry,	if	we	don’t	have	a	token	saved	the	value	of	this	header	will	simply	be	null
and	our	service	will	assume	that	there	a	user	has	not	been	authorized.

Now	that	we’ve	added	the	authorization	token	to	every	header,	our	me	field
should	return	data	about	the	current	user.	Let’s	display	that	data	in	our	UI.	Find
the	render	method	in	the	AuthorizedUser	component	and	replace	it	with	this
code:

render()	{
				return	(
								<Mutation
												mutation={GITHUB_AUTH_MUTATION}

												update={this.authorizationComplete}
												refetchQueries={[{	query:	ROOT_QUERY	}]}>
												{mutation	=>	{
																this.githubAuthMutation	=	mutation
																return	(
																				<Me	signingIn={this.state.signingIn}
																								requestCode={this.requestCode}
																								logout={()	=>	localStorage.removeItem('token')}	/>
)
												}}
								</Mutation>
)
}

Instead	of	rendering	a	button,	this	Mutation	component	now	renders	a
component	called	Me.	The	Me	component	will	either	display	information	about
the	current	user	who	is	logged	in	or	the	authorize	button.	It	will	need	to	know
whether	or	not	the	user	is	currently	in	the	process	of	signing	in.	It	also	needs	to
access	the	requestCode	methods	of	the	AuthorizedUser	component.	Finally,	we
need	to	provide	a	function	that	can	log	the	current	user	out.	For	now,	we’ll	just
remove	the	token	from	localStorage	when	the	user	logs	out.	All	of	these	values
have	been	passed	down	to	the	Me	component	as	properties.

It’s	now	time	to	create	the	Me	component.	Add	the	following	code	above	the
declaration	of	the	AuthorizedUser	component:

const	Me	=	({	logout,	requestCode,	signingIn	})	=>
				<Query	query={ROOT_QUERY}>
								{({	loading,	data	})	=>	data.me	?
												<CurrentUser	{...data.me}	logout={logout}	/>	:
												loading	?
																<p>loading...	</p>	:
																<button
																				onClick={requestCode}
																				disabled={signingIn}>
																								Sign	In	with	GitHub
																</button>
								}
				</Query>

const	CurrentUser	=	({	name,	avatar,	logout	})	=>

				<div>
								
								<h1>{name}</h1>
								<button	onClick={logout}>logout</button>
				</div>

The	Me	component	renders	a	Query	component	to	obtain	the	data	about	the
current	user	from	the	ROOT_QUERY.	If	there	is	a	token,	the	me	field	in	the
ROOT_QUERY	will	not	be	null.	Within	the	query	component,	we	check	to	see
if	data.me	is	null.	If	there	is	data	under	this	field,	we	will	display	the
CurrentUser	component	and	pass	the	data	about	the	current	user	to	this
component	as	properties.	The	code	{...data.me}	uses	the	spread	operator	to	pass
all	of	the	fields	to	the	CurrentUser	component	as	individual	properties.
Additionally,	the	logout	function	is	passed	to	the	CurrentUser	component.	When
the	user	clicks	the	logout	button,	this	function	will	be	invoked	and	their	token
removed.

Working	with	the	Cache
As	developers,	we’re	in	the	network	request	minimization	business.	We	don’t
want	our	users	to	have	to	make	extraneous	requests.	In	order	to	minimize	the
number	of	network	requests	that	our	apps	send,	we	can	dig	deeper	into	how	to
customize	the	Apollo	Cache.

Fetch	Policies
By	default,	Apollo	Client	stores	data	in	a	local	JavaScript	variable.	Every	time
we	create	a	client,	a	cache	is	created	for	us.	Every	time	we	send	an	operation,	the
response	is	cached	locally.	The	fetchPolicy	tells	Apollo	Client	where	to	look	for
data	to	resolve	an	operation:	either	the	local	cache	or	a	network	request.	The
default	fetchPolicy	is	cache-first.	This	means	that	the	client	will	look	locally	in
the	cache	for	data	to	resolve	the	operation.	If	the	client	can	resolve	the	operation
without	sending	a	network	request,	it	will	do	so.	However,	if	data	to	resolve	the
query	is	not	in	the	cache	then	the	client	will	send	a	network	request	to	the
GraphQL	service.

Another	type	of	fetchPolicy	is	cache-only.	This	policy	tells	the	client	to	only
look	in	the	cache	and	never	send	a	network	request.	If	the	data	to	fulfill	the
query	does	not	exist	in	the	cache,	then	an	error	will	be	thrown.

Take	a	look	at	src/Users.js,	and	find	the	Query	inside	the	Users	component.	We
can	change	the	fetch	policy	of	individual	queries	simply	by	adding	the
fetchPolicy	property:

<Query	query={{	query:	ROOT_QUERY	}}	fetchPolicy="cache-only">

At	present,	if	we	set	the	policy	for	this	Query	to	cache-only	and	refresh	the
browser,	we	should	see	an	error	because	Apollo	Client	is	only	looking	in	the
cache	for	the	data	to	resolve	our	query	and	that	data	is	not	present	when	the	app
starts.	To	clear	the	error,	change	the	fetch	policy	to	cache-and-network:

<Query	query={{	query:	ROOT_QUERY	}}	fetchPolicy="cache-and-network">

The	application	works	again.	The	cache-and-network	policy	always	resolves	the
query	immediately	from	the	cache	and	additionally	sends	a	network	request	to
get	the	latest	data.	If	the	local	cache	does	not	exist,	as	is	the	case	when	the	app
starts,	this	policy	will	simply	retrieve	the	data	from	the	network.	Other	policies
include:

network-only

Always	sends	a	network	request	to	resolve	a	query

no-cache

Always	sends	a	network	request	to	resolve	the	data	and	it	doesn’t	cache	the
resulting	response.

Persisting	The	Cache
It	is	possible	to	save	the	cache	locally	on	the	client.	This	unlocks	the	power	of
the	cache-first	policy,	because	the	cache	will	already	exist	when	the	user	returns
to	the	application.	In	this	case,	the	cache-first	policy	will	immediately	resolve
the	data	from	the	existing	local	cache	and	not	send	a	request	to	the	network	at
all.

To	save	cache	data	locally,	we’ll	need	to	install	an	npm	package:

npm	install	apollo-cache-persist

The	apollo-cache-persist	package	contains	a	function	that	enhance	the	cache	by
saving	it	to	a	local	store	whenever	it	changes.	To	implement	cache	persistance,
we’ll	need	to	create	our	own	cache	object	and	add	it	to	the	client	when	we
configure	our	application.

Add	the	following	code	to	the	src/index.js	file:

import	ApolloClient,	{	InMemoryCache	}	from	'apollo-boost'
import	{	persistCache	}	from	'apollo-cache-persist'

const	cache	=	new	InMemoryCache()
persistCache({
				cache,
				storage:	localStorage
})

const	client	=	new	ApolloClient({
				cache,

				...

})

First,	we’ve	created	our	own	cache	instance	using	the	InMemoryCache
constructor	provided	with	apollo-boost.	Next,	we	imported	the	persistCache
method	from	apollo-cache-persist.	Using	InMemoryCache,	we	create	a	new
cache	instance	and	send	it	to	the	persistCache	method	along	with	a	storage

location.	We’ve	chosen	to	save	the	cache	in	the	browser	window’s	localStorage
store.	This	means	that	once	we	start	our	application,	we	should	see	the	value	of
our	cache	saved	to	our	store.	You	can	check	for	it	by	adding	the	following
syntax:

console.log(localStorage['apollo-cache-persist'])

The	next	step	is	to	check	localStorage	on	startup	to	see	if	we	already	have	a
cache	saved.	If	we	do,	then	we’ll	want	to	initialize	our	local	cache	with	that	data
before	creating	the	client:

const	cache	=	new	InMemoryCache()
persistCache({
				cache,
				storage:	localStorage
})

if	(localStorage['apollo-cache-persist'])	{
				let	cacheData	=	JSON.parse(localStorage['apollo-cache-persist'])
				cache.restore(cacheData)
}

Now	our	application	will	load	any	cached	data	before	it	starts.	If	we	do	have	data
saved	under	the	key	apollo-cache-persist,	then	we’ll	use	the
cache.restore(cacheData)	method	to	add	it	to	the	cache	instance.

We’ve	successfully	minimized	the	number	of	network	requests	to	our	service
simply	by	using	Apollo	Client’s	cache	effectively.	In	the	next	section,	we	will
learn	about	how	we	can	write	data	directly	to	the	local	cache.

Updating	the	Cache
The	Query	component	is	capable	of	reading	directly	from	the	cache.	That’s	what
makes	a	fetch	policy	like	cache-only	possible.	We	are	also	able	to	interact
directly	with	the	Apollo	Cache.	We	can	read	current	data	from	the	cache	or	write
data	directly	to	the	cache.	Every	time	we	change	data	stored	in	the	cache,	react-
apollo	detects	that	change	and	re-renders	all	of	the	effected	components.	All	we
have	to	do	is	change	the	cache	and	the	UI	will	automatically	update	to	match	the
change.

Data	is	read	from	the	Apollo	Cache	using	GraphQL.	You	read	queries.	Data	is
written	to	the	Apollo	Cache	using	GraphQL,	you	write	data	to	queries.	Consider
the	ROOT_QUERY	that	is	located	in	src/App.js:

export	const	ROOT_QUERY	=	gql`
				query	allUsers	{
								totalUsers
								allUsers	{	...userInfo	}
								me	{	...userInfo	}
				}

				fragment	userInfo	on	User	{
								githubLogin
								name
								avatar
				}
`

This	query	has	three	fields	in	its	selection	set:	totalUsers,	allUsers,	and	me.	We
can	read	any	data	that	we	currently	have	stored	in	our	cache	using	the
cache.readQuery	method:

let	{	totalUsers,	allUsers,	me	}		=	cache.readQuery({	query:	ROOT_QUERY	})

In	this	line	of	code,	we’ve	obtained	the	values	for	totalUsers,	allUsers,	and	me
that	were	stored	in	the	cache.

We	can	also	write	data	directly	to	the	totalUsers,	allUsers,	and	me	fields	of	the
ROOT_QUERY	using	the	cache.writeQuery	method:

cache.writeQuery({
				query:	ROOT_QUERY,
				data:	{
								me:	null,
								allUsers:	[],
								totalUsers:	0
				}
})

In	this	example,	we	are	clearing	all	of	the	data	from	our	cache	and	resetting
default	values	for	all	of	the	fields	in	the	ROOT_QUERY.	Because	we	are	using
react-apollo,	this	change	would	trigger	a	UI	update	and	clear	the	entire	list	of
users	from	the	current	DOM.

A	good	place	to	write	data	directly	to	the	cache	is	inside	of	the	logout	function	in
the	AuthorizedUser	component.	At	present	this	function	is	removing	the	user’s
token,	but	the	UI	does	not	update	until	the	“Refetch”	button	has	been	clicked	or
the	browser	is	refreshed.	To	improve	this	feature,	we	will	clear	out	the	current
user	from	the	cache	directly	when	the	user	logs	out.

First	we	need	to	make	sure	that	this	component	has	access	to	the	client	in	its
props.	One	of	the	fastest	ways	to	pass	this	property	is	to	use	the	withApollo
higher	order	component.	This	will	add	the	client	to	the	AuthorizedUser
component’s	properties.	Since	this	component	already	uses	the	withRouter
higher	order	component,	we	will	use	the	compose	function	to	make	sure	that	the
AuthorizedUser	component	is	wrapped	with	both	higher	order	components:

import	{	Query,	Mutation,	withApollo,	compose	}	from	'react-apollo'

class	AuthorizedUser	extends	Component	{
				...
}

export	default	compose(withApollo,	withRouter)(AuthorizedUser)

Using	compose,	we	assemble	the	withApollo	and	withRouter	functions	into	a
single	function.	withRouter	adds	the	Router’s	history	to	the	properties,	and
withApollo	adds	Apollo	Client	to	the	properties.

This	means	that	we	can	access	Apollo	Client	in	our	logout	method	and	use	it	to
remove	the	details	about	the	current	user	from	the	cache:

logout	=	()	=>	{
				localStorage.removeItem('token')
				let	data	=	this.props.client.readQuery({	query:	ROOT_QUERY	})
				data.me	=	null
				this.props.client.writeQuery({	query:	ROOT_QUERY,	data	})
}

The	above	code	not	only	removes	the	current	user’s	token	from	localStorage,	it
clears	the	me	field	for	the	current	user	saved	in	the	cache.	Now	when	users	log
out,	they	will	see	the	“Sign	In	with	GitHub”	button	immediately	without	having
to	refresh	the	browser.	This	button	is	rendered	only	when	the	ROOT_QUERY
doesn’t	have	any	values	for	me.

Another	place	that	we	can	improve	our	application	thorough	working	directly
with	the	cache	is	in	the	src/Users.js	file.	Currently,	when	we	click	the	“Add	Fake
User”	button,	a	mutation	is	sent	to	the	GraphQL	service.	The	Mutation
component	that	renders	the	“Add	Fake	User”	button	contains	the	following
property:

refetchQueries={[{	query:	ROOT_QUERY	}]}

This	property	tells	the	client	to	send	an	additional	query	to	our	service	once	the
mutation	has	completed.	However,	we	are	already	receiving	a	list	of	the	new
fake	users	in	the	response	of	the	mutation	itself:

mutation	addFakeUsers($count:Int!)	{
				addFakeUsers(count:$count)	{
								githubLogin
								name
								avatar
				}
}

Since	we	already	have	a	list	of	the	new	fake	users,	there	is	no	need	to	go	back	to
the	server	for	the	same	information.	What	we	need	to	do	is	obtain	this	new	list	of
users	in	the	mutation’s	response	and	add	it	directly	to	the	cache.	Once	the	cache
changes,	the	UI	will	follow.

Find	the	Mutation	component	in	the	Users.js	file	that	handles	the	addFakeUsers

mutation	and	replace	the	refetchQueries	with	an	update	property:

<Mutation	mutation={ADD_FAKE_USERS_MUTATION}
				variables={{	count:	1	}}
				update={updateUserCache}>
				{addFakeUsers	=>
								<button	onClick={addFakeUsers}>Add	Fake	User</button>
				}
</Mutation>

Now,	when	the	mutation	has	completed,	the	response	data	will	be	sent	to	a
function	called	updateUserCache:

const	updateUserCache	=	(cache,	{	data:{	addFakeUsers	}	})	=>	{
				let	data	=	cache.readQuery({	query:	ROOT_QUERY	})
				data.totalUsers	+=	addFakeUsers.length
				data.allUsers	=	[
								...data.allUsers,
								...addFakeUsers
]
				cache.writeQuery({	query:	ROOT_QUERY,	data	})
}

When	the	Mutation	component	invokes	the	updateUserCache	function,	it	sends
the	cache	and	the	data	that	has	been	returned	in	the	mutation’s	response.

We	want	to	add	the	fake	users	to	the	current	cache,	so	we’ll	read	the	data	that	is
already	in	the	cache	using	cache.readQuery({	query:	ROOT_QUERY	})	and	add
to	it.	First,	we’ll	increment	the	total	users,	data.totalUsers	+=
addFakeUsers.length.	Then,	we’ll	concatenate	the	current	list	of	users	with	the
fake	users	that	we’ve	received	from	the	mutation.	Now	that	the	current	data	has
been	changed,	it	can	be	written	back	to	the	cache	using	cache.writeQuery({
query:	ROOT_QUERY,	data	}).	Replacing	the	data	in	the	cache	will	cause	the
UI	to	update	and	display	the	new	fake	user.

At	this	point,	we	have	completed	the	first	version	of	the	User	portion	of	our	app.
We	can	list	all	users,	add	fake	users,	and	sign	in	with	GitHub.	We	have	built	a
full	stack	GraphQL	application	using	Apollo	Server	and	Apollo	Client.	The
Query	and	Mutation	components	are	tools	that	we	can	use	to	quickly	begin
developing	clients	with	Apollo	Client	and	React.

In	Chapter	7,	we	see	how	we	can	incorporate	subscriptions	and	file	uploading
into	the	PhotoShare	application.	We	also	discuss	emerging	tools	in	the	GraphQL
ecosystem	that	you	can	incorporate	into	your	projects.

Chapter	7.	GraphQL	in	the	Real	World

So	far,	you	have	designed	a	schema,	constructed	a	GraphQL	API,	and
implemented	a	client	using	Apollo	Client.	We’ve	taken	one	complete	full-stack
iteration	with	GraphQL	and	developed	an	understanding	of	how	GraphQL	APIs
are	consumed	by	clients.	Now	it’s	time	to	prepare	our	GraphQL	APIs	and	clients
for	production.

To	take	your	new	skills	into	production,	you	are	going	to	need	to	meet	the
requirements	of	your	current	applications.	Our	current	applications	likely	allow
for	file	transfer	between	the	client	and	the	server.	Our	current	applications	might
use	WebSockets	to	push	real-time	data	updates	to	our	clients.	Our	current	APIs
are	secure	and	protect	against	malicious	clients.	To	work	with	GraphQL	in
production,	we	need	to	be	able	to	meet	these	requirements.

Also	we	need	to	think	about	our	development	teams.	You	might	be	working	with
a	full-stack	team,	but	more	often	than	not,	teams	are	split	into	frontend
developers	and	backend	developers.	How	can	all	of	your	developers	work
efficiently	from	different	specializations	within	our	GraphQL	stack?

And	what	about	the	sheer	scope	of	your	current	code	base?	At	present,	you
likely	have	many	different	services	and	APIs	running	in	production	and	probably
have	neither	the	time	nor	the	resources	to	rebuild	everything	from	the	ground	up
with	GraphQL.

In	this	chapter,	we	address	all	of	these	requirements	and	concerns.	We	begin	by
taking	two	more	iterations	in	the	PhotoShare	API.	First,	we	incorporate
subscriptions	and	real-time	data	transport.	Second,	we	allow	users	to	post	photos
by	implementing	a	solution	for	file	transport	with	GraphQL.	After	we’ve
completed	these	iterations	on	the	PhotoShare	application,	we	will	look	at	ways
to	secure	our	GraphQL	API	to	guard	against	malicious	client	queries.	We	wrap
up	this	chapter	by	examining	ways	in	which	teams	can	work	together	to
effectively	migrate	to	GraphQL.

Subscriptions
Real-time	updates	are	an	essential	feature	for	modern	web	and	mobile
applications.	The	current	technology	that	allows	for	real-time	data	transport
between	websites	and	mobile	applications	are	WebSockets.	You	can	use	the
WebSocket	protocol	to	open	duplex	two-way	communication	channels	over	a
TCP	socket.	This	means	that	web	pages	and	applications	can	send	and	receive
data	over	a	single	connection.	This	technology	allows	updates	to	be	pushed	from
the	server	directly	to	the	web	page	in	real	time.

Up	to	this	point,	we	have	implemented	GraphQL	queries	and	mutations	using
the	HTTP	protocol.	HTTP	gives	us	a	way	to	send	and	receive	data	between	the
client	and	the	server,	but	it	does	not	help	us	connect	to	a	server	and	listen	for
state	changes.	Before	WebSockets	were	introduced,	the	only	way	to	listen	for
state	changes	on	the	server	was	to	incrementally	send	HTTP	requests	to	the
server	to	determine	whether	anything	had	changed.	We	saw	how	to	easily
implement	polling	with	the	query	tag	in	Chapter	6.

But	if	we	really	want	to	take	full	advantage	of	the	new	web,	GraphQL	has	to	be
able	to	support	real-time	data	transport	over	WebSockets	in	addition	to	HTTP
requests.	The	solution	is	subscriptions.	Let’s	take	a	look	at	how	we	can
implement	subscriptions	in	GraphQL.

Working	with	Subscriptions
In	GraphQL,	you	use	subscriptions	to	listen	to	your	API	for	specific	data
changes.	Apollo	Server	already	supports	subscriptions.	It	wraps	a	couple	of	npm
packages	that	are	routinely	used	to	set	up	WebSockets	in	GraphQL	applications:
graphql-subscriptions	and	subscriptions-transport-ws.	The	graphql-subscriptions
package	is	an	npm	package	that	provides	an	implementation	of	the
publisher/subscriber	design	pattern,	PubSub.	PubSub	is	essential	for	publishing
data	changes	that	client	subscribers	can	consume.	subscriptions-transport-ws	is	a
WebSocket	server	and	client	that	allows	transporting	subscriptions	over
WebSockets.	Apollo	Server	automatically	incorporates	both	of	these	packages	to
support	subscriptions	out	of	the	box.

By	default,	Apollo	Server	sets	up	a	WebSocket	at	ws://localhost:4000.	If	you	use
the	simple	server	configuration	that	we	demonstrated	at	the	beginning	of
Chapter	5,	you’re	using	a	configuration	that	supports	WebSockets	out	of	the	box.

Because	we	are	working	with	apollo-server-express,	we’ll	have	to	take	few	steps
to	make	subscriptions	work.	Locate	the	index.js	file	in	the	photo-share-api	and
import	the	createServer	function	from	the	http	module:

const	{	createServer	}	=	require('http')

Apollo	Server	will	automatically	set	up	subscription	support,	but	to	do	so,	it
needs	an	HTTP	server.	We’ll	use	createServer	to	create	one.	Locate	the	code	at
the	bottom	of	the	start	function	where	the	GraphQL	service	is	started	on	a
specific	port	with	app.listen(...).	Replace	this	code	with	the	following:

const	httpServer	=	createServer(app)
server.installSubscriptionHandlers(httpServer)

httpServer.listen({	port:	4000	},	()	=>
				console.log(`GraphQL	Server	running	at	localhost:4000${server.graphqlPath}`)
)

First,	we	create	a	new	httpServer	using	the	Express	app	instance.	The	httpServer
is	ready	to	handle	all	of	the	HTTP	requests	sent	to	it	based	upon	our	current
Express	configuration.	We	also	have	a	server	instance	where	we	can	add

WebSocket	support.	The	next	line	of	code,
server.installSubscriptionHandlers(httpServer)	is	what	makes	the	WebSockets
work.	This	is	where	Apollo	Server	adds	the	necessary	handlers	to	support
subscriptions	with	WebSockets.	In	addition	to	an	HTTP	server,	our	backend	is
now	ready	to	receive	requests	at	ws://localhost:4000/graphql.

Now	that	we	have	a	server	that	is	ready	to	support	subscriptions,	it’s	time	to
implement	them.

Posting	photos

We	want	to	know	when	any	of	our	users	post	a	photo.	This	is	a	good	use	case	for
a	subscription.	Just	like	everything	else	in	GraphQL,	to	implement	subscriptions
we	need	to	start	with	the	schema	first.	Let’s	add	a	subscription	type	to	the
schema	just	below	the	definition	for	the	Mutation	type:

type	Subscription	{
		newPhoto:	Photo!
}

The	newPhoto	subscription	will	be	used	to	push	data	to	the	client	when	photos
are	added.	We	send	a	subscription	operation	with	the	following	GraphQL	query
language	operation:

subscription	{
				newPhoto	{
								url
								category
								postedBy	{
												githubLogin
												avatar
								}
				}
}

This	subscription	will	push	data	about	new	photos	to	the	client.	Just	like	a	Query
or	Mutation,	GraphQL	allows	us	to	request	data	about	specific	fields	with
selection	sets.	With	this	subscription	every	time	there	is	a	new	photo,	we	will
receive	its	url	and	category	along	with	the	githubLogin	and	avatar	of	the	user
who	posted	this	photo.

When	a	subscription	is	sent	to	our	service,	the	connection	remains	open.	It	is
listening	for	data	changes.	Every	photo	that	is	added	will	push	data	to	the
subscriber.	If	you	set	up	a	subscription	with	GraphQL	Playground,	you	will
notice	that	the	Play	button	will	change	to	a	red	Stop	button.

The	Stop	button	means	that	the	subscription	is	currently	open	and	listening	for
data.	When	you	press	the	Stop	button,	the	subscription	will	be	unsubscribed.	It
will	stop	listening	for	data	changes.

It	is	finally	time	to	take	a	look	at	the	postPhoto	mutation:	the	mutation	that	adds
new	photos	to	the	database.	We	want	to	publish	new	photo	details	to	our
subscription	from	this	mutation:

async	postPhoto(root,	args,	{	db,	currentUser,	pubsub	})	{

				if	(!currentUser)	{
								throw	new	Error('only	an	authorized	user	can	post	a	photo')
				}

				const	newPhoto	=	{
								...args.input,
								userID:	currentUser.githubLogin,
								created:	new	Date()
				}

				const	{	insertedIds	}	=	await	db.collection('photos').insert(newPhoto)
				newPhoto.id	=	insertedIds[0]

				pubsub.publish('photo-added',	{	newPhoto	})

				return	newPhoto

}

This	resolver	expects	that	an	instance	of	pubsub	has	been	added	to	context.
We’ll	do	that	in	the	next	step.	pubsub	is	a	mechanism	that	can	publish	events	and
send	data	to	our	subscription	resolver.	It’s	like	the	Node.js	EventEmitter.	You
can	use	it	to	publish	events	and	send	data	to	every	handler	that	has	subscribed	to
an	event.	Here,	we	publish	a	photo-added	event	just	after	we	insert	a	new	photo
to	the	database.	The	details	of	the	new	photo	are	passed	as	the	second	argument
of	the	pubsub.publish	method.	This	will	pass	details	about	the	new	photo	to

every	handler	that	has	subscribed	to	photo-added	events.

Next,	let’s	add	the	Subscription	resolver	that	will	be	used	to	subscribe	to	photo-
added	events:

const	resolvers	=	{

		...

		Subscription:	{
				newPhoto:	{
						subscribe:	(parent,	args,	{	pubsub	})	=>
								pubsub.asyncIterator('photo-added')
				}
		}
}

The	Subscription	resolver	is	a	root	resolver.	It	should	be	added	directly	to	the
resolver	object	right	next	to	the	Query	and	Mutation	resolvers.	Within	the
Subscription	resolver,	we	need	to	define	resolvers	for	each	field.	Since	we
defined	the	newPhoto	field	in	our	schema,	we	need	to	make	sure	a	newPhoto
resolver	exists	in	our	resolvers.

Unlike	Query	or	Mutation	resolvers,	Subscription	resolvers	contain	a	subscribe
method.	The	subscribe	method	receives	the	parent,	args,	and	context	just	like	the
any	other	resolver	functions.	Inside	of	this	method,	we	subscribe	to	specific
events.	In	this	case,	we	are	using	the	pubsub.asyncIterator	to	subscribe	to	photo-
added	events.	Any	time	a	photo-added	event	is	raised	by	pubsub,	it	will	be
passed	through	this	new	photo	subscription.

SUBSCRIPTION	RESOLVERS	IN	THE	REPO
The	example	files	in	the	GitHub	repository	breaks	the	resolvers	up	into	several
files.	The	above	code	can	be	found	in	resolvers/Subscriptions.js.

The	postPhoto	resolver	and	the	newPhoto	subscription	resolver	both	expect	there
to	be	an	instance	of	pubsub	in	context.	Let’s	modify	the	context	to	include
pubsub.	Locate	the	index.js	file	and	make	the	following	changes:

const	{	ApolloServer,	PubSub	}	=	require('apollo-server-express')

...

async	function	start()	{

				...

				const	pubsub	=	new	PubSub()
				const	server	=	new	ApolloServer({
								typeDefs,
								resolvers,
								context:	async	({	req,	connection	})	=>	{

												const	githubToken	=	req	?
																req.headers.authorization	:
																connection.context.Authorization

												const	currentUser	=	await	db
																.collection('users')
																.findOne({	githubToken	})

												return	{	db,	currentUser,	pubsub	}

								}
				})

		...

}

First,	we	need	to	import	the	PubSub	constructor	from	apollo-server-express
package.	We	use	this	constructor	to	create	a	pubsub	instance	and	add	it	to
context.

You	may	have	also	notice	that	we	change	the	context	function.	Queries	and
mutations	will	still	use	HTTP.	When	we	send	either	of	these	operations	to	the
GraphQL	Service	the	request	argument,	req,	is	sent	to	the	context	handler.
However,	when	the	operation	is	a	Subscription,	there	is	no	HTTP	request	so	the
req	argument	is	null.	Information	for	subscriptions	is	instead	passed	when	the
client	connects	to	the	WebSocket.	In	this	case,	the	WebSocket	connection
argument	will	be	sent	to	the	context	function	instead.	When	we	have	a
subscription	we’ll	have	to	pass	authorization	details	through	the	connection’s
context,	not	the	HTTP	request	headers.

Now	we	are	ready	to	try	out	our	new	subscription.	Open	the	playground	and	start
a	subscription:

subscription	{
				newPhoto	{
								name
								url
								postedBy	{
												name
								}
				}
}

Once	the	subscription	is	running,	open	a	new	Playground	tab	and	run	the
postPhoto	mutation.	Every	time	you	run	this	mutation,	you	will	see	your	new
photo	data	sent	to	the	subscription.

Figure	7-1.	The	newPhoto	subscription	in	the	playground

CHALLENGE:	NEWUSER	SUBSCRIPTION

Can	you	implement	a	newUser	subscription?	Whenever	new	users	are	added
to	the	database	via	the	githubLogin	or	the	addFakeUsers	mutation,	can	you
publish	a	new-user	event	to	a	subscription?

Hint:	when	handling	addFakeUsers,	you	might	need	to	publish	the	event	a
number	of	times,	once	for	each	user	added.

If	you	get	stuck,	you	can	find	the	answer	in	the	repo.

https://github.com/MoonHighway/learning-graphql/tree/master/chapter-07

Consuming	Subscriptions
Assuming	that	you	completed	the	challenge	in	the	preceding	sidebar,	the
PhotoShare	server	supports	subscriptions	for	Photos	and	Users.	In	this	next
section,	we	subscribe	to	the	newUser	subscription	and	immediately	display	any
new	users	on	the	page.	Before	we	can	get	started,	we	need	to	set	up	Apollo
Client	to	handle	subscriptions.

Adding	the	WebSocketLink

Subscriptions	are	used	over	WebSockets.	To	enable	WebSockets	on	the	server,
we	need	to	install	a	few	additional	packages:

				npm	install	apollo-link-ws	apollo-utilities	subscription-transport-ws

From	here,	we	want	to	add	a	WebSocket	link	to	the	Apollo	Client	configuration.
Locate	the	src/index.js	file	in	the	photo-share-client	project	and	add	the
following	imports:

import	{
				InMemoryCache,
				HttpLink,
				ApolloLink,
				ApolloClient,
				split
}	from	'apollo-boost'
import	{	WebSocketLink	}	from	'apollo-link-ws'
import	{	getMainDefinition	}	from	'apollo-utilities'

Notice	that	we’ve	imported	split	from	apollo-boost.	We	will	use	this	to	split
GraphQL	operations	between	HTTP	requests	and	WebSockets.	If	the	operation
is	a	mutation	or	a	query,	Apollo	Client	will	send	an	HTTP	request.	If	the
operation	is	a	subscription,	the	client	will	connect	to	the	WebSocket.

Under	the	hood	of	Apollo	Client,	network	requests	are	managed	with
ApolloLink.	In	the	current	app,	this	has	been	responsible	for	sending	HTTP
requests	to	the	GraphQL	service.	Any	time	we	send	an	operation	with	the	Apollo
Client,	that	operation	is	sent	to	an	Apollo	Link	to	handle	the	network	request.
We	can	also	use	an	Apollo	Link	to	handle	networking	over	WebSockets.

We’ll	need	to	set	up	two	types	of	links	to	support	WebSockets:	an	HttpLink	and
a	WebsocketLink:

const	httpLink	=	new	HttpLink({	uri:	'http://localhost:4000/graphql'	})
const	wsLink	=	new	WebSocketLink({
				uri:	`ws://localhost:4000/graphql`,
				options:	{	reconnect:	true	}
		})

The	httpLink	can	be	used	to	send	HTTP	requests	over	the	network	to
http://localhost:4000/graphql	and	the	wsLink	can	be	used	to	connect	to
ws://localhost:4000/graphql	and	consume	data	over	WebSockets.

Links	are	composable.	That	means	they	can	be	chained	together	to	build	custom
pipelines	for	our	GraphQL	operations.	In	addition	to	being	able	to	send	an
operation	to	a	single	ApolloLink,	we	can	send	an	operation	through	a	chain	of
reusable	links	where	each	link	in	the	chain	can	manipulate	the	operation	before	it
reaches	the	last	link	in	the	chain	which	handles	the	request	and	returns	a	result.

Lets	create	a	link	chain	with	the	httpLink	by	adding	a	custom	Apollo	Link	that	is
responsible	for	adding	the	authorization	header	to	the	operation:

const	authLink	=	new	ApolloLink((operation,	forward)	=>	{
				operation.setContext(context	=>	({
								headers:	{
												...context.headers,
												authorization:	localStorage.getItem('token')
								}
				}))
				return	forward(operation)
})

const	httpAuthLink	=	authLink.concat(httpLink)

The	httpLink	is	concatenated	to	the	authLink	to	handle	user	authorization	for
HTTP	requests.	Keep	in	mind	that	this	.concat	function	is	not	the	same	function
that	you’ll	find	in	JavaScript	that	concatenates	arrays.	This	is	a	special	function
that	concatenates	Apollo	Links.	Once	concatenated,	we	have	more	appropriately
named	the	link	httpAuthLink	to	describe	the	behavior	more	clearly.	When	an
operation	is	sent	to	this	link,	it	will	first	be	passed	to	the	authLink	where	the

authorization	header	is	added	to	the	operation	before	it	is	forwarded	to	the
httpLink	to	handle	the	network	request.	If	you	are	familiar	with	middleware	in
Express	or	Redux,	the	pattern	is	similar.

Now	we	need	to	tell	the	client	which	link	to	use.	This	is	where	split	comes	in
handy.	The	split	function	will	return	one	of	two	Apollo	Links	based	upon	a
predicate.	The	first	argument	of	the	split	function	is	the	predicate.	A	predicate	is
a	function	that	returns	true	or	false.	The	second	argument	of	the	split	function
represents	the	link	to	return	when	the	predicate	returns	true,	and	the	third
argument	represents	the	link	to	return	when	the	predicate	returns	false.

Let’s	implement	a	split	link	that	will	check	to	see	if	our	operation	happens	to	be
a	subscriptions.	If	it	is	a	subscription,	we	will	use	the	wsLink	to	handle	the
network,	otherwise	we	will	use	the	httpLink:

const	link	=	split(
				({	query	})	=>	{
								const	{	kind,	operation	}	=	getMainDefinition(query)
								return	kind	===	'OperationDefinition'	&&	operation	===	'subscription'
				},
				wsLink,
				httpAuthLink
)

The	first	argument	is	the	predicate	function.	It	will	check	the	operation’s	query
AST	using	the	getMainDefinition	function.	If	this	operation	is	a	subscription,
then	our	predicate	will	return	true.	When	the	predicate	returns	true,	the	link	will
return	the	wsLink.	When	the	predicate	returns	false	the	link	will	return	the
httpAuthLink.

Finally,	we	need	to	change	our	Apollo	Client	configuration	to	use	our	custom
links	by	passing	it	the	link	and	the	cache:

const	client	=	new	ApolloClient({	cache,	link	})

Now	our	client	is	ready	to	handle	subscriptions.	In	the	next	section,	we	will	send
our	first	subscription	operation	using	Apollo	Client.

Listening	for	new	users

On	the	client,	we	can	listen	for	new	users	by	creating	a	constant	called
LISTEN_FOR_USERS.	This	contains	a	string	with	our	subscription	that	will
return	a	new	user’s	githubLogin,	name,	and	avatar:

const	LISTEN_FOR_USERS	=	gql`
				subscription	{
								newUser	{
												githubLogin
												name
												avatar
								}
				}
`

Then,	we	can	use	the	<Subscription	/>	component	to	listen	for	new	users:

<Subscription	subscription={LISTEN_FOR_USERS}>
				{({	data,	loading	})	=>	loading	?
								<p>loading	a	new	user...</p>	:
								<div>
												
												<h2>{data.newUser.name}</h2>
								</div>
</Subscription>

As	you	can	see	here,	the	<Subscription	/>	component	works	like	the	<Mutation
/>	or	<Query	/>	components.	You	send	it	the	subscription,	and	when	a	new	user
is	received,	their	data	is	passed	to	a	function.	The	problem	with	using	this
component	in	our	app	is	that	the	newUser	subscription	passes	one	new	user	at	a
time.	So,	the	preceding	component	would	show	only	the	last	new	user	that	was
created.

What	we	want	to	do	is	listen	for	new	users	when	the	PhotoShare	client	starts,
and	when	we	have	a	new	user,	we	add	them	to	our	current	local	cache.	When	the
cache	is	updated,	the	UI	will	follow,	so	there	is	no	need	to	change	anything
about	the	UI	for	new	users.

Let’s	modify	the	App	component.	First,	we	convert	it	to	a	class	component	so
that	we	can	take	advantage	of	React’s	component	lifecycle.	When	the
component	mounts,	we	start	listening	for	new	users	via	our	subscription.	When

the	App	component	unmounts,	we	stop	listening	by	invoking	the	subscription’s
unsubscribe	method:

import	{	withApollo	}	from	'react-apollo'

...

class	App	extends	Component	{

				componentDidMount()	{
								let	{	client	}	=	this.props
								this.listenForUsers	=	client
												.subscribe({	query:	LISTEN_FOR_USERS	})
												.subscribe(({	data:{	newUser	}	})	=>	{
																const	data	=	client.readQuery({	query:	ROOT_QUERY	})
																data.totalUsers	+=	1
																data.allUsers	=	[
																				...data.allUsers,
																				newUser
]
																client.writeQuery({	query:	ROOT_QUERY,	data	})
												})
				}

				componentWillUnmount()	{
								this.listenForUsers.unsubscribe()
				}

				render()	{
								...
				}
}

export	default	withApollo(App)

When	we	export	the	<App	/>	component,	we	use	the	withApollo	function	to	pass
the	client	to	the	App	via	props.	When	the	component	mounts,	we	will	use	the
client	to	start	listening	for	new	users.	When	the	component	unmounts,	we	stop
the	subscription	using	the	unsubscribe	method.

The	subscription	is	created	using	the	client.subscribe().subscribe().	The	first

subscribe	function	is	an	Apollo	Client	method	that	is	used	to	send	the
subscription	operation	to	our	service.	It	returns	an	observer	object.	The	second
subscribe	function	is	a	method	of	the	observer	object.	It	is	used	to	subscribe
handlers	to	the	observer.	The	handlers	are	invoked	every	time	the	subscription
pushes	data	to	the	client.	In	the	above	code,	we’ve	added	a	handler	that	captures
the	information	about	each	new	users	and	adds	them	directly	to	the	Apollo
Cache	using	writeQuery.

Now,	when	new	users	are	added,	they	are	instantly	pushed	into	our	local	cache
which	immediately	updates	the	UI.	Because	the	subscription	is	adding	every	new
user	to	the	list	in	real	time,	there	is	no	longer	a	need	to	update	the	local	cache
from	src/Users.js.	Within	this	file,	you	should	remove	the	updateUserCache
function	as	well	as	the	mutation’s	update	property.	You	can	see	a	completed
version	of	the	app	component	at	the	book’s	website.

https://github.com/MoonHighway/learning-graphql/tree/master/chapter-07/photo-share-client

Uploading	Files
There’s	one	last	step	to	creating	our	PhotoShare	application—actually	uploading
a	photo.	In	order	to	upload	a	file	with	GraphQL,	we	need	to	modify	both	the	API
and	the	client	so	that	they	can	handle	multipart/form-data,	the	encoding	type	that
is	required	to	pass	a	file	with	a	POST	body	over	the	internet.	We	are	going	to
take	an	additional	step	that	will	allow	us	to	pass	a	file	as	a	GraphQL	argument	so
that	the	file	itself	can	be	handled	directly	within	the	resolver.

To	help	us	with	this	implementation,	we	are	going	to	use	two	npm	packages:
apollo-upload-client	and	apollo-upload-server.	Both	of	these	packages	are
designed	to	pass	files	from	a	web	browser	over	HTTP.	apollo-upload-client	will
be	responsible	for	capturing	the	file	in	the	browser	and	passing	it	along	to	the
server	with	the	operation.	apollo-upload-server	is	designed	to	handle	files	passed
to	the	server	from	apollo-upload-client.	apollo-upload-server	captures	the	file
and	maps	it	to	the	appropriate	query	argument	before	sending	it	to	the	resolver	as
an	argument.

Handling	Uploads	on	the	Server
Apollo	Server	automatically	incorporates	the	apollo-upload-server.	There	is	no
need	to	install	that	npm	in	your	API	project	because	it’s	already	there	and
working.	The	GraphQL	API	needs	to	be	ready	to	accept	an	uploaded	file.	An
Upload	custom	scalar	type	is	provided	in	the	Apollo	Server.	It	can	be	used	to
capture	the	file	stream,	mimetype,	and	encoding	of	an	uploaded	file.

We’ll	start	with	the	schema	first,	adding	a	custom	scalar	to	our	type	definitions.
In	the	schema	file,	we’ll	add	the	Upload	scalar:

scalar	Upload

input	PostPhotoInput	{
		name:	String!
		category:	Photo_Category	=	PORTRAIT
		description:	String,
		file:	Upload!
}

The	Upload	type	will	allow	us	to	pass	the	contents	of	a	file	with	our
PostPhotoInput.	This	means	that	we	will	receive	the	file	itself	in	the	resolver.
The	Upload	type	contains	information	about	the	file	including	an	upload	stream
that	we	can	use	to	save	the	file.	Let’s	use	this	stream	in	the	postPhoto	mutation.
Add	the	following	code	to	the	bottom	of	the	postPhoto	mutation	found	in
resolvers/Mutation.js:

const	{	uploadStream	}	=	require('../lib')
const	path	=	require('path')

...

async	postPhoto(root,	args,	{	db,	user,	pubsub	})	=>	{

				...

				var	toPath	=	path.join(
								__dirname,	'..',	'assets',	'photos',	`${photo.id}.jpg`
)

				await	{	stream	}	=	args.input.file
				await	uploadFile(input.file,	toPath)

				pubsub.publish('photo-added',	{	newPhoto:	photo	})

				return	photo
}

In	this	example,	the	uploadStream	function	would	return	a	promise	which	would
be	resolved	when	the	upload	is	complete.	The	file	argument	contains	the	upload
stream	that	can	be	piped	to	a	writeStream	and	saved	locally	to	the	assets/photos
directory.	Each	newly	posted	photo	will	be	named	based	upon	its	unique
identifier.	We	are	only	handling	JPEG	images	in	this	example	for	brevity.

If	we	want	to	serve	these	photo	files	from	the	same	API,	we	will	have	to	add
some	middleware	to	our	Express	application	that	will	allow	us	to	serve	static
JPEG	images.	In	the	index.js	file	where	we	set	up	our	Apollo	Server,	we	can	add
the	express.static	middleware	that	allows	us	to	serve	local	static	files	over	a
route:

const	path	=	require('path')

...

app.use(
				'/img/photos',
				express.static(path.join(__dirname,	'assets',	'photos'))
)

This	bit	of	code	will	handle	serving	the	static	files	from	assets/photos	to
/img/photos	for	HTTP	requests.

With	that,	our	server	is	in	place	and	can	now	handle	photo	uploads.	It’s	time	to
transition	to	the	client	side	where	we’ll	create	a	form	that	can	manage	photo
uploads.

USE	A	FILE	SERVICE
In	a	real	Node.js	application,	you	would	typically	save	user	uploads	to	a	cloud-
based	file	storage	service.	The	previous	example	uses	an	uploadFile	function	to
upload	the	file	to	a	local	directory,	which	limits	the	scalability	of	this	sample
application.	Services	such	as	AWS,	Google	Cloud,	or	Cloudinary	can	handle
large	volumes	of	file	uploads	from	distributed	applications.

Posting	a	New	Photo	with	Apollo	Client
Now,	let’s	handle	the	photos	on	the	client.	First	to	display	the	photos,	we’ll	need
to	add	the	allPhotos	field	to	our	ROOT_QUERY.	Modify	the	following	query	in
the	src/App.js	file:

export	const	ROOT_QUERY	=	gql`
				query	allUsers	{
								totalUsers
								totalPhotos
								allUsers	{	...userInfo	}
								me	{	...userInfo	}
								allPhotos	{
												id
												name
												url
								}
				}

				fragment	userInfo	on	User	{
								githubLogin
								name
								avatar
				}
`

Now	when	the	website	loads,	we	will	receive	the	id,	name,	and	url	of	every
photo	stored	in	the	database.	We	can	use	this	information	to	display	the	photos.
Let’s	create	a	Photos	component	that	will	be	used	to	display	each	photo:

import	React	from	'react'
import	{	Query	}	from	'react-apollo'
import	{	ROOT_QUERY	}	from	'./App'

const	Photos	=	()	=>
				<Query	query={ALL_PHOTOS_QUERY}>
								{({loading,	data})	=>	loading	?
												<p>loading...</p>	:
												data.allPhotos.map(photo	=>
																<img

																				key={photo.id}
																				src={photo.url}
																				alt={photo.name}
																				width={350}	/>

)
								}
				</Query>

export	default	Photos

Remember,	the	Query	component	takes	in	the	ROOT_QUERY	as	a	property.
Then,	we	use	the	render	prop	pattern	to	display	all	of	the	photos	when	loading	is
complete.	For	each	photo	in	the	data.allPhotos	array,	we’ll	add	a	new	img
element	with	metadata	that	we	pull	from	each	photo	object	including	the
photo.url	and	photo.name.

When	we	add	this	code	to	the	App	component,	our	photos	will	be	displayed.	But
first,	let’s	create	another	component.	Let’s	create	a	PostPhoto	component	that
will	contain	the	form:

import	React,	{	Component	}	from	'react'

export	default	class	PostPhoto	extends	Component	{

				state	=	{
								name:	'',
								description:	'',
								category:	'PORTRAIT',
								file:	''
				}

				postPhoto	=	(mutation)	=>	{
								console.log('todo:	post	photo')
								console.log(this.state)
				}

				render()	{
								return	(
												<form	onSubmit={e	=>	e.preventDefault()}
																style={{

																				display:	'flex',
																				flexDirection:	'column',
																				justifyContent:	'flex-start',
																				alignItems:	'flex-start'
																}}>

																<h1>Post	a	Photo</h1>

																<input	type="text"
																				style={{	margin:	'10px'	}}
																				placeholder="photo	name..."
																				value={this.state.name}
																				onChange={({target})	=>
																								this.setState({	name:	target.value	})}	/>

																<textarea	type="text"
																				style={{	margin:	'10px'	}}
																				placeholder="photo	description..."
																				value={this.state.description}
																				onChange={({target})	=>
																								this.setState({	description:	target.value	})}	/>

																<select	value={this.state.category}
																				style={{	margin:	'10px'	}}
																				onChange={({target})	=>
																								this.setState({	category:	target.value	})}>
																				<option	value="PORTRAIT">PORTRAIT</option>
																				<option	value="LANDSCAPE">LANDSCAPE</option>
																				<option	value="ACTION">ACTION</option>
																				<option	value="GRAPHIC">GRAPHIC</option>
																</select>

																<input	type="file"
																				style={{	margin:	'10px'	}}
																				accept="image/jpeg"
																				onChange={({target})	=>
																								this.setState({
																												file:	target.files	&&	target.files.length	?
																																target.files[0]	:
																																''
																				})}	/>

																<div	style={{	margin:	'10px'	}}>
																				<button	onClick={()	=>	this.postPhoto()}>
																								Post	Photo
																				</button>
																				<button	onClick={()	=>	this.props.history.goBack()}>
																								Cancel
																				</button>
																</div>

												</form>
)
				}

}

The	PostPhoto	component	is	simply	a	form.	This	form	uses	input	elements	for
the	name,	description,	category,	and	the	file	itself.	In	React,	we	call	this
controlled	because	each	input	element	is	linked	to	a	state	variable.	Any	time	an
input’s	value	changes,	the	state	of	the	PostPhoto	component	will	change	too.

We	submit	photos	by	pressing	the	“Post	Photo”	button.	The	file	input	accepts	a
JPEG	and	sets	the	state	for	file.	This	state	field	represents	the	actual	file,	not	just
text.	We	have	not	added	any	form	validation	to	this	component	for	brevity.

It’s	time	to	add	our	new	components	to	the	App	component.	When	we	do	so,	we
will	make	sure	that	the	home	route	displays	our	Users	and	Photos.	We	will	also
add	a	/newPhoto	route	that	can	be	used	to	display	the	form.

import	React,	{	Fragment	}	from	'react'
import	{	Switch,	Route,	BrowserRouter	}	from	'react-router-dom'
import	Users	from	'./Users'
import	Photos	from	'./Photos'
import	PostPhoto	from	'./PostPhoto'
import	AuthorizedUser	from	'./AuthorizedUser'

const	App	=	()	=>
				<BrowserRouter>
								<Switch>
												<Route
																exact
																path="/"
																component={()	=>

																				<Fragment>
																								<AuthorizedUser	/>
																								<Users	/>
																								<Photos	/>
																				</Fragment>
																}	/>
												<Route	path="/newPhoto"	component={PostPhoto}	/>
												<Route	component={({	location	})	=>
																<h1>"{location.pathname}"	not	found</h1>
												}	/>
								</Switch>
				</BrowserRouter>

export	default	App

The	<Switch>	component	allows	us	to	render	one	route	at	a	time.	When	the	url
contains	the	home	route,	“/”,	we	will	display	a	component	that	contains	the
AuthorizedUser,	Users,	and	Photos	components.	The	Fragment	is	used	in	React
when	we	want	to	display	sibling	components	without	having	to	wrap	them	in	an
extra	div	element.	When	the	route	is	“/newPhoto”,	we	will	display	the	new	photo
form.	And	when	the	route	is	not	recognized,	we	will	display	a	h1	element	that
let’s	the	user	know	that	we	can’t	find	the	route	that	they	provided.

Only	authorized	users	can	post	photos,	so	we’ll	append	a	“Post	Photo”	NavLink
to	the	AuthorizedUser	component.	Clicking	this	button	will	cause	the	PostPhoto
to	render.

import	{	withRouter,	NavLink	}	from	'react-router-dom'

...

class	AuthorizedUser	extends	Component	{

				...

				render()	{
								return	(
												<Query	query={ME_QUERY}>
																{({	loading,	data	})	=>	data.me	?
																				<div>
																								<img

																												src={data.me.avatar_url}
																												width={48}
																												height={48}
																												alt=""	/>
																								<h1>{data.me.name}</h1>
																								<button	onClick={this.logout}>logout</button>
																								<NavLink	to="/newPhoto">Post	Photo</NavLink>
																				</div>	:

				...

Here	we	import	the	<NavLink>	component.	When	the	Post	Photo	link	is	clicked,
the	user	will	be	sent	to	the	/newPhoto	route.

At	this	point,	the	app	navigation	should	work.	A	user	is	allowed	to	navigate
between	screens,	and	when	posting	a	photo,	we	should	see	the	necessary	input
data	logged	in	the	console.	It	is	time	for	us	to	take	that	post	data,	including	the
file,	and	send	it	with	a	mutation.

First,	let’s	install	apollo-upload-client:

npm	install	apollo-upload-client

We	are	going	to	replace	the	current	HTTP	link	with	an	HTTP	link	that	is
supplied	by	apollo-upload-client.	This	link	will	support	multipart/form-data
requests	that	contain	upload	files.	To	create	this	link,	we’ll	use	the
createUploadLink	function:

import	{	createUploadLink	}	from	'apollo-upload-client'

...

const	httpLink	=	createUploadLink({
				uri:	'http://localhost:4000/graphql'
})

We’ve	replaced	the	old	HTTP	link	with	a	new	one	called	using	the
createUploadLink	function.	This	looks	fairly	similar	to	the	HTTP	link.	It	has	the
API	route	included	as	the	uri.

It’s	time	to	add	the	postPhoto	mutation	to	the	PostPhoto	form:

import	React,	{	Component	}	from	'react'
import	{	Mutation	}	from	'react-apollo'
import	{	gql	}	from	'apollo-boost'
import	{	ROOT_QUERY	}	from	'./App'

const	POST_PHOTO_MUTATION	=	gql`
				mutation	postPhoto($input:	PostPhotoInput!)	{
								postPhoto(input:$input)	{
												id
												name
												url
								}
				}
`

The	POST_PHOTO_MUTATION	is	our	mutation	parsed	as	an	AST	and	ready
to	be	sent	to	the	server.	We	import	the	ALL_PHOTOS_QUERY	because	we’ll
need	to	use	it	when	it	is	time	to	update	the	local	cache	with	the	new	photo	that
will	be	returned	by	the	mutation.

To	add	the	mutation,	we	will	encapsulate	the	Post	Photo	button	element	with	the
Mutation	component:

<div	style={{	margin:	'10px'	}}>
				<Mutation	mutation={POST_PHOTO_MUTATION}
								update={updatePhotos}>
								{mutation	=>
												<button	onClick={()	=>	this.postPhoto(mutation)}>
																Post	Photo
												</button>
								}
				</Mutation>
				<button	onClick={()	=>	this.props.history.goBack()}>
								Cancel
				</button>
</div>

The	Mutation	component	passes	the	mutation	as	a	function.	When	we	click	the
button,	we	will	pass	the	mutation	function	to	postPhoto	so	that	it	can	be	used	to
change	the	photo	data.	Once	the	mutation	is	complete,	the	updatePhotos	function
will	be	called	in	order	to	update	the	local	cache.

Next,	let’s	actually	send	the	mutation:

postPhoto	=	async	(mutation)	=>	{
				await	mutation({
								variables:	{
												input:	this.state
								}
				}).catch(console.error)
				this.props.history.replace('/')
}

This	mutation	function	returns	a	promise.	Once	complete,	we	will	use	React
Router	to	navigate	the	user	back	to	the	home	page	by	replacing	the	current	route
using	the	history	property.	When	the	mutation	is	complete,	we	need	to	capture
the	data	returned	from	it	to	update	the	local	cache:

const	updatePhotos	=	(cache,	{	data:{	postPhoto	}	})	=>	{
				var	data	=	cache.readQuery({	query:	ALL_PHOTOS_QUERY	})
				data.allPhotos	=	[
								postPhoto,
								...allPhotos
]
				cache.writeQuery({	query:	ALL_PHOTOS_QUERY,	data	})
}

The	updatePhotos	method	handles	the	cache	update.	We	will	read	the	photos
from	the	cache	using	the	ROOT_QUERY.	Then,	we’ll	add	the	new	photo	to	the
cache	using	writeQuery.	This	little	bit	of	maintenance	will	make	sure	that	our
local	data	is	in	sync.

At	this	point,	we	are	ready	to	post	new	photos.	Go	ahead	and	give	it	a	shot.

We’ve	taken	a	closer	look	at	how	queries,	mutations,	and	subscriptions	are
handled	on	the	client	side.	When	you’re	using	React	Apollo,	you	can	take
advantage	of	the	<Query>,	<Mutation>,	and	<Subscription>	components	to	help
you	connect	the	data	from	your	GraphQL	service	to	your	user	interface.

Now	that	the	application	is	working,	we’ll	add	one	more	layer	to	handle	security.

Security
Your	GraphQL	service	provides	a	lot	of	freedom	and	flexibility	to	your	clients.
They	have	the	flexibility	to	query	data	from	multiple	sources	in	a	single	request.
They	also	have	the	ability	to	request	large	amounts	of	related,	or	connected,	data
in	a	single	request.	Left	unchecked,	your	clients	have	the	capability	of	requesting
too	much	from	your	service	in	a	single	request.	Not	only	will	the	strain	of	large
queries	affect	server	performance,	it	could	also	take	your	service	down	entirely.
Some	clients	might	do	this	unwittingly	or	unintentionally,	whereas	other	clients
might	have	more	malicious	intent.	Either	way,	you	need	to	put	some	safeguards
in	place	and	monitor	your	server’s	performance	in	order	to	protect	against	large
or	malicious	queries.

In	this	next	section,	we	cover	some	of	the	options	available	to	improve	the
security	of	your	GraphQL	service.

Request	Timeouts
A	request	timeout	is	a	first	defense	against	large	or	malicious	queries.	A	request
timeout	allows	only	a	certain	amount	of	time	to	process	each	request.	This
means	that	requests	of	your	service	need	to	be	completed	within	a	specific	time
frame.	Request	timeouts	are	used	not	only	for	GraphQL	services,	they	are	used
for	all	sorts	of	services	and	processes	across	the	internet.	You	might	have
already	implemented	these	timeouts	for	your	Representational	State	Transfer
(REST)	API	to	guard	against	lengthy	requests	with	too	much	POST	data.

You	can	add	an	overall	request	timeout	to	the	express	server	by	setting	the
timeout	key.	In	the	following,	we’ve	added	a	timeout	of	five	seconds	to	guard
against	troublesome	queries:

const	httpServer	=	createServer(app)
server.installSubscriptionHandlers(httpServer)

httpServer.timeout	=	5000

Additionally,	you	can	set	timeouts	for	overall	queries	or	individual	resolvers.
The	trick	to	implementing	timeouts	for	queries	or	resolvers	is	to	save	the	start
time	for	each	query	or	resolver	and	validate	it	against	your	preferred	timeout.
You	can	record	the	start	time	for	each	request	in	context:

const	context	=	async	({	request	})	=>	{

								...

								return	{
												...
												timestamp:	performance.now()
								}

				}

Now	each	of	the	resolvers	will	know	when	the	query	began	and	can	throw	an
error	if	the	query	takes	too	long.

Data	Limitations
Another	simple	safeguard	that	you	can	place	against	large	or	malicious	queries	is
to	limit	the	amount	of	data	that	can	be	returned	by	each	query.	You	can	return	a
specific	number	of	records,	or	a	page	of	data,	by	allowing	your	queries	to	specify
how	many	records	to	return.

For	example,	recall	in	Chapter	4	that	we	designed	a	schema	that	could	handle
data	paging.	But	what	if	a	client	requested	an	extremely	large	page	of	data?
Here’s	an	example	of	a	client	doing	just	that:

query	allPhotos	{
		allPhotos(first=99999)	{
				name
				url
				postedBy	{
								name
								avatar
				}
}

You	can	guard	against	these	types	of	large	requests	by	simply	setting	a	limit	for
a	page	of	data.	For	example,	you	could	set	a	limit	for	100	photos	per	query	in
your	GraphQL	server.	That	limit	can	be	enforced	in	the	query	resolver	by
checking	an	argument:

				allPhotos:	(root,	data,	context)	{
								if	(data.first	>	100)	{
												throw	new	Error('Only	100	photos	can	be	requested	at	a	time')
								}
				}

When	you	have	a	large	number	of	records	that	can	be	requested,	it	is	always	a
good	idea	to	implement	data	paging.	You	can	implement	data	paging	simply	by
providing	the	number	of	records	that	should	be	returned	by	a	query.

Limiting	Query	Depth
One	of	the	benefits	GraphQL	provides	the	client	is	the	ability	to	query	connected
data.	For	example,	in	our	photo	API,	we	can	write	a	query	that	can	deliver
information	about	a	photo,	who	posted	it,	and	all	the	other	photos	posted	by	that
photograph	all	in	one	request:

query	getPhoto($id:ID!)	{
				Photo(id:$id)	{
								name
								url
								postedBy	{
												name
												avatar
												postedPhotos	{
																name
																url
												}
								}
				}
}

This	is	a	really	nice	feature	that	can	improve	network	performance	within	your
applications.	We	can	say	that	the	preceding	query	has	a	depth	of	3	because	it
queries	the	photo	itself	along	with	two	connected	fields:	postedBy	and
postedPhotos.	The	root	query	has	a	depth	of	0,	the	Photo	field	has	a	depth	of	1,
the	postedBy	field	has	a	depth	of	2	and	the	postedPhotos	field	has	a	depth	of	3.

Clients	can	take	advantage	of	this	feature.	Consider	the	following	query:

query	getPhoto($id:ID!)	{
				Photo(id:$id)	{
								name
								url
								postedBy	{
												name
												avatar
												postedPhotos	{
																name
																url

																taggedUsers	{
																				name
																				avatar
																				postedPhotos	{
																								name
																								url
																				}
																}
												}
								}
				}
}

We’ve	added	two	more	levels	to	this	query’s	depth:	the	taggedUsers	in	all	of	the
photos	posted	by	the	photographer	of	the	original	photo,	and	the	postedPhotos	of
all	of	the	taggedUsers	in	all	of	the	photos	posted	by	the	photographer	of	the
original	photo.	This	means	that	if	I	posted	the	original	photo,	this	query	would
also	resolve	to	all	of	the	photos	I’ve	posted,	all	of	the	users	tagged	in	those
photos,	and	all	of	the	photos	posted	by	all	of	those	tagged	users.	That’s	a	lot	of
data	to	request.	It	is	also	a	lot	of	work	to	be	performed	by	your	resolvers.	Query
depth	grows	exponentially	and	can	easily	get	out	of	hand.

You	can	implement	a	query	depth	limit	for	your	GraphQL	services	to	prevent
deep	queries	from	taking	your	service	down.	If	we	had	set	a	query	depth	limit	of
3,	the	first	query	would	have	been	within	the	limit,	whereas	the	second	query
would	not	because	it	has	a	query	depth	of	5.

Query	depth	limitations	are	typically	implemented	by	parsing	the	query’s	AST
and	determining	how	deeply	nested	the	selection	sets	are	within	these	objects.
There	are	npm	packages	like	graphql-depth-limit	that	can	assist	with	this	task:

npm	install	graphql-depth-limit

After	you	install	it,	you	can	add	a	validation	rule	to	your	GraphQL	server
configuration	using	the	depthLimit	function:

const	depthLimit	=	require('graphql-depth-limit')

...

const	server	=	new	ApolloServer({
				typeDefs,
				resolvers,
				validationRules:	[depthLimit(5)],
				context:	async({	req,	connection	})	=>	{
								...
				}
})

Here,	we	have	set	the	query	depth	limit	to	10,	which	means	that	we	provided	our
clients	with	the	capability	of	writing	queries	that	can	go	10	selection	sets	deep.	If
they	go	any	deeper,	the	GraphQL	server	will	prevent	the	query	from	executing
and	return	an	error.

Limiting	Query	Complexity
Another	measurement	that	can	help	you	identify	troublesome	queries	is	query
complexity.	There	are	some	client	queries	that	might	not	run	too	deep	but	can
still	be	expensive	due	to	the	amount	of	fields	that	are	queried.	Consider	this
query:

query	everything($id:ID!)	{
		totalUsers
		Photo(id:$id)	{
				name
				url
		}
		allUsers	{
				id
				name
				avatar
				postedPhotos	{
						name
						url
				}
				inPhotos	{
						name
						url
						taggedUsers	{
								id
						}
				}
		}
}

The	everything	query	does	not	exceed	our	query	depth	limit,	but	it’s	still	pretty
expensive	due	to	the	number	of	fields	that	are	being	queried.	Remember,	each
field	maps	to	a	resolver	function	that	needs	to	be	invoked.

Query	complexity	assigns	a	complexity	value	to	each	field	and	then	totals	the
overall	complexity	of	any	query.	You	can	set	an	overall	limit	that	defines	the
maximum	complexity	available	for	any	given	query.	When	implementing	query
complexity	you	can	identify	your	expensive	resolvers	and	give	those	fields	a
higher	complexity	value.

There	are	several	npm	packages	available	to	assist	with	the	implementation	of
query	complexity	limits.	Let’s	take	a	look	at	how	we	could	implement	query
complexity	in	our	service	using	graphql-validation-complexity:

npm	install	graphql-validation-complexity

GraphQL	validation	complexity	has	a	set	of	default	rules	out	of	the	box	for
determining	query	complexity.	It	assigns	a	value	of	1	to	each	scalar	field.	If	that
field	is	in	a	list,	it	multiplies	the	value	by	a	factor	of	10.

For	example,	let’s	look	at	how	graphql-validation-complexity	would	score	the
everything	query:

query	everything($id:ID!)	{
		totalUsers							#	complexity	1
		Photo(id:$id)	{
				name											#	complexity	1
				url												#	complexity	1
		}
		allUsers	{
				id													#	complexity	10
				name											#	complexity	10
				avatar									#	complexity	10
				postedPhotos	{
						name									#	complexity	100
						url										#	complexity	100
				}
				inPhotos	{
						name									#	complexity	100
						url										#	complexity	100
						taggedUsers	{
								id									#	complexity	1000
						}
				}
		}
}												#	total	complexity	1433

By	default,	graphql-validation-complexity	assigns	each	field	a	value.	It
multiplies	that	value	by	a	factor	of	10	for	any	list.	In	this	example,	totalUsers
represents	a	single	integer	field	and	is	assigned	a	complexity	of	1.	Querying

fields	in	a	single	photo	have	the	same	value.	Notice	that	the	fields	queried	in	the
allUsers	list	are	assigned	a	value	of	10.	This	is	because	they	are	within	a	list.
Every	list	field	is	multiplied	by	10.	So	a	list	within	a	list	is	assigned	a	value	of
100.	Because	taggedUsers	is	a	list	within	the	inPhotos	list,	which	is	within	the
allUsers	list,	the	values	of	taggedUser	fields	is	10	×	10	×	10,	or	1000.

We	can	prevent	this	particular	query	from	executing	by	setting	an	overall	query
complexity	limit	of	1000:

const	{	createComplexityLimitRule	}	=	require('graphql-validation-complexity')

...

			const	options	=	{

								...

								validationRules:	[
												depthLimit(5),
												createComplexityLimitRule(1000,	{
																onCost:	cost	=>	console.log('query	cost:	',	cost)
												})
]
				}

In	this	example,	we	set	the	maximum	complexity	limit	to	1000	with	the	use	of
the	createComplexityLimitRule	found	in	the	graphql-validation-complexity
package.	We’ve	also	implemented	the	onCost	function,	which	will	be	invoked
with	the	total	cost	of	each	query	as	soon	as	it	is	calculated.	The	preceding	query
would	not	be	allowed	to	execute	under	these	circumstances	because	it	exceeds	a
maximum	complexity	of	1000.

Most	query	complexity	packages	allow	you	to	set	your	own	rules.	We	could
change	the	complexity	values	assigned	to	scalars,	objects,	and	lists	with	the
graphql-validation-complexity	package.	It	is	also	possible	to	set	custom
complexity	values	for	any	field	that	we	deem	very	complicated	or	expensive.

Apollo	Engine
It	is	not	recommended	to	simply	implement	security	features	and	hope	for	the
best.	Any	good	security	and	performance	strategy	needs	metrics.	You	need	a
way	to	monitor	your	GraphQL	service	so	that	you	can	identify	your	popular
queries	and	see	where	your	performance	bottlenecks	occur.

You	can	use	Apollo	Engine	to	monitor	your	GraphQL	service,	but	it’s	more	than
just	a	monitoring	tool.	Apollo	Engine	is	a	robust	cloud	service	that	provides
insights	into	your	GraphQL	layer	so	that	you	can	run	the	service	in	production
with	confidence.	It	monitors	the	GraphQL	operations	sent	to	your	services	and
provides	a	detailed	live	report	available	online	at
https://engine.apollographql.com,	which	you	can	use	to	identify	your	most
popular	queries,	monitor	execution	time,	monitor	errors,	and	help	find
bottlenecks.	It	also	provides	tools	for	schema	management	including	validation.

Apollo	Engine	is	already	included	in	your	Apollo	Server	2.0	implementation.
With	just	one	line	of	code,	you	can	run	Engine	anywhere	that	Apollo	Server
runs,	including	serverless	environments	and	on	the	edge.	All	you	need	to	do	is
turn	it	on	by	setting	the	engine	key	to	true:

	const	server	=	new	ApolloServer({
				typeDefs,
				resolvers,
				engine:	true
		})

The	next	step	is	to	make	sure	that	you	have	an	environment	variable	called
ENGINE_API_KEY	set	to	your	Apollo	Engine	API	key.	Head	to
https://engine.apollographql.com	to	create	an	account	and	generate	your	key.

In	order	to	publish	your	application	to	Apollo	Engine,	you	will	need	to	install	the
Apollo	CLI	tools:

npm	install	-g	apollo

Once	installed	you	can	use	the	CLI	to	publish	your	app:

apollo	schema:publish

https://engine.apollographql.com
https://engine.apollographql.com

				--key=<YOUR	ENGINE	API	KEY>
				--endpoint=http://localhost:4000/graphql

Don’t	forget	to	add	your	ENGINE_API_KEY	to	the	environment	variables	as
well.

Now	when	we	run	the	PhotoShare	GraphQL	API,	all	operations	sent	to	the
GraphQL	service	will	be	monitored.	You	can	view	an	activity	report	at	the
Engine	website.	This	activity	report	can	be	used	to	help	find	and	alleviate
bottlenecks.	Additionally,	Apollo	Engine	will	improve	the	performance	and
response	time	of	our	queries	as	well	as	monitor	the	performance	of	our	service.

Taking	the	Next	Steps
Throughout	this	book,	you’ve	learned	about	graph	theory;	you’ve	written
queries;	you’ve	designed	schemas;	you’ve	set	up	GraphQL	servers	and	explored
GraphQL	client	solutions.	The	foundation	is	in	place,	so	you	can	use	what	you
need	to	improve	your	applications	with	GraphQL.	In	this	section,	we	share	some
concepts	and	resources	that	will	further	support	your	future	GraphQL
applications.

Incremental	Migration
Our	PhotoShare	app	is	a	prime	example	of	a	Greenfield	project.	When	you	are
working	on	your	own	projects,	you	might	not	have	the	luxury	of	starting	from
scratch.	The	flexibility	of	GraphQL	allows	you	to	start	incorporating	GraphQL
incrementally.	There’s	no	reason	that	you	need	to	tear	down	everything	and	start
over	to	benefit	from	GraphQL’s	features.	You	can	start	slow	by	applying	the
following	ideas:

Fetch	data	from	REST	in	your	resolvers

Instead	of	rebuilding	every	REST	endpoint,	use	GraphQL	as	a	gateway	and
make	a	fetch	request	for	that	data	on	the	server	inside	of	a	resolver.	Your
service	can	also	cache	the	data	sent	from	REST	to	improve	query	response
time.

Or	use	GraphQL	request

Robust	client	solutions	are	great,	but	implementing	them	at	the	start	might	be
too	much	setup.	To	get	started	simply,	use	graphql-request	and	make	a
request	in	the	same	place	you	use	fetch	for	a	REST	API.	This	approach	will
get	you	started,	get	you	hooked	on	GraphQL,	and	will	likely	lead	you	to	a
more	comprehensive	client	solution	when	you’re	ready	to	optimize	for
performance.	There	is	no	reason	you	cannot	fetch	data	from	four	REST
endpoints	and	one	GraphQL	service	within	the	same	app.	Everything	does
not	have	to	migrate	to	GraphQL	all	at	the	same	time.

Incorporate	GraphQL	in	one	or	two	components

Instead	of	rebuilding	your	entire	site,	pick	a	single	component	or	page	and
drive	the	data	to	that	particular	feature	using	GraphQL.	Keep	everything	else
about	your	site	in	place	while	you	monitor	the	experience	of	moving	a	single
component.

Don’t	build	any	more	REST	endpoints

Instead	of	expanding	REST,	build	a	GraphQL	endpoint	for	your	new	service
or	feature.	You	can	host	a	GraphQL	endpoint	on	the	same	server	as	your
REST	endpoints.	Express	does	not	care	if	it	is	routing	a	request	to	a	REST
function	or	a	GraphQL	resolver.	Every	time	a	task	requires	a	new	REST

endpoint,	add	that	feature	to	your	GraphQL	service,	instead.

Don’t	maintain	your	current	REST	endpoints

The	next	time	there	is	a	task	to	modify	a	REST	endpoint	or	create	a	custom
endpoint	for	some	data,	don’t!	Instead,	take	the	time	to	section	off	this	one
endpoint	and	update	it	to	GraphQL.	You	can	slowly	move	your	entire	REST
API	this	way.

Moving	to	GraphQL	slowly	can	allow	you	to	benefit	from	features	right	away
without	the	pains	associated	with	starting	from	nothing.	Start	with	what	you
have,	and	you	can	make	your	transition	to	GraphQL	a	smooth	and	gradual	one.

Schema-First	Development
You’re	at	a	meeting	for	a	new	web	project.	Members	of	different	frontend	and
backend	teams	are	represented.	After	the	meeting,	someone	might	come	up	with
some	specifications,	but	these	documents	are	often	lengthy	and	underutilized.
Frontend	and	backend	teams	start	coding,	and	without	clear	guidelines,	the
project	is	delivered	behind	schedule	and	is	different	than	everyone’s	initial
expectations.

Problems	with	web	projects	usually	stem	from	a	lack	of	communication	or
miscommunication	about	what	should	be	built.	Schemas	provide	clarity	and
communication,	which	is	why	many	projects	practice	schema-first	development.
Instead	of	getting	bogged	down	by	domain-specific	implementation	details,
disparate	teams	can	work	together	on	solidifying	a	schema	before	building
anything.

Schemas	are	an	agreement	between	the	frontend	and	the	backend	teams	and
define	all	of	the	data	relationships	for	an	application.	When	teams	sign	off	on	a
schema,	they	can	work	independently	to	fulfill	the	schema.	Working	to	serve	the
schema	yields	better	results	because	there	is	clarity	in	type	definitions.	Frontend
teams	know	exactly	which	queries	to	make	to	load	data	into	user	interfaces.
Backend	teams	know	exactly	what	the	data	needs	are	and	how	to	support	them.
Schema-first	development	provides	a	clear	blueprint,	and	the	teams	can	build	the
project	with	more	consensus	and	less	stress.

Mocking	is	an	important	part	of	Schema	First	Development.	Once	the	front-end
team	has	the	schema,	they	can	use	it	to	start	developing	components
immediately.	The	following	code	is	all	that	is	needed	to	stand	up	a	mock
GraphQL	service	running	on	http://localhost:4000.

const	{	ApolloServer	}	=	require('apollo-server')
const	{	readFileSync	}	=	require('fs')

var	typeDefs	=	readFileSync('./typeDefs.graphql',	'UTF-8')

const	server	=	new	ApolloServer({	typeDefs,	mocks:	true	})

server.listen()

Assuming	you’ve	provided	the	typeDefs.graphql	file	designed	during	the
schema-first	process,	you	can	begin	developing	UI	components	that	send	query,
mutation,	and	subscription	operations	to	the	mock	GraphQL	service	while	the
back-end	team	implements	the	real	service.

Mocks	work	out	of	the	box	by	providing	default	values	for	each	scalar	type.
Everywhere	a	field	is	supposed	to	resolve	to	a	string,	you’ll	see	“Hello	World”
as	the	data.

You	can	customize	the	data	this	is	returned	by	a	mock	server.	This	makes	it
possible	to	return	data	that	looks	more	like	the	real	data.	This	is	an	important
feature	that	will	assist	with	the	task	of	styling	your	user	interface	components:

const	{	ApolloServer,	MockList	}	=	require('apollo-server')
const	{	readFileSync	}	=	require('fs')

const	typeDefs	=	readFileSync('./typeDefs.graphql',	'UTF-8')
const	resolvers	=	{}

const	mocks	=	{
		Query:	()	=>	({
				totalPhotos:	()	=>	42,
				allPhotos:	()	=>	new	MockList([5,	10]),
				Photo:	()	=>	({
						name:	'sample	photo',
						description:	null
				})
		})
}

const	server	=	new	ApolloServer({
		typeDefs,
		resolvers,
		mocks
})

server.listen({	port:	4000	},	()	=>
		console.log(`Mock	Photo	Share	GraphQL	Service`)
)

The	above	code	adds	a	mock	for	the	totalPhotos	and	allPhotos	fields	along	with

the	Photo	type.	Every	time	we	query	the	totalPhotos	the	number	42	will	be
returned.	When	we	query	the	allPhotos	field	we	will	receive	somewhere	between
5	and	10	photos.	The	MockList	constructor	is	included	in	the	apollo-server	and
is	used	to	generate	list	types	with	specific	lengths.	Every	time	a	Photo	type	is
resolved	by	the	service	the	name	of	the	photo	is	“a	sample	photo”	and	the
description	is	null.	You	can	create	pretty	robust	mocks	in	conjunction	with
packages	like	faker	or	casual.	These	npms	provide	all	sorts	of	fake	data	that	can
be	used	to	build	realistic	mocks.

To	learn	more	about	mocking	an	Apollo	Server,	check	out	Apollo’s
documentation.

https://www.apollographql.com/docs/apollo-server/v2/features/mocking.html

GraphQL	Events
There	are	a	number	of	conferences	and	meetups	that	focus	on	GraphQL	content.

GraphQL	Summit

A	conference	organized	by	Apollo	GraphQL.

GraphQL	Day

A	hands-on	developer	conference	in	The	Netherlands.

GraphQL	Europe

A	nonprofit	GraphQL	conference	in	Europe.

GraphQL	Finland

A	community-organized	GraphQL	conference	in	Helsinki,	Finland.

You’ll	also	find	GraphQL	content	at	almost	any	development	conference,
particularly	those	that	focus	on	JavaScript.

If	you’re	looking	for	events	near	you,	there	are	also	GraphQL	meetups	in	cities
all	over	the	world.	If	there’s	not	one	near	you,	you	could	be	the	one	to	start	a
local	group!

https://summit.graphql.com/
https://www.graphqlday.org/
https://www.graphql-europe.org/
https://graphql-finland.fi/
http://bit.ly/2lnBMB0

Community
GraphQL	is	popular	because	it’s	a	wonderful	technology.	It	also	is	popular	due
to	the	fervent	support	of	the	GraphQL	community.	The	community	is	quite
welcoming,	and	there	are	a	number	of	ways	of	getting	involved	and	staying	on
top	of	the	latest	changes.

The	knowledge	that	you’ve	gained	about	GraphQL	will	serve	as	a	good
foundation	when	you’re	exploring	other	libraries	and	tools.	If	you’re	looking	to
take	the	next	steps	to	expand	your	skills,	here	are	some	other	topics	to	check	out:

Schema	stitching

Schema	stitching	allows	you	to	create	a	single	GraphQL	schema	from
multiple	GraphQL	APIs.	Apollo	provides	some	great	tooling	around	the
composition	of	remote	schemas.	Learn	more	about	how	to	take	on	a	project
like	this	in	the	Apollo	documentation.

Prisma

Throughout	the	book,	we’ve	used	GraphQL	Playground	and	GraphQL
Request:	two	tools	from	the	Prisma	team.	Prisma	is	a	tool	that	turns	your
existing	database	into	a	GraphQL	API,	no	matter	what	database	you’re
using.	While	a	GraphQL	API	stands	between	the	client	and	the	database,
Prisma	stands	between	a	GraphQL	API	and	the	database.	Prisma	is	open-
source,	so	you	can	deploy	your	Prisma	service	in	production	using	any	cloud
provider.

The	team	has	also	released	a	related	tool	called	Prisma	Cloud,	a	hosting
platform	for	Prisma	services.	Instead	of	having	to	set	up	your	own	hosting,
you	can	use	Prisma	Cloud	to	manage	all	of	the	DevOps	concerns	for	you.

AWS	AppSync

Another	new	player	in	the	ecosystem	is	Amazon	Web	Services.	It	has
released	a	new	product	built	on	GraphQL	and	Apollo	tools	to	simplify	the
process	of	setting	up	a	GraphQL	service.	With	AppSync,	you	create	a
schema	and	then	connect	to	your	data	source.	AppSync	updates	the	data	in
real-time	and	even	handles	offline	data	changes.

http://bit.ly/2KcibP6

Community	Slack	Channels
Another	great	way	to	get	involved	is	to	join	one	of	the	many	GraphQL
community	Slack	channels.	Not	only	can	you	stay	connected	to	the	latest	news
in	GraphQL,	but	you	can	ask	questions	sometimes	answered	by	the	creators	of
these	technologies.

You	can	also	share	your	knowledge	with	others	in	these	growing	communities
from	wherever	you	are:

GraphQL	Slack

Apollo	Slack

As	you	continue	your	journey	with	GraphQL,	you	can	become	more	involved	in
the	community	as	a	contributor,	as	well.	Right	now,	there	are	high-profile
projects	like	React	Apollo,	Prisma,	and	GraphQL	itself	that	have	open	issues
with	help	wanted	tags.	Your	help	with	one	of	these	issues	could	help	many
others!	There	are	also	many	opportunities	to	contribute	new	tools	to	the
ecosystem.

Though	change	is	inevitable,	the	ground	under	our	feet	as	GraphQL	API
developers	is	very	solid.	At	the	heart	of	everything	we	do,	we’re	creating	a
schema	and	writing	resolvers	to	fulfill	the	data	requirements	of	the	schema.	No
matter	how	many	tools	come	out	to	shake	things	up	in	the	ecosystem,	we	can
rely	on	the	stability	of	the	query	language	itself.	On	the	API	timeline,	GraphQL
is	very	new,	but	the	future	is	very	bright.	So,	let’s	all	go	build	something
amazing.

https://graphql-slack.herokuapp.com/
https://www.apollographql.com/#slack

Index

Symbols

!	(exclamation	point),	Connections	and	Lists

A

abstract	syntax	trees,	Abstract	Syntax	Trees-Abstract	Syntax	Trees

access	token,	githubAuth	Mutation

adjacent	nodes,	History	of	Graph	Theory

Amazon	Web	Services	(AWS),	Community

API	tools,	GraphQL	API	Tools-Public	GraphQL	APIs

GraphiQL,	GraphiQL-GraphiQL

GraphQL	Playground,	GraphQL	Playground-GraphQL	Playground

public	GraphQL	APIs,	Public	GraphQL	APIs

API,	GraphQL

client	setup,	Using	a	GraphQL	API-graphql-request

context,	Context-Adding	Database	to	Context

creating,	Creating	a	GraphQL	API-Conclusion

fetch	requests,	fetch	Requests-fetch	Requests

GitHub	authorization,	GitHub	Authorization-Add	fake	users	mutation

graphql-request,	graphql-request-graphql-request

monitoring,	Apollo	Engine-Apollo	Engine

resolvers,	Resolvers-Custom	Scalars

Apollo	Client,	Apollo	Client

about,	GraphQL	Clients

and	cache,	Apollo	Client

Mutation	component,	The	Mutation	Component

posting	a	new	photo	with,	Posting	a	New	Photo	with	Apollo	Client-Posting	a
New	Photo	with	Apollo	Client

project	setup,	Project	Setup

Query	component,	The	Query	Component

WebSocket	link,	Adding	the	WebSocketLink

Apollo	Engine,	Apollo	Engine-Apollo	Engine

Apollo	Server,	Working	with	Subscriptions

apollo-server-express,	GraphQL,	apollo-server-express

AppSync,	Community

arguments,	Arguments-Sorting

data	paging,	Data	paging

defined,	The	GraphQL	Query

filtering,	Filtering	Data-Sorting

organizing	with	input	types,	Input	Types-Input	Types

sorting,	Sorting

authentication,	Authenticating	Users-Add	fake	users	mutation

fake	users	mutation,	Add	fake	users	mutation-Add	fake	users	mutation

me	query,	me	Query-me	Query

authorization

client-side,	Authorization

GitHub,	GitHub	Authorization-Add	fake	users	mutation

identifying	the	user,	Identifying	the	User

of	user,	Authorizing	the	User

AWS	AppSync,	Community

B

Bad	Credentials	error,	githubAuth	Mutation

Berners-Lee,	Tim,	Welcome	to	GraphQL

binary	trees,	Trees	are	Graphs

Byron,	Lee,	Origins	of	GraphQL

C

cache,	Apollo	Client	and,	Apollo	Client

clients,	GraphQL	Clients,	GraphQL	Clients

(see	also	Apollo	Client)

authorization,	Authorization

fetch	requests,	fetch	Requests-fetch	Requests

graphql-request,	graphql-request-graphql-request

using	a	GraphQL	API,	Using	a	GraphQL	API-graphql-request

Codd,	Edgar	M.,	The	GraphQL	Query	Language

community,	Community-Community	Slack	Channels

GraphQL	events,	GraphQL	Events

Slack	channels,	Community	Slack	Channels

connections

many-to-many,	Many-to-Many	Connections,	Many-to-many-Many-to-many

one-to-many,	One-to-Many	Connections,	One-to-many	connections-One-to-
many	connections

one-to-one,	One-to-One	Connections

queries	and,	Edges	and	Connections

resolvers	and,	Edges	and	Connections-Many-to-many

schemas	and,	Connections	and	Lists-Interfaces

context,	Context-Adding	Database	to	Context

adding	database	to,	Adding	Database	to	Context

defined,	Context

MongoDB	installation	for,	Installing	Mongo

create-react-app,	Project	Setup

Crockford,	Douglas,	REST

cURL,	The	GraphQL	Query	Language,	fetch	Requests-fetch	Requests

custom	scalars,	Custom	Scalars-Custom	Scalars

D

data	paging,	Data	paging

data	transport,	history	of,	History	of	Data	Transport

declarative	data-fetching	language,	What	Is	GraphQL?

definitions,	in	GraphQL	Document,	Abstract	Syntax	Trees

degree	of	a	node,	History	of	Graph	Theory

depth	of	a	node,	Trees	are	Graphs

design	principles,	GraphQL,	Design	Principles	of	GraphQL

directed	graph	(digraph)

defined,	Graph	Theory	Vocabulary

Twitter	as,	Graphs	in	the	Real	World

documentation,	of	schemas,	Schema	Documentation-Schema	Documentation

E

edges	(term),	Graph	Theory	Vocabulary

endpoints,	managing,	Managing	REST	Endpoints

enums	(enumeration	types),	Enums,	Using	Inputs	and	Enums-Using	Inputs	and
Enums

error	handling,	The	GraphQL	Query

Euler,	Leonhard,	History	of	Graph	Theory-History	of	Graph	Theory

Eulerian	cycle,	History	of	Graph	Theory

Eulerian	path,	History	of	Graph	Theory

exclamation	point,	Connections	and	Lists

Express

and	Node.js,	apollo-server-express

F

Facebook

and	GraphQL’s	origins,	Origins	of	GraphQL

as	undirected	graph,	Graphs	in	the	Real	World

subscriptions	and,	Subscriptions

SWAPI	project,	Public	GraphQL	APIs

fake	users	mutation,	Add	fake	users	mutation-Add	fake	users	mutation

fetch	requests,	fetch	Requests-fetch	Requests

Fielding,	Roy,	REST

fields,	Types

filtering,	Filtering	Data-Sorting

data	paging,	Data	paging

sorting,	Sorting

FragmentDefinition,	Abstract	Syntax	Trees

fragments

and	union	types,	Union	types

interfaces,	Interfaces

queries	and,	Fragments-Interfaces

G

GitHub	API,	Public	GraphQL	APIs

GitHub	authorization,	GitHub	Authorization-Add	fake	users	mutation

authenticating	users,	Authenticating	Users-Add	fake	users	mutation

Bad	Credentials	error,	githubAuth	Mutation

fake	users	mutation,	Add	fake	users	mutation-Add	fake	users	mutation

githubAuth	mutation,	githubAuth	Mutation-githubAuth	Mutation

me	query,	me	Query-me	Query

postPhoto	mutation,	postPhoto	mutation

process	of,	The	Authorization	Process

setting	up	GitHub	OAuth,	Setting	Up	GitHub	OAuth-Setting	Up	GitHub
OAuth

GitHub	OAuth

return	types,	Return	Types

setting	up,	Setting	Up	GitHub	OAuth-Setting	Up	GitHub	OAuth

GitHub,	as	early	adopter	of	GraphQL,	GraphQL	in	the	Real	World

graph	theory,	Graph	Theory-Graphs	in	the	Real	World

history	of,	History	of	Graph	Theory-History	of	Graph	Theory

real-world	applications	of	concepts,	Graphs	in	the	Real	World-Graphs	in	the
Real	World

real-world	examples	of	graphs,	Graph	Theory-Graph	Theory

trees	as	graphs,	Trees	are	Graphs-Trees	are	Graphs

vocabulary	of,	Graph	Theory	Vocabulary-Graph	Theory	Vocabulary

GraphiQL,	GraphiQL-GraphiQL

GraphQL	(generally)

about,	Welcome	to	GraphQL-GraphQL	Clients

and	history	of	data	transport,	History	of	Data	Transport

basics,	What	Is	GraphQL?-Design	Principles	of	GraphQL

clients,	GraphQL	Clients

design	principles,	Design	Principles	of	GraphQL

origins,	Origins	of	GraphQL

real	world	uses,	GraphQL	in	the	Real	World

specification,	The	GraphQL	Specification

GraphQL	Bin,	GraphQL	Playground

GraphQL	Day,	GraphQL	Events

GraphQL	Europe,	GraphQL	Events

GraphQL	Finland,	GraphQL	Events

GraphQL	Playground,	GraphQL	Playground-GraphQL	Playground,
Authenticating	Users

GraphQL	Summit,	GraphQL	Events

graphql-request,	graphql-request-graphql-request

H

Homebrew,	Installing	Mongo

HTML	trees,	Trees	are	Graphs

I

incremental	migration,	Incremental	Migration

inline	fragments,	Union	types

input	types

with	resolvers,	Using	Inputs	and	Enums-Using	Inputs	and	Enums

with	schemas,	Input	Types-Input	Types

input	variables,	Using	Query	Variables

interfaces,	Interfaces,	Interfaces

introspection,	Introspection

J

JSON	(JavaScript	Object	Notation),	origins	of,	REST

K

Königsberg	bridge	problem,	History	of	Graph	Theory-History	of	Graph	Theory

L

lexical	analysis	(lexing),	Abstract	Syntax	Trees

lists

and	interfaces,	Interfaces

of	different	types,	Lists	of	Different	Types-Interfaces

schemas	and,	Connections	and	Lists-Interfaces

union	types,	Union	types,	Union	types

M

many-to-many	connections,	Many-to-Many	Connections,	Many-to-many-Many-
to-many

me	query,	me	Query-me	Query

migration,	incremental,	Incremental	Migration

MongoDB,	installing,	Installing	Mongo

monitoring,	API,	Apollo	Engine-Apollo	Engine

Mutation	component,	The	Mutation	Component

mutations,	Mutations-Using	Query	Variables

about,	The	GraphQL	Query	Language

and	query	variables,	Using	Query	Variables

declaring	variables,	Mutations

defining	in	the	schema,	Mutations-Mutations

fake	user,	Add	fake	users	mutation-Add	fake	users	mutation

githubAuth,	githubAuth	Mutation-githubAuth	Mutation

postPhoto,	postPhoto	mutation

N

nodes

adjacent,	History	of	Graph	Theory

defined,	Graph	Theory	Vocabulary

degree	of,	History	of	Graph	Theory

non-nullable	fields

defined,	Types

exclamation	points	and,	Connections	and	Lists

nullable	fields,	Types

O

object	types	(see	types)

one-to-many	connections,	Edges	and	Connections,	One-to-Many	Connections,
One-to-many	connections-One-to-many	connections

one-to-one	connections,	One-to-One	Connections

OperationDefinition,	Abstract	Syntax	Trees

operations,	defined,	GraphiQL

overfetching,	Overfetching-Overfetching

P

parent	object,	Type	Resolvers

PhotoShare	application

GraphQL	API	for,	Creating	a	GraphQL	API-Conclusion

GraphQL	clients	for,	GraphQL	Clients

schema	design,	Designing	a	Schema-Schema	Documentation

security,	Security-Apollo	Engine

subscriptions,	Subscriptions-Listening	for	new	users

uploading	files,	Uploading	Files-Posting	a	New	Photo	with	Apollo	Client

Playground	(see	GraphQL	Playground)

Prisma,	Community

public	GraphQL	APIs,	Public	GraphQL	APIs

PubSub,	Working	with	Subscriptions

Q

query	arguments,	The	GraphQL	Query

query	complexity,	Limiting	Query	Complexity-Limiting	Query	Complexity

Query	component,	The	Query	Component

query	document,	GraphiQL

query	language,	The	GraphQL	Query	Language-Abstract	Syntax	Trees

abstract	syntax	trees,	Abstract	Syntax	Trees-Abstract	Syntax	Trees

API	tools,	GraphQL	API	Tools-Public	GraphQL	APIs

edges	and	connections,	Edges	and	Connections

fragments,	Fragments-Interfaces

introspection,	Introspection

mutations,	Mutations-Using	Query	Variables

simple	GraphQL	query	example,	The	GraphQL	Query	Language

subscriptions,	Subscriptions

query	variables,	Using	Query	Variables

query(ies)

as	GraphQL	root	type,	The	GraphQL	Query

data	limitations	on,	Data	Limitations

defined,	The	GraphQL	Query

error	handling,	The	GraphQL	Query

limiting	complexity	of,	Limiting	Query	Complexity-Limiting	Query
Complexity

limiting	depth	of,	Limiting	Query	Depth-Limiting	Query	Depth

simple	GraphQL	example,	The	GraphQL	Query	Language

R

React	Router,	Authorizing	the	User

React,	Apollo	Client	with,	Project	Setup

real-world	applications	of	GraphQL,	GraphQL	in	the	Real	World-Community
Slack	Channels

incremental	migration,	Incremental	Migration

schema-first	development,	Schema-First	Development

security,	Security-Apollo	Engine

subscriptions,	Subscriptions-Listening	for	new	users

uploading	files,	Uploading	Files-Posting	a	New	Photo	with	Apollo	Client

Relay,	GraphQL	Clients

request	timeouts,	Request	Timeouts

resolvers

custom	scalars,	Custom	Scalars-Custom	Scalars

defined,	Resolvers

edges	and	connections,	Edges	and	Connections-Many-to-many

githubAuth,	githubAuth	Mutation

root,	Root	Resolvers-Root	Resolvers

type,	Type	Resolvers-Type	Resolvers

using	inputs	and	enums,	Using	Inputs	and	Enums-Using	Inputs	and	Enums

REST	(Representational	State	Transfer),	REST-Managing	REST	Endpoints

basic	data	operations,	The	GraphQL	Query	Language

drawbacks,	REST	Drawbacks-Managing	REST	Endpoints

managing	endpoints,	Managing	REST	Endpoints

origins,	REST

overfetching,	Overfetching-Overfetching

underfetching,	Underfetching-Underfetching

return	types,	Return	Types

root	nodes,	Trees	are	Graphs

root	resolvers,	Root	Resolvers-Root	Resolvers

root	type,	The	GraphQL	Query

RPC	(remote	procedure	call),	Remote	Procedure	Call

S

scalar	types,	Scalar	Types

custom	scalars,	Custom	Scalars-Custom	Scalars

defined,	Edges	and	Connections

enums,	Enums

Schafer,	Dan,	Origins	of	GraphQL

Schema	Definition	Language	(SDL),	Designing	a	Schema

Schema	First	design	methodology,	Designing	a	Schema,	Schema-First
Development

schema	stitching,	Community

schemas

arguments,	Arguments-Sorting

connections	and	lists,	Connections	and	Lists-Interfaces

defined,	Designing	a	Schema

designing,	Designing	a	Schema-Schema	Documentation

documentation,	Schema	Documentation-Schema	Documentation

input	types,	Input	Types-Input	Types

mutations,	Mutations-Mutations

return	types,	Return	Types

subscription	types,	Subscriptions

types,	Defining	Types-Enums

Schrock,	Nick,	Origins	of	GraphQL

security,	Security-Apollo	Engine

API	monitoring,	Apollo	Engine-Apollo	Engine

data	limitations	on	queries,	Data	Limitations

limiting	query	complexity,	Limiting	Query	Complexity-Limiting	Query
Complexity

limiting	query	depth,	Limiting	Query	Depth-Limiting	Query	Depth

request	timeouts,	Request	Timeouts

selection	sets,	The	GraphQL	Query

SelectionSet,	Abstract	Syntax	Trees

servers,	GraphQL

handling	uploads	on,	Handling	Uploads	on	the	Server

Slack	channels,	Community	Slack	Channels

SOAP	(Simple	Object	Access	Protocol),	Simple	Object	Access	Protocol

social	authorization,	GitHub	Authorization

sorting,	Sorting

specification	(spec),	The	GraphQL	Specification

SQL	(Structured	Query	Language),	The	GraphQL	Query	Language-Abstract
Syntax	Trees

state	changes	(see	mutations,	subscriptions)

subscriptions,	Subscriptions

and	WebSocketLink,	Adding	the	WebSocketLink

consuming,	Consuming	Subscriptions-Listening	for	new	users

in	schemas,	Subscriptions

listening	for	new	users,	Listening	for	new	users-Listening	for	new	users

posting	photos,	Posting	photos

real-world	applications,	Subscriptions-Listening	for	new	users

working	with,	Working	with	Subscriptions-Posting	photos

subtrees,	Trees	are	Graphs

SWAPI	(Star	Wars	API),	Public	GraphQL	APIs

T

tagging,	Many-to-Many	Connections

through	types,	Through	types

timeouts,	request,	Request	Timeouts

trees

abstract	syntax	trees,	Abstract	Syntax	Trees-Abstract	Syntax	Trees

as	graphs,	Trees	are	Graphs-Trees	are	Graphs

trivial	resolvers,	Type	Resolvers

Twitter,	as	directed	graph,	Graphs	in	the	Real	World

type	resolvers,	Type	Resolvers-Type	Resolvers

types,	Edges	and	Connections

basics,	Types

defining,	Defining	Types-Enums

enums,	Enums

in	GraphQL,	Types

interfaces,	Interfaces,	Interfaces

lists	of	different	types,	Lists	of	Different	Types-Interfaces

scalar,	Scalar	Types

through,	Through	types

union,	Union	types,	Union	types

U

underfetching,	Underfetching-Underfetching

undirected	graph

defined,	Graph	Theory	Vocabulary

Facebook	as,	Graphs	in	the	Real	World

union	types,	Union	types,	Union	types

uploading	files,	Uploading	Files-Posting	a	New	Photo	with	Apollo	Client

handling	uploads	on	the	server,	Handling	Uploads	on	the	Server

posting	a	new	photo	with	Apollo,	Posting	a	New	Photo	with	Apollo	Client-
Posting	a	New	Photo	with	Apollo	Client

V

variables

input,	Using	Query	Variables

mutation,	Mutations

vertices	(term),	Graph	Theory	Vocabulary

W

WebSocketLink,	Adding	the	WebSocketLink

WebSockets,	Subscriptions

WorldWideWeb,	origins	of,	Welcome	to	GraphQL

Y

Yelp	GraphQL	API,	Public	GraphQL	APIs

About	the	Authors

Alex	Banks	and	Eve	Porcello	are	software	engineers	and	instructors	based	in
Tahoe	City,	California.	With	their	company,	Moon	Highway,	they	have
developed	and	delivered	custom	training	curriculum	for	corporate	clients	and
online	for	LinkedIn	Learning.	They	also	are	the	authors	of	Learning	React	from
O’Reilly	Media.

Colophon

The	animal	on	the	cover	of	Learning	GraphQL	is	Bonelli’s	Eagle	(Aquila
fasciata).	This	large	raptor	is	found	across	Southeast	Asia,	the	Middle	East,	and
the	Mediterranean,	preferring	drier	climates	and	areas	where	it	can	nest	in	crags
or	tall	trees.	It	has	an	average	wingspan	of	about	60	in.,	and	it	is	disntiguished	by
a	dark-brown	head	and	wings	with	a	white	underbelly	adorned	in	dark	stripes
and	flecks.

Usually	silent	outside	of	the	nest,	this	stealthy	hunter	feeds	primarily	on	other
birds,	up	to	and	including	other	raptors,	but	is	also	known	to	eat	small	mammals
and	reptiles.	Despite	a	propensity	to	eat	other	birds	of	prey,	adult	nesting	pairs
are	known	for	their	affection	for	chicks	regardless	of	lineage,	and	have	been
observed	to	foster	eggs	and	hatchlings	in	abandoned	nests,	both	of	Aquila
fasciata	and	other	raptor	species	in	which	lethal	aggression	is	not	displayed
between	siblings.

Many	of	the	animals	on	O’Reilly	covers	are	endangered;	all	of	them	are
important	to	the	world.	To	learn	more	about	how	you	can	help,	go	to
animals.oreilly.com.

The	cover	image	is	from	Brehms	Tierleben.	The	cover	fonts	are	URW
Typewriter	and	Guardian	Sans.	The	text	font	is	Adobe	Minion	Pro;	the	heading
font	is	Adobe	Myriad	Condensed;	and	the	code	font	is	Dalton	Maag’s	Ubuntu
Mono.

http://animals.oreilly.com

	Preface
	Acknowledgments
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Safari
	How to Contact Us

	1. Welcome to GraphQL
	What Is GraphQL?
	The GraphQL Specification
	Design Principles of GraphQL

	Origins of GraphQL
	History of Data Transport
	Remote Procedure Call
	Simple Object Access Protocol
	REST

	REST Drawbacks
	Overfetching
	Underfetching
	Managing REST Endpoints

	GraphQL in the Real World
	GraphQL Clients

	2. Graph Theory
	Graph Theory Vocabulary
	History of Graph Theory
	Trees are Graphs
	Graphs in the Real World

	3. The GraphQL Query Language
	GraphQL API Tools
	GraphiQL
	GraphQL Playground
	Public GraphQL APIs

	The GraphQL Query
	Edges and Connections
	Fragments

	Mutations
	Using Query Variables

	Subscriptions
	Introspection
	Abstract Syntax Trees

	4. Designing a Schema
	Defining Types
	Types
	Scalar Types
	Enums

	Connections and Lists
	One-to-One Connections
	One-to-Many Connections
	Many-to-Many Connections
	Lists of Different Types

	Arguments
	Filtering Data

	Mutations
	Input Types
	Return Types
	Subscriptions
	Schema Documentation

	5. Creating a GraphQL API
	Project Setup
	Resolvers
	Root Resolvers
	Type Resolvers
	Using Inputs and Enums
	Edges and Connections
	Custom Scalars

	apollo-server-express
	Context
	Installing Mongo
	Adding Database to Context

	GitHub Authorization
	Setting Up GitHub OAuth
	The Authorization Process
	githubAuth Mutation
	Authenticating Users

	Conclusion

	6. GraphQL Clients
	Using a GraphQL API
	fetch Requests
	graphql-request

	Apollo Client
	Apollo Client with React
	Project Setup
	Configure Apollo Client
	The Query Component
	The Mutation Component

	Authorization
	Authorizing the User
	Identifying the User

	Working with the Cache
	Fetch Policies
	Persisting The Cache
	Updating the Cache

	7. GraphQL in the Real World
	Subscriptions
	Working with Subscriptions
	Consuming Subscriptions

	Uploading Files
	Handling Uploads on the Server
	Posting a New Photo with Apollo Client

	Security
	Request Timeouts
	Data Limitations
	Limiting Query Depth
	Limiting Query Complexity
	Apollo Engine

	Taking the Next Steps
	Incremental Migration
	Schema-First Development
	GraphQL Events
	Community
	Community Slack Channels

	Index

